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Introduction
Porphyromonas gingivalis (P. gingivalis)1 is a Gram-negative, 
anaerobic bacterium keystone pathogen in periodontitis. P. 
gingivalis is also a prolific producer of outer membrane vesicles 
(OMVs),2 which are small, membrane-bound structures that 
contain a variety of virulence factors. P. gingivalis OMVs have 
also been linked to several other diseases, including Heart, 
Stroke, Diabetes, Rheumatoid arthritis, and Systemic lupus 
erythematosus. The potential for P. gingivalis OMVs to cause 
systemic diseases is a growing area of research. As our under-
standing of these vesicles increases, new therapeutic strategies 
may be developed for preventing and treating periodontitis and 
other diseases.

They are typically 50 to 400 nm in size, composed of a single 
lipid bilayer derived from the bacterial outer membrane. They 
contain a variety of virulence factors, including fimbriae, gingi-
pains, and lipopolysaccharide (LPS).3 They can regulate neu-
trophils and macrophages and invade oral epithelial cells. They 
are involved in the pathogenesis of periodontitis and a number 
of other diseases. OMVs are produced by P. gingivalis as a 
mechanism for delivering virulence factors and other molecules 
to host cells.

Transcriptomics of mRNA transcripts includes protein-cod-
ing and non-coding transcripts that do not encode proteins. 
The prediction of protein-coding mRNA is a key step in many 
areas of biological research, including gene discovery, functional 
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genomics, and drug discovery. Several methods can be used to 
predict protein-coding mRNA,4 including Heuristic methods 
provide a quick and straightforward way to identify potential 
protein-coding regions based on predefined rules.

Deep learning, a subset of machine learning, has gained 
prominence for its ability to analyze large datasets and extract 
complex patterns. The process of developing a deep learning 
model involves several key steps. Initially, data preparation 
ensures the dataset is properly cleaned and formatted. Following 
this, the appropriate neural network architecture is selected 
based on the data’s nature (eg, convolutional neural networks 
for images). This study, however, utilizes a broader approach. In 
addition to deep learning, it employs Naïve Bayes and Gradient 
Boosting. Naïve Bayes, efficient for large datasets, analyzes 
individual sequence features to estimate class probabilities 
(protein-coding/non-coding). Gradient Boosting, a powerful 
ensemble method, builds on successive models to improve 
overall accuracy. These complementary approaches offer a 
robust framework for protein-coding mRNA prediction in P. 
gingivalis OMVs. Subsequently, the chosen model undergoes 
rigorous training and optimization. Algorithms like backprop-
agation adjust the model’s parameters iteratively until it 
achieves satisfactory performance. Through these steps, the 
model is refined to effectively tackle the specific problem at 
hand. By employing neural networks with multiple layers of 
interconnected nodes, deep learning models can autonomously 
learn features from input data.5

The current study focuses on utilizing deep learning tech-
niques to predict protein-coding mRNA sequences within P. 
gingivalis OMVs. This allows for the accurate identification of 
protein-coding regions within the transcriptome of P. gingi-
valis OMVs, thereby shedding light on the molecular mecha-
nisms underlying pathogenesis. Furthermore, by incorporating 
structural and functional information from mRNA sequences, 
deep learning models can facilitate the discovery of potential 
therapeutic targets for periodontal disease and associated sys-
temic conditions.6,7

Material and Methods
Using the GEO R tool on the NCBI GEO DATA SET 
GSE218606, the most differentially expressed mRNA was 
identified from outer membrane vesicles of P. gingivalis 
(Figures 1 and 2). The CYTOSCAPE algorithm was used to 
perform network analysis of differentially expressed genes. 
Differential gene expression data obtained was classified and 
labeled in to protein-coding mRNA sequence of P. gingivalis 
and protein-coding, nonprotein coding like pseudogene, lin-
cRNA, bidirectional_promoter_lncRNA (Figure 3). The 
threshold value of FDR 0.05 was chosen as the cut-off crite-
rion. Transcriptomics Data was Collected and involved gather-
ing and labeling on protein-coding mRNA sequence of P. 
gingivalis and protein-coding, nonprotein coding like pseudo-
gene, lincRNA, bidirectional promoter lncRNA.

This research uses neural networks, Naïve Bayes, and gradi-
ent boosting to build a prediction model. Neural networks, 
Naïve Bayes, and gradient boosting are chosen for their effec-
tiveness in different machine learning tasks. Neural networks 
are advantageous in handling high-dimensional data, while 
Naïve Bayes is a data mining technique that can be useful in 
solving various data-based problems. Gradient boosting, on 
the other hand, is a powerful machine learning technique that 
sequentially adds new models to the ensemble, improving the 
overall performance. Neural networks excel in pattern recog-
nition, while Naïve Bayes is efficient for text classification. 

Figure 1.  Volcano plot of DEGs of upregulated and downregulated genes 

and with top differential gene expression includes-

PTGS1, CXCL1, BDKRB2, CXCL8, SECTM1, SLC16A6, TFAP2C, and 

biologically involved in inflammatory response and chemokine signaling.

Figure 2.  Interatomic hub genes of differential expressed genes.
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Gradient boosting, an ensemble method, combines weak 
learners for robust prediction models.

The network architecture consists of an input layer, hidden 
layers, and an output layer. It is initialized, initialized with ran-
dom weights, and then used for forward propagation and back-
propagation to generate predictions. The error between 
predictions and actual output is calculated, and the network is 
used to make predictions on new data. Gradient Boosting is a 
method that uses an ensemble of decision trees called weak 
learners, each built sequentially to correct previous errors. The 
final prediction is a weighted sum of these weak learners. The 
process involves initializing the model, fitting it to the training 
data, calculating the error, adjusting weights, building a new 
weak learner, and repeating until convergence. Naïve Bayes is a 
machine learning method based on Bayes’ theorem and feature 
independence. It uses probability distributions to estimate the 
likelihood of an instance belonging to a specific class. The 
process involves learning prior and conditional probabilities, 
and assigning the highest probability label.

Prior to analysis with machine learning models, the P. gin-
givalis OMV mRNA data underwent preprocessing. This ini-
tial step encompassed handling missing values (eg, through 
mean imputation or deletion), normalizing features for consist-
ent interpretation, and potentially crafting novel features based 
on sequence motifs. Additionally, categorical data like gene 
names were likely transformed into numerical representations 
for optimal model comprehension. These preprocessing steps 
ensure the data is clean, standardized, and interpretable by the 
machine learning algorithms, ultimately improving the relia-
bility of the analysis.

After preprocessing the data, Orange, a machine learning 
tool, was used for data analysis and predictive modeling activi-
ties. Machine learning splits involved using 80% of data for 
training and 20% for testing. The ideal split depends on the 
dataset size, problem complexity, and data availability. The split 
percentage affects model results, with smaller training sets 
potentially leading to bias and underfitting, and larger testing 
sets potentially causing overfitting. results were insensitive to 
percentage of selection. Hyperparameter tuning involved using 
10 hidden layers, Adam optimizer, and ReLU activation for 
neural networks, while gradient boosting utilized 100 trees, a 
learning rate of 0.102, and trained on all instances. Cross-
validation, model accuracy, and ROC curve were assessed. 
Once the model has been tested and validated, it can predict 
whether a given mRNA sequence codes for an inflammatory-
inducing protein in P. gingivalis OMVs.

Recent advances in deep learning for bioinformatics sug-
gest that these models could potentially consider not only 
the coding regions of the mRNA but also cis-regulatory 
regions such as promoters and untranslated regions (UTRs). 
Additionally, the structure of the mRNA and the corre-
sponding protein could be crucial features for the model, as 
there is a strong correlation between protein and mRNA 
levels in multiple organisms.

Results
The presented Table 1 outlines the performance metrics for 
3 distinct models—Neural Network, Naive Bayes, and 
Gradient Boosting—used to predict protein-coding mRNA 
sequences within Porphyromonas gingivalis outer mem-
brane vesicles (OMVs). These metrics serve as evaluative 
tools to gage the effectiveness and accuracy of each model in 
discerning between positive and negative instances and to 
assess their overall performance. These metrics include 
AUC (Area Under the Curve), CA (Classification Accuracy), 
FI (F1 Score), Precision, Recall (Sensitivity), and Specificity. 
AUC measures the model’s ability to differentiate between 
classes, as it represents the area under the Receiver Operating 
Characteristic (ROC) curve. Higher AUC values signify 
better discrimination between positive and negative 
instances. CA represents the proportion of correctly classi-
fied instances among all instances, indicating the model’s 

Figure 3.  Flowchart of machine learning model.
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overall accuracy. FI Score, a harmonic mean of precision and 
recall, offers a balanced assessment of the model’s perfor-
mance, considering both false positives and false negatives. 
Precision measures the accuracy of positive predictions, 
while Recall quantifies the model’s ability to capture all 
actual positive instances. Specificity assesses the model’s 
ability to correctly identify negative instances.

Beginning with the Neural Network model, it achieved a 
modest AUC of 0.721, indicating its discriminatory capacity, 
albeit with a relatively low classification accuracy (CA) of 0.391. 
Moreover, the F1 score was 0.314, suggesting a trade-off 
between these 2 metrics. Precision stood at 0.318, while recall 
was slightly higher at 0.391. However, the specificity, was nota-
bly high at 0.861, indicating robust performance in this aspect. 
Transitioning to the Naive Bayes model, it exhibited a slightly 
lower AUC of 0.701 compared to the Neural Network. 
However, its classification accuracy was considerably lower at 
0.172, indicating poorer overall performance. The F1 score and 
precision were both significantly low at 0.114 and 0.418, respec-
tively, indicating a substantial imbalance between precision and 
recall. Moreover, recall was found to be 0.172, suggesting that 
the model captures only a small portion of actual positive 

instances, while specificity remained relatively high at 0.902, 
indicating proficiency in identifying negative instances. Finally, 
the Gradient Boosting model demonstrated an AUC of 0.72, 
comparable to the Neural Network. However, it achieved a 
higher classification accuracy of 0.408, implying superior overall 
performance. The F1 score, serving as a measure of balance 
between precision and recall, was moderate at 0.322, indicating 
a reasonable trade-off between these 2 metrics. Precision and 
recall were both around 0.32 and 0.408, respectively, implying a 
fair balance between correctly identifying positive instances and 
minimizing false positives (Figure 4). Additionally, specificity 
was moderate at 0.843, indicating satisfactory performance in 
correctly identifying negative instances. These results collec-
tively suggest that while all models exhibit some level of predic-
tive accuracy, the Gradient Boosting model distinguishes itself 
for its superior overall performance and balanced performance 
across various metrics.

The Kruskal-Wallis H-test was used to compare the distri-
butions of model metrics (AUC, Classification Accuracy, F1 
Score, Precision, Recall, and Specificity) across Neural 
Networks, Naive Bayes, and Gradient Boosting. The results 
show that the H-statistic is 2.000 for all metrics, with 

Table 1.  Shows performance metrics for neural networks, naïve bayes, gradient boosting.

Model AUC CA FI Precision Recall Specificity

Neural Network 0.721 0.391 0.314 0.318 0.391 0.861

Naive Bayes 0.701 0.172 0.114 0.418 0.172 0.902

Gradient Boosting 0.72 0.408 0.322 0.32 0.408 0.843

Figure 4.  ROC curve of predictive accuracy of protein-coding and non-coding genes.
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corresponding P-values of .368. This indicates that there is no 
significant difference in the distributions of these metrics 
across the 3 types of models. statistically showed the P-values 
for all the metrics are higher than the usual significance level 
(eg, .05), which means that there is no statistically significant 
difference in the distributions of these metrics among the 3 
models. This indicates that, based on the data, 1 model consist-
ently performs better than the others across these metrics.

Discussion
Recently, there has been a growing interest in using machine 
learning methods to predict protein-coding mRNA. These 
methods can learn from large datasets of known protein 
sequences and their functions, and they can then be used to pre-
dict the importance of new proteins. P. gingivalis main virulence 
factors are fimbriae, capsule, outer membrane vesicles, LPS, 
toxic metabolites, and proteinases. Gingipains, “trypsin-like” 
cysteine proteinases, can degrade plasma, extracellular matrix, 
cytokines, and host cell surface proteins. P. gingivalis can con-
centrate and release OMVs with high virulence factors. Zhang 
et al8 performed proteomics analysis of P. gingivalis OMVs and 
identified a total of 151 proteins, almost all of which were 
derived from the outer membrane or periplasm, and its protein 
composition is different from its parent bacteria.

P. gingivalis OMVs have been found to contribute to peri-
odontitis through immunological mechanisms and bacterial 
virulence.3,9 Transcriptomics data used in this study were 
known for its involvement in periodontal disease. The data 
involved gathering and labeling protein-coding mRNA 
sequences.

In the case of transcriptomics data, the dependent and 
independent variables can vary depending on the specific 
analysis being performed. Generally, the independent variable 
or predictor variable would be the different RNA sequences, 
such as protein-coding mRNA sequences, pseudogenes, lin-
cRNAs, or bidirectional promoter lncRNAs. These independ-
ent variables are used to predict or classify the dependent 
variable, which could be a specific biological outcome or phe-
notype. Regarding missing data, it is possible to have missing 
values in transcriptomics datasets. Handling missing data in 
transcriptomics data is removed. It is essential to carefully 
consider the potential impact of missing data and choose an 
appropriate method accordingly.

By labeling the mRNA sequences, they are assigned specific 
characteristics or attributes for use in machine learning algo-
rithms. Additionally, the data also included protein-coding 
nonprotein coding sequences such as pseudogenes, lincRNAs 
(long intergenic noncoding RNAs), and bidirectional promoter 
lncRNAs. Pseudogenes are gene copies that have lost their pro-
tein-coding ability, while lincRNAs and bidirectional promoter 
lncRNAs are noncoding RNAs that have various functional 
roles within the cell.10,11 Machine learning algorithms can use 
transcriptomics data to identify patterns and associations 
between RNA sequences, potentially predicting new RNA 

sequences and identifying therapeutic targets for periodontal 
disease, based on identified patterns.

These protein-coding inflammatory-inducing mRNA mar
kers are released from P. gingivalis OMVs and can induce 
inflammation and immune responses in host cells. This inflam-
mation and immune response can lead to the destruction of 
periodontal tissues and the development of periodontitis. 
Generally, the mRNA data are large numbers, making it diffi-
cult to identify them manually. Suppose any future mutations 
occur or new proteins (Gingipains) or strains of P. gingivalis 
OMV are identified, and new mRNAs are identified. In that 
case, the task of detecting protein-coding mRNA gets tougher. 
Hence, having an AI model will help to reduce the workload of 
identifying the P. gingivalis protein-coding mRNA. The current 
study shows neural networks, naïve bayes, and gradient-boost-
ing algorithms to be reliable in predicting the protein-coding 
mRNA. As new protein-coding mRNAs are identified, enter-
ing the data into the algorithms will help us automatically gen-
erate protein-coding mRNA.

Conclusion
The current study is one of its kinds in utilizing predictive 
models to detect protein-coding mRNA of P. gingivalis OMV. 
The 3 algorithms, neural networks, naïve bayes, and gradient 
boosting, tested in the study show better accuracy in predicting 
protein-coding mRNA. However, more algorithms should be 
tested to achieve reliable AI models.
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