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Klebsiella pneumoniae carries a thick polysaccharide capsule. This highly variable
chemical structure plays an important role in its virulence. Many Klebsiella
bacteriophages recognize this capsule with a receptor binding protein (RBP) that
contains a depolymerase domain. This domain degrades the capsule to initiate phage
infection. RBPs are highly specific and thus largely determine the host spectrum of the
phage. A majority of known Klebsiella phages have only one or two RBPs, but phages
with up to 11 RBPs with depolymerase activity and a broad host spectrum have been
identified. A detailed bioinformatic analysis shows that similar RBP domains repeatedly
occur in K. pneumoniae phages with structural RBP domains for attachment of an
RBP to the phage tail (anchor domain) or for branching of RBPs (T4gp10-like domain).
Structural domains determining the RBP architecture are located at the N-terminus,
while the depolymerase is located in the center of protein. Occasionally, the RBP is
complemented with an autocleavable chaperone domain at the distal end serving for
folding and multimerization. The enzymatic domain is subjected to an intense horizontal
transfer to rapidly shift the phage host spectrum without affecting the RBP architecture.
These analyses allowed to model a set of conserved RBP architectures, indicating
evolutionary linkages.

Keywords: horizontal transfer, tail fiber genes, receptor binding protein, phage evolution, depolymerase

INTRODUCTION

Klebsiella pneumoniae is a Gram-negative bacillus. In spite of being part of the natural human
and animal flora, K. pneumoniae is also the widespread cause of both nosocomial and community
acquired infections. Since 2013 K. pneumoniae has been marked as a prominent member of the
carbapenem-resistant Enterobacteriaceae (CRE), featured by a multidrug-resistant phenotype and
labeled as a class of antibiotic-resistant bacteria for which novel ways of therapy are most urgent
(Weiner et al., 2016; Calfee, 2017). As natural bacterial predators, bacteriophages have since long
been proposed as promising alternatives to antibiotic therapy. The large majority of phages is highly
specific with a host spectrum defined at the species/strain level. This high specificity necessitates
the selection of a phage sur-mesure for a personalized treatment or the use of a phage cocktail
that covers a broader host range. Major determinants of host specificity are the phage receptor
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binding proteins (RBPs) that mediate the initial contact with
the receptor on the host cell envelope (Williams et al.,
2008). This initial contact can be based on a direct binding
of long tail fibers or shorter tailspikes to the cell surface
receptor. Some RBPs possess a depolymerase activity to
degrade bacterial exopolysaccharides comprising the capsule
(CPS), lipopolysaccharides (LPS) or biofilm matrix (Majkowska-
Skrobek et al., 2016, 2018; Olszak et al., 2017). Interaction of RBPs
with their cell wall receptors are essential to initiate the infection
process (Andres et al., 2010; Broeker et al., 2018).

The primary receptor targeted by RBPs of many Klebsiella
specific phages is the thick polysaccharide capsule, which is a
hallmark feature of K. pneumoniae. The capsule is a crucial
virulence factor as it forms a physical barrier to some antibiotics
and host immune mechanisms, enabling bacteria to avoid
phagocytosis or complement-mediated killing (Cortés et al., 2002;
Lee et al., 2017; Majkowska-Skrobek et al., 2018). Differences in
sugar composition, the specific ratio of various sugar components
as well as variation in the locus organization are the base to
distinguish at least 79 capsular serotypes called K antigens and
134 capsular loci (KL) among Klebsiella species (Pan et al., 2015;
Wyres et al., 2016; Wick et al., 2018). This capsular diversity
correlates to a correspondingly high variation of Klebsiella phage
RBPs that contain a specific polysaccharide-depolymerizing
domain (Schmid et al., 2015; Latka et al., 2017). Such domains
cleave the O-glycosidic bond of capsular polysaccharides
following either a hydrolase or a lyase mechanism. Hydrolases
(e.g., sialidases, rhamnosidases, levanases, dextranases, and
xylanases) involve a water molecule for cleavage, whereas
lyases [e.g., hyaluronate lyases (hyaluronidases), pectin/pectate
lyases, alginate lyases, K5 lyases] cleave by β-elimination with
introduction of new double bond (Davies and Henrissat, 1995;
Sutherland, 1995; Pires et al., 2016). In spite of a high diversity
in enzyme specificity and primary amino acid sequence, many
known depolymerases contain an elongated, highly interwoven
β-helical domain that forms the specific catalytic pocket. In
addition, this β-helical domain contributes to a high protein
stability in harsh environments (Yan et al., 2014; Majkowska-
Skrobek et al., 2016). An overview of (experimentally confirmed)
RBPs with depolymerase activity has been recently reported
(Latka et al., 2017).

Receptor binding protein with depolymerase activity have
a modular structure with the enzymatic domain located in
the central part (Figure 1C). The C-terminus of the RBP
may comprise a chaperone that assists in a proper folding
and trimerization followed by autoproteolytic removal or an
additional domain involved in host cell recognition (Weigele
et al., 2003; Cornelissen et al., 2011; Schwarzer et al., 2012; Seul
et al., 2014; Yan et al., 2014). Autocleavage of the C-terminal
chaperone was also reported as a common feature among
endosialidases and other tail spikes and tail fibers, necessary to
increase the unfolding barrier and to trap the mature trimer in
a more kinetically stable conformation (Schwarzer et al., 2007).
The N-terminal dome-like domain attaches the RBP to the phage
particle by a flexible connector. A modular architecture of RBPs
allows for rapid evolution via horizontal gene transfer leading to
host range modification. Whereas structural domains responsible

for attachment to the tail apparatus are repeatedly present in
many phylogenetically related phages, the domains for host
cell receptor recognition/degradation are subjected to intense
exchanges across phylogenetic borders. In addition, the latter
RBP domains undergo further constant modification through
vertical transfer and accumulation of mutations (Stummeyer
et al., 2006; Barbirz et al., 2008; Leiman and Molineux, 2008;
Schwarzer et al., 2012; Latka et al., 2017). The tail fibers of E. coli
phage T7 and its relative K1F are type examples of a horizontal
transfer of the C-terminal RBP domain. These tail fibers share
a conserved N-terminal domain of ∼140 resides that anchors
the tail fiber to the phage particle (Figure 1). However, T7 has a
C-terminal domain that recognizes and binds lipopolysaccharide,
whereas K1F produces an endosialidase specific for recognition
and cleavage of E. coli K1 capsular polysaccharide (Steven et al.,
1988; Stummeyer et al., 2005).

Phages with a single RBP such as T7 and K1F are most
frequently described in the literature. However, several phages
belonging to Podoviridae have also acquired two different RBPs
corresponding to a dual receptor-specificity. E.g., K. pneumoniae
podoviruses K5-2, K5-4, and KP32 possess two RBPs with a
depolymerase domain with different enzymatic specificity (Hsieh
et al., 2017; Majkowska-Skrobek et al., 2018). In the last decade,
an increasing body of knowledge about the genetic and structural
organization of RBPs of such bispecific phages has been acquired,
particularly for different T7-like phages such as K1-5 and SP6
(Stummeyer et al., 2006; Leiman et al., 2007; Gebhart et al.,
2017; Tu et al., 2017). These phages use a small trimeric
adapter protein of approximately 300 amino acids, sharing a
high N-terminal sequence identity to T7 and K1F tail fibers
(Figure 1). In addition, phage K1-5 encodes a K5 lyase (gp46) and
an endosialidase (gp47), which are specific for E. coli K5 and K1
capsule, respectively. CryoEM studies and bioinformatics suggest
that K5 lyase binds through a heptapeptide (MAKLTKP) to a
specific site in the middle of the K1-5 adapter protein, whereas the
second tailspike (endosialidase) binds to a different specific site in
its C-terminal part through an undecapeptide (MIQRLGSSLVK)
(Leiman et al., 2007). The heptapeptide, undecapeptide, and
adapter sequences are conserved among other T7-like phages
that infect different bacterial species and that carry two different
RBPs on the phage particle (e.g., SP6), demonstrating a conserved
mechanism for attachment of two RBPs (Figure 1). Notably,
domains recognizing the same host receptor can have highly
similar amino acid sequence but can be incorporated into a
different RBP architecture. For example, the K1F and K1-5
endosialidase domains specific to K1 capsule show 72% identity
with a coverage of 86%, but in phage K1F the endosialidase
domain is present in a single RBP with anchor domain, whereas
in phage K1-5 the endosialidase is connected to the phage
particle via an intermediate adapter protein. A homolog of the
endosialidase domain of podovirus K1F is also present in the
multivalent E. coli myovirus phi92 (EndoN92; 53% identity with
a coverage of 83%), demonstrating exchange of the domain across
members of the Podoviridae and Myoviridae families with highly
different tail structures (Schwarzer et al., 2012, 2015).

More recently, a different organization of two types of RBPs
in a single phage particle has been reported based on structural,
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FIGURE 1 | Anchor and anchor-branched receptor binding protein (RBP) complexes confirmed by structural experiments. (A) The modular genetic organization of
RBPs in single (T7 and K1F) and double RBP systems (K1-5 and G7C phages). (B) Schematic modeling of four different RBP systems in the virion structure. The T7
tail fiber (gene 17, T7p52) and K1F tail fiber (gene 17, CKV1F_gp36) have only an N-terminal anchor domain; K1-5 uses an adapter protein (gp37 with T4gp10-like
domain) interacting with K5 lyase (gp46) and K1 endosialidase (gp47) via a conserved hepta- and undecapeptide, respectively; Phage G7C produces an
anchor-branched complex with one anchored RBP (gp66) having a T4gp10-like domain and the second RBP connected via a conserved peptide to theT4gp10-like
domain. (C) Modular structure of the model tail spike of Salmonella phage P22 (PDB ID 2XC1), illustrating a typical modular structure of RBPs. A N-terminal
dome-like structure domain, a central β-helical domain for host recognition and enzymatic activity and a C-terminal domain responsible for protein trimerization
or/and receptor recognition are shown (Berman et al., 2000; Seul et al., 2014; Rose et al., 2018).

genetic and biochemical studies of the RBPs of E. coli N4-
like podovirus G7C (Prokhorov et al., 2017). G7C carries two
RBPs – a longer G7Cgp66 and a shorter G7Cgp63.1 protein.
The specificity of the longer G7cgp66 protein is unknown,
but the shorter G7Cgp63.1 RBP was shown to deacetylate the

O-antigen of E. coli 4S while leaving the backbone of the sugar
intact. G7Cgp63.1 does not interact with the phage particle
directly. Instead, it binds to G7Cgp66, which is attached to the
phage particle with its N-terminal anchor domain (Figure 1B).
The gp63.1 binding region of G7Cgp66 (residues 138–294) is
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homologous to subdomains D2 and D3 of phage T4 gp10. In
phage T4, these subdomains of gp10 serve as an attachment site
for two proteins – gp11, which interacts with the long tail fiber
RBP or short tail fiber RBP, depending on the state of the phage
particle, and gp12, the short tail fiber RBP (Taylor et al., 2016).
This protein complex represents a bona fide branched structure
involved in the transmission of the signal of reversible host
binding, culminating in irreversible binding, sheath contraction
and DNA ejection. The T4gp10-like domains are prevalent in
RBPs of unrelated phages across Podoviridae and Myoviridae,
which may reflect its ancient evolutionary role in the transduction
from reversible to irreversible binding during phage adsorption
(Prokhorov et al., 2017).

Interestingly, the T4gp10-like region of G7Cgp66 covers both
subdomain D2 and D3 of T4gp10 to which T4gp11 and T4gp12
are attached. Though, G7Cgp66 and G7Cgp63.1 form a 1:1
complex, suggesting that G7Cgp63.1 occupies only one of the two
RBP binding sites on G7Cgp66. Notably, orthologs of G7Cgp66
in some G7C-like viruses do not contain a putative enzymatic
domain but nevertheless retain the N-terminal particle-binding
domain and the T4gp10-like domains. As such their attachment
apparatus becomes similar to the adapter system of phage
K1-5. The N-terminal part of G7Cgp63.1 that interacts with the
T4gp10-like domain of G7Cgp66 is also found at the N-terminus
of other tail spikes that have a branched structure, such as
CBA120 phage tail spike 1 (Chen et al., 2014) and other putative
tail spikes of Vil-like phages (Adriaenssens et al., 2012). CBA120
encodes four tail spikes (TSP1-4) from which two (TSP2 and
TSP4) are equipped with T4gp10-like domains D2 and D3. These
domains provide side or off-axis attachment sites for TSP1 and
TSP3. The conserved N-terminal part of TSP4 attaches the whole
branched structure composed of four TSPs to the baseplate of the
virion (Plattner et al., 2019).

Klebsiella jumbo viruses may also have a multitude of
RBPs resulting accordingly in a broader host spectrum.
The highest variation of depolymerases has been described
for the jumbo 8K64-1 phage, which is able to infect
K. pneumoniae of 10 different capsular serotypes and for which
11 different polysaccharide depolymerases have been identified
(Pan et al., 2017). Also, the jumbo vB_KleM-RaK2 phage
encodes a multitude of putative depolymerases (Simoliūnas
et al., 2013). Electron microscopy images of such jumbo phages
typically show an elaborated tail fiber apparatus with a high
structural complexity, but for which structural insights are
currently lacking.

In this study we present an extensive bioinformatic
analysis of the structural and genetic organization of
depolymerase-containing RBPs in Klebsiella phages. Next-
generation sequencing technologies have recently led to a
large number of sequenced phage genomes in public databases
including Klebsiella viruses (n = 97). In a large proportion
of these phages (59/97; 61%) we could predict an RBP
with depolymerase activity. The observed large diversity of
depolymerase domains accommodates the high diversity of
capsular serotypes among Klebsiella strains. Based on an
integrated analysis, we propose diverse RBP architectures in
Klebsiella phages.

MATERIALS AND METHODS

At first, Klebsiella phages were collected from the GenBank
database (retrieved at 15.08.2018). A number of 59 phages were
finally analyzed (Supplementary Table S1). From these phages
proteins annotated as tail fibers or tail spikes were analyzed
with BlastP1 (Altschul et al., 1990), Phyre22 (Kelley et al., 2015),
SWISS-MODEL3 (Bordoli et al., 2009; Bordoli and Schwede,
2012), HMMER4 (Finn et al., 2011) and HHPred5 (Zimmermann
et al., 2018) to identify phages that encode RBPs with putative
depolymerase activity (Supplementary Table S2). If neither a
tail fiber nor a tail spike gene was found in the genome, we
analyzed all genes located in the vicinity of annotated structural
genes. BlastP (protein–protein Blast) was performed against the
non-redundant protein sequences (nr) database using standard
parameters (expect threshold: 10, word size: 6, MATRIX:
BLOSUM62, Gap cost: existence 11, extension 1, conditional
compositional score matrix adjustment). HMMER was used in
the quick search mode against: Reference Proteomes, UniProtKB,
SwissProt, and Pfam with significance E-values: 0.01 (sequence)
and 0.03 (hit). For Phyre2 the normal modeling mode was used.
HHPred homology detection structure prediction was run using
the PDB_mmCIF70 database and the following parameters [MSA
generation method: HHblits uniclust30_2018_08; Maximal no.
of MSA generation steps: 3; E-value incl. threshold for MSA
generation: 1e-3; minimal sequence identity of MSA hits with
query (%): 0; minimal coverage of MSA hits (%) 20; Secondary
structure scoring: during alignment; Alignment Mode: Realign
with MAC: local:norealign; MAC realignment threshold: 0.3; No.
of target sequences: 250; Min. probability in hit list (>10%): 20].

Criteria for the prediction of putative depolymerase activity
were (Supplementary Table S2): (1) the protein must be
longer than 200 residues; (2) the protein must be annotated as
tail fiber/tail spike/hypothetical protein in the NCBI database;
(3) the protein must show homology to domains annotated as
lyase [hyaluronate lyases (hyaluronidases), pectin/pectate lyases,
alginate lyases, K5 lyases] or hydrolase (sialidases, rhamnosidases,
levanases, dextranases, and xylanases) with a confidence of at
least 40% in Phyre2 or the enzymatic domain should also be
recognized by at least SWISS-MODEL, HMMER, or BlastP;
(4) the length of homology with one of these enzymatic domains
should span at least 100 residues; (5) a typical β-helical structure
should be predicted by Phyre2. These RBP depolymerases are
indicated without additional labeling in the tables. Proteins
possessing experimentally confirmed depolymerizing activity
were marked in the tables with (a). When the RBP was only
partially fulfilling the above-mentioned criteria, it was indicated
with label (b). These putative depolymerases that could only
be predicted with a lower probability were fulfilling criteria
1 and 2, but the confidence of the Phyre2 prediction was
below 40% or only SWISS-MODEL, HMMER or BLASTP gave

1blast.ncbi.nlm.nih.gov
2sbg.bio.ic.ac.uk
3swissmodel.expasy.org
4hmmer.org
5toolkit.tuebingen.mpg.de
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TABLE 1 | Overview of RBPs of KP32viruses with (predicted) depolymerase activity grouped according to the different observed RBP systems.

Phage First RBP (protein 2, Figure 2) Second RBP (protein 3, Figure 2)

Accession number Number of aa Alignment with first RBP from KP32 Accession number Number of aa Alignment with second RBP from KP32

Cover E-value Identity Identity range Cover E-value Identity Identity range

Group A (two RBPs: anchor-branch attachment mode)

KP32 YP_003347555.1a 869 100% 0.0 100% 869/869 YP_003347556.1a 576 100% 0.0 100% 576/576

K11 YP_002003830.1 875 40% 5E-144 68% 241/355 YP_002003831.1 596 88% 5E-41 27% 149/543

KP32 194 AWN07125.1 777 39% 2E-139 67% 233/347 AWN07126.1 555 8% 0.0001 51% 30/59

KpV763 AOT28172.1 777 39% 2E-139 67% 232/347 AOT28173.1 524 8% 0.0001 51% 30/59

KP32 192 AWN07083.1 777 39% 5E-139 67% 232/347 AWN07084.1 555 8% 0.00006 53% 31/59

K5-2 APZ82804.1a 792 35% 6E-139 71% 219/307 APZ82805.1a 685 5% 0.00009 87% 26/30

KP32 196 AWN07213.1 903 40% 6E-134 64% 227/354 AWN07214.1 613 23% 0.00001 34% 48/143

KpV766 AOZ65569.1 903 40% 6E-133 64% 226/354 AOZ65570.1b 511 30% 7E-12 38% 42/111

KpV289 YP_009215498.1 903 40% 7E-133 63% 224/354 YP_009215499.1b 511 18% 0.0008 38% 42/111

IME 205 ALT58497.1 793 37% 7E-132 64% 209/329 ALT58498.1 641 5% 0.001 83% 24/29

K5 YP_009198668.1 817 43% 2E-131 59% 225/381 YP_009198669.1 575 99% 0.0 87% 498/575

K5-4 APZ82847.1a 744 44% 2E-120 55% 218/396 APZ82848.1a 684 5% 0.000008 88% 28/32

Group B (one RBP: anchor attachment mode)

KP32 195 AWN07172.1 1017 33% 1E-51 46% 136/293 No second RBP present

SH-Kp 152410 AUV61507.1 1017 33% 4E-50 46% 134/293

IL33 ARB12452.1b 1242 33% 3E-59 72% 119/166

PRA33 ARB12406.1b 1242 33% 4E-58 71% 119/168

BIS33 ARB12500.1b 1242 33% 1E-57 70% 117/166

IME321 AXE28435.1c 820 22% 1E-53 59% 114/194

Kp1 YP_009190948.1d 1017 62% 2E-59 39% 166/422

Group C (two RBPs: anchor-branch attachment mode, second RBP truncated)

KpV767 AOZ65519.1 843 aa 39% 2E-127 61% 212/347 AOZ65520.1c 69 aa 9% 0.000003 51% 28/55

Group D (two RBPs: anchor-branch attachment mode, first RBP truncated)

2044-307w ASZ78307.1c 347 aa 33% 4E-122 65% 192/295 ASZ78308.1b 556 aa 8% 0.002 55% 28/51

The different RBP systems of KP32viruses are visualized in Figure 2. aRBP for which the depolymerase activity has been experimentally verified (Hsieh et al., 2017; Majkowska-Skrobek et al., 2018). bRBP with a lower
probability on depolymerizing activity. cRBP without enzymatic activity. dThe N-terminal part of this protein is lacking under the corresponding accession code, yet the full protein is encoded by nucleotide positions
38449–40114 and 1–1388 of the full genome (NC_028688.1). BLASTp was used as computational alignment algorithm and pairwise alignments were performed against the corresponding first and second RBP from
phage KP32, respectively. The accession number of each RBP is given, along with its length and alignment characteristics (cover-coverage, E-value,% identity, identity range-number of identical amino acids/length)
of the region over which identical amino acids are found by Blastp, starting from the N-terminus (amino acid 1). HHPred analysis revealed homology in the first RBPs to T4gp10-like domains: Group A – 197–256 aa
compared to 170–246 aa of T4gp10 (Probability 86.48) and 206–254 aa compared to 299–383 aa of T4gp10 (Probability 82.04); Group C – 188–256 aa compared to 163–246 aa of T4gp10 (Probability 85.35) and
209–254 aa compared to 303–383 aa of T4gp10 (Probability 84.24); Group D – 196–257 aa compared to 169–246 aa of T4gp10 (Probability 60.26) and 204–255 aa compared to 298–383 aa of T4gp10 (Probability
71.57). Values are shown for KP32 (group A), KpV767 (group C) and 2044-307w (group D). In group B no homology to T4gp10-like domain was detected.
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FIGURE 2 | Receptor binding protein systems of KP32viruses. Phages and their RBPs that are proposed to follow these systems, including their grouping into
groups A, B, C and D, are summarized in Table 1. (A) The modular composition of RBP genes of phages belonging to four different groups (A, B, C, and D) is
shown relative to the broken gene synteny of phage KP32. For simplicity, only one flanking gene conserved across all groups is shown at each side. Annotations are
given according to GenBank or according to their modeled function in this study (between brackets): Protein (1) – internal virion protein D; (2) – tail fiber protein
(2A,B,C – anchor with depolymerase; 2D – anchor with truncated protein); (3) – hypothetical protein (3A,D – depolymerase with conserved peptide, 3C – truncated
protein with conserved peptide); (4) – lysis protein. (B) Schematic models of RBP systems in phage particles of KP32viruses. Group A – two RBPs: anchor-branch
attachment mode; Group B – one RBP: anchor attachment mode; Group C – two RBPs: anchor-branch attachment mode, second RBP truncated; Group D – two
RBPs: anchor-branch attachment mode, first RBP truncated.

a positive prediction. In addition, the homologous domain
only spans between 50 and100 amino acids and no β-helical
structure could be predicted with Phyre2 (for details see
Supplementary Table S2).

All selected Klebsiella phages were then grouped based on
gene homology and a conserved gene synteny into KP32viruses,
KP34viruses, and KP36viruses and into groups containing only
Klebsiella-specific phages similar to phage JD001 (belonging
to Jedunavirus), similar to phage Menlow (belonging to
Ackermannviridae), similar to phage 8K64-1 (belonging to
Alcyoneusvirus). Within each group, further subdivisions were
proposed for the purpose of this study, based on the organization
of the RBP gene cluster (number of RBPs, length of different
genes, presence of anchor, or branching domains).

When there was one RBP, a domain in the N-terminus of
a RBP was annotated as ‘anchor’ when there was at least an
identity of 39% (BLASTP) over at least 166 residues starting

from the N-terminus of the corresponding protein among
phages belonging to the same group. These parameters were set
empirically based on the shortest identity region found among
all RBPs, specifically in the first RBP of phage IL33, belonging
to KP32viruses group B (166 amino acids) and the identity%
of the first RBP of phage Kp1. When more than one RBP was
present, the anchor domain was annotated in the RBP in which
also a T4gp10-like domain was detected. In the other RBP(s) the
N-terminal conserved sequence was called ‘conserved peptide,’
which was also generally shorter than the anchor domains. To
define consensus sequences of the anchor domains and conserved
peptides, multiple sequence or pairwise alignment were used,
since these structures are highly conserved among phages from
the same group. To identify domains involved in the branching
of RBPs, the sequences were analyzed by HHPred performing
protein structure prediction5 (Zimmermann et al., 2018) in
search for domains homologous to T4gp10 domain 2 and 3
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as experimentally confirmed attachment sites (Prokhorov et al.,
2017). WebLogos of the anchor domains and conserved peptides
were created with the online available tool6 (Crooks et al., 2004).

RESULTS

Taxonomically closely related phages are characterized by a
synteny of conserved structural genes interrupted by divergent
RBP genes, which are subject to intensive horizontal transfer.
We therefore inspected the region of structural genes across
different Klebsiella phages within specific phage genera to identify
potential RBPs based on a broken synteny. Subsequently, we
analyzed the presence of putative enzymatic domains within the
identified RBPs. Based on homology, protein size and structure,
we looked for conserved domains (anchor domain, T4gp10-like
domain) that may explain the RBP architecture of the particular
phage. To further refine this architecture, we analyzed the
sequence for the presence of conserved peptides that may mediate
attachment to putative T4gp10-like domains. We integrated all
these data to model the RBP apparatus of an extensive and diverse
set of Klebsiella phages with (predicted) depolymerase activity.

RBPs From Selected Klebsiella
Podoviruses
KP32viruses
KP32viruses belong to Podoviridae and have tail fibers attached
to a short, non-contractile tail. A similar synteny of highly
conserved structural genes is observed across twenty-one
KP32viruses (Supplementary Table S1A). Yet, one or two non-
conserved genes of different lengths interrupt this synteny after
the gene encoding the internal virion protein D. They were
identified as putative RBPs and in a few cases also experimentally
verified (Hsieh et al., 2017; Majkowska-Skrobek et al., 2018;
Solovieva et al., 2018) (Table 1). We found four different RBP
organizations (groups A, B, C, and D; Figure 2). The N-termini
of the first RBPs are shared with high sequence identity (46–72%)
across all KP32viruses. Specifically, residues 1–154 of the first
RBPs are highly similar to the N-terminal domain of the phage T7
tail fiber (pfam03906). In group A of KP32viruses, this conserved
N-terminal domain (Supplementary Figure S1A) also contains
a region that is similar to a fragment of a T4gp10 branching
domain, offering a potential attachment point for a secondary
tail fiber. The other domain(s) of these 744–903 aa long first
RBPs do not share identity with the corresponding domain
of the group A model phage KP32. All central domains are
predicted to possess enzymatic activity (hydrolase, lyase) but with
different specificity. In addition, they all are predicted to possess
a characteristic β-helical structure (Supplementary Table S2).
In phage KP32, there is an additional C-terminal domain with
predicted chaperone activity, which is absent in all other RBPs of
the group A KP32viruses.

The second RBP that interrupts the gene synteny in group
A KP32viruses is recently demonstrated to have depolymerase
activity against capsular serotype K21, whereas the first RBP has

6weblogo.berkeley.edu

depolymerase activity against capsular serotype K3 (Majkowska-
Skrobek et al., 2018). These specificities correspond to the
host spectrum of phage KP32. Other phages of group A
KP32viruses also possess this second putative RBP. The second
RBP has no conserved N-terminal anchor domain but has a
peptide sequence that is conserved across group A KP32viruses
with a consensus sequence over the first 29 amino acids
(Supplementary Figure S1B). Similarly to the phage G7C RBP
system this conserved peptide may be responsible for attachment
to the T4gp10-like domain present in the first RBP. Also for the
second RBPs, there is a high diversity in the central sequence
with a few exceptions. E.g., in phage K5 and KP32, a highly
similar sequence is observed, which hints that the second RBP
of phage K5 also targets capsular serotype K21. No chaperone
is predicted in any second RBP. Integrating these elements,
we model the structural organization of group A KP32viruses
as depicted in Figure 2B with a conserved anchor-branched
attachment mode but with swapped enzymatic domains for
specific capsule/host recognition.

Group B KP32viruses (Table 1) have a simpler RBP
organization with a single anchor-based RBP. Six out of seven
analyzed phages have an RBP with a putative enzymatic domain,
while the seventh phage (IME321) apparently lacks enzymatic
activity and might rather encode a tail fiber. The N-terminal
conserved anchor domain is shorter (166 amino acids) compared
to the corresponding domain in group A KP32viruses (307
amino acids). The RBP also lacks a T4gp10-like domain, which
is consistent with the absence of a second RBP in group B
KP32viruses (Figure 2).

Phage KpV767 (Table 1) represents another variant of
KP32viruses (coined group C). The phage has a first anchor-
based RBP, including a fragment of a T4gp10-like domain, but the
second RBP is largely truncated to only 69 amino acids, including
the conserved N-terminal 29 amino acids for attachment to
the T4gp10-like domain (Supplementary Figure S1B). KpV767
appears to result from a retrograde evolution, having lost the
potential to infect hosts belonging to two different serotypes.

Finally, phage 2044-307w (group D) is as an opposite example
of truncation. The first RBP lacks an enzymatic or receptor
binding domain but contains an N-terminal anchor including a
fragment of a T4gp10-like domain, while the second tail fiber is
a full-featured RBP that contains a conserved N-terminal peptide
and a depolymerase domain (Supplementary Figure S1B).

KP34viruses
Seventeen phages from the genus of KP34viruses were analyzed
(Table 2). Potential proteins involved in host cell recognition
could be clearly identified as two genes interrupting the synteny
of highly conserved structural genes and genes required for phage
particle maturation. Interestingly, both genes are not clustered
as in KP32viruses, but are separated by five to eight intervening
genes encoding DNA maturases, hypothetical proteins and
endolysins, depending on the specific phage. Three different
groups (A, B, and C) can be categorized based on differences
in length of both genes. Ten group A phages have a short
first protein of approximately 300 amino acids annotated as
tail fiber. This protein does not encode a putative enzymatic
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TABLE 2 | Overview of RBPs of KP34viruses with (predicted) depolymerase activity grouped according to the different observed RBP systems.

Phage First RBP (protein 2, Figure 3) Second RBP (protein 10, Figure 3)

Accession number Number of aa Alignment with KP34 first RBP Accession number Number of aa Alignment with KP34 second RBP

Cover E-value Identity Identity range

Group A (two RBPs: anchor-branch attachment mode, first RBP truncated)

No similarity except for the short conserved heptapeptide

KP34 YP_003347643.1c 307 aa 100% 0.0 100% 307/307 YP_003347651.1 630 aa

SU503 YP_009199929.1c 307 aa 100% 0.0 94% 288/307 YP_009199937.1 500 aa

F19 YP_009006065.2c 307 aa 100% 0.0 93% 284/307 YP_009006074.1 577 aa

KpV475 YP_009280712.1c 318 aa 100% 0.0 88% 279/318 YP_009280720.1b 651 aa

KpV71 YP_009302749.1c 318 aa 100% 0.0 91% 288/318 YP_009302756.1a 651 aa

NTUH-K2044-K1-1 YP_009098379.1c 318 aa 100% 0.0 90% 287/318 YP_009098385.1a 651 aa

KPV811 APD20665.1c 318 aa 100% 0.0 87% 278/318 APD20657.1 563 aa

KpV48 AOZ65257.1c 318 aa 100% 0.0 86% 275/318 AOZ65265.1 669 aa

phiBO1E AIT13620.1c 318 aa 100% 0.0 86% 275/318 AIT13628.1 494 aa

AltoGao ASV44938.1c 307 aa 99% 2E-162 74% 227/305 ASV44946.1 563 aa

myPSH1235 30838–31279c,d 314 aa 99% 2E-172 76% 239/316 35768–37564d 598 aa

Group B (two RBPs: anchor-branch attachment mode)

Kp2 YP_009188359.1c 530 aa 83% 6E-137 81% 207/256 YP_009188367.1 660 aa

SU552A YP_009204835.1 793 aa 81% 3E-111 65% 170/261 YP_009204843.1 548 aa

KpV41 YP_009188788.1b 858 aa 94% 2E-110 57% 187/327 YP_009188797.1b 651 aa

phiKpS2 AWK24039.1 946 aa 85% 1E-107 63% 174/275 AWK24047.1 581 aa

KpV74 APZ82760.1c 602 aa 84% 1E-129 72% 186/260 APZ82768.1a 577 aa

Group C (two RBPs: anchor-branch attachment mode, second RBP truncated)

KP-Rio/2015 36399–38783 d 794 aa 90% 9E-116 60% 175/290 42918–43105c,d 61 aa

The different RBP systems of KP34viruses are visualized in Figure 3. aRBP for which the depolymerase activity has been experimentally verified (Lin et al., 2014; Solovieva et al., 2018). bRBP with a lower probability
on depolymerizing activity. cRBP without enzymatic activity. dProtein is not annotated in the genome, but the nucleotide positions of the open reading frame are indicated instead. BLASTp was used as computational
alignment algorithm and pairwise alignments were performed against the corresponding first RBP from phage KP34. The accession number of each RBP is given, along with its length and alignment characteristics
(cover-coverage, E-value,% identity, identity range-number of identical amino acids/length) of the region over which identical amino acids are found by Blastp, starting from the N-terminus (amino acid 1). HHPred
analysis revealed homology in first RBPs to T4gp10-like domains: Group A – 186–242 aa compared to 165–244 aa of T4gp10 (Probability 82.81) and 200–243 aa compared to 303–384 aa of T4gp10 (Probability
94.36); Group B – 187–242 aa compared to 167–244 aa of T4gp10 (Probability 83.96) and 200–243 aa compared to 303–384 aa of T4gp10 (Probability 94.63); Group C – 196–253 aa compared to 165–245 aa of
T4gp10 (Probability 79) and 210–253 aa compared to 303–384 aa of T4gp10 (Probability 91.72). Values are shown for KP34 (group A), Kp2 (group B), and KP-Rio/2015 (group C).
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FIGURE 3 | Receptor binding protein systems of KP34viruses. Phages and their RBPs that are proposed to follow these systems, including their grouping into
groups A, B and C, are summarized in Table 2. (A) The modular composition of RBP genes of phages belonging to three different groups (A, B, and C) is shown
relative to the broken gene synteny of phage KP34. For simplicity, only one conserved gene preceding the first RBP and the conserved, intervening genes of phage
KP34 are shown. Annotations are given according to GenBank or according to their modeled function in this study (between brackets): (1) – putative internal core
protein; (2) – putative tail fiber protein (2A – anchor; 2B,C – anchor with depolymerase); (3) – putative DNA maturase A; (4) – putative DNA maturase B; (5) –
hypothetical protein; (6) – hypothetical protein; (7) – hypothetical protein; (8) – hypothetical protein; (9) – endolysin; (10) – hypothetical protein (depolymerase with
conserved peptide). (B) Schematic models of RBP systems in phage particles of KP34viruses. Group A – two RBPs: anchor-branch attachment mode, first RBP
truncated; Group B – two RBPs: anchor-branch attachment mode; Group C – two RBPs: anchor-branch attachment mode, second RBP truncated.

TABLE 3 | Overview of RBPs of phages belonging to the JD001 group and with (predicted) depolymerase activity.

Alignment with JD001 protein

Phage Accession number Number of aa Coverage E-value Identity Identity range

First RBP with anchor truncated (protein 2, Figure 4)

JD001 YP_007392884.1c 285 aa 100% 0.0 100% 285/285

KpV52 AOZ65389.1c 297 aa 38% 5E-53 83% 91/109

KpV79 ATI16499.1c 199 aa 29% 3E-46 77% 64/83

Second RBP with conserved peptide (protein 5, Figure 4)

JD001 YP_007392887.1 757 aa 100% 0.0 100% 757/757

KpV52 AOZ65386.1 668 aa 25% 1E-16 51% 85/166

KpV79 ATI16495.1 721 aa 100% 2E-115 37% 289/780

The RBP system of phages belonging to the JD001 group is visualized in Figure 4. cRBP without enzymatic activity. BLASTp was used as computational alignment
algorithm and pairwise alignments were performed against the corresponding first and second RBP from phage JD001, respectively. The accession number of each RBP
is given, along with its length and alignment characteristics (cover-coverage, E-value,% identity, identity range-number of identical amino acids/length) of the region over
which identical amino acids are found by Blastp, starting from the N-terminus (amino acid 1).
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domain, but its N-terminal domain shows high homology to the
N-terminus of the phage T7 tail fiber (pfam03906, aa 14–142),
similar to the first RBPs of KP32viruses. In addition, the protein
contains a fragment of a T4gp10-like domain located at its
C-terminus (aa 186–242), which may serve as the attachment
point for the second RBP. This protein is highly conserved
among all phages of group A KP34viruses (at least 74% identity)
(Supplementary Figure S1C). The second RBP sequence encodes
a putative enzymatic domain with most such domains forming
a β-helical structure. The N-terminal heptapeptide of these
proteins contains universally conserved hydrophobic residues
(MALxxLV) (Supplementary Figure S1D). These observations
suggest that the organization of the RBP apparatus of group A
KP34viruses is similar to the system of phage 2044-307w (group
D KP32viruses), albeit with a much shorter conserved peptide
(Figure 3). Similar short conserved peptides (heptapeptide and
undecapeptide) for interaction with the anchor protein have been
observed for E. coli phages K1E and K1-5 and Salmonella phage
SP6 (Leiman et al., 2007).

Group B KP34viruses contain large first RBPs with a size
between 530 and 948 aa. Four out of five RBPs encode an
enzymatic domain in the C-terminal or central part of the
protein. The corresponding gene in the fifth virus (phage KpV74)
contains no predicted enzymatic domain. Group B KP34viruses
also encode a second RBP with a predicted enzymatic activity
and the same conserved heptapeptide motif as in the second
RBP of group A KP34viruses (MALxxLV). The organization
of the RBPs in group B KP34viruses is thus similar to that
of group A KP32viruses. We found two incongruences in this
genus, specifically viruses KP-Rio/2015 and myPSH1235. They
both share the gene synteny of KP34viruses but no RBPs
were annotated in their genomes. Further genome analysis
revealed two open reading frames that presumably fulfill the
role of RBPs. We found that phage myPSH1235 follows the
RBP organization of group A KP34viruses, while phage KP-
Rio/2015 encodes a large first RBP with a predicted enzymatic
activity (and a fragment of a T4gp10-like domain) and a second
protein that is only 61 aa long, which likely represents a
truncated, non-functional RBP. Therefore, phage KP-Rio/2015
forms a different group C with an RBP organization analogous
to KP32viruses group C.

RBPs From Selected Klebsiella
Myoviruses
Myoviruses have a contractile tail with a baseplate at the head-
distal end of the tail. The tail fibers are directly connected
to this baseplate. In addition, there is often a central spike
(sometimes annotated as ‘fiber’) protruding from the baseplate.
Nine Klebsiella phages analyzed in this study belong to three
different myovirus groups (JD001 group, Menlow group, and
8K64-1 group) with the latter two groups having a potentially
broad host spectrum since they encode between five and nine
(Menlow group; phage RaK2) (Hsu et al., 2013; Simoliūnas
et al., 2013) or even 11 different depolymerases (phage 8K64-1)
(Pan et al., 2017) (Supplementary Tables S1C–E), necessitating
elaborated structural organizations for RBP attachment. We

FIGURE 4 | Receptor binding protein systems of viruses of the JD001 group.
Phages and their RBPs that are proposed to follow this system are
summarized in Table 3. (A) The modular composition of RBP genes is shown
relative to the broken gene synteny of JD001. Two flanking conserved
hypothetical genes are shown. Annotations are given according to GenBank
or according to their modeled function in this study (between brackets): (1) –
hypothetical protein; (2) – putative tail fiber protein (anchor); (3) – hypothetical
protein; (4) – hypothetical protein; (5) – gluconolaconase (depolymerase with
conserved peptide); (6) – hypothetical protein. (B) Schematic model of the
RBP system in JD001 group with an anchor-branch attachment mode and
the first RBP truncated.

should note that the JD001, Menlow, and 8K64-1 phages are no
taxonomic groups but were grouped in this study for their genetic
similarities in the RBP genes. In addition, viruses belonging to the
Menlow group have been recently reclassified from Myoviridae to
Ackermannviridae (Adriaenssens et al., 2018). Ackermannviridae
are characterized by a conserved genome organization and have
typical morphology of myoviruses (long contracting tail) but
with a different distal end of the tail, which ends with “stars” or
“prongs,” being identified as tailspikes (Day et al., 2018).

Viruses Belonging to the JD001 Group
The putative RBP genes of the viruses of the JD001 group
(Table 3) were identified in a region of hypothetical proteins,
preceding the DNA polymerase gene. Both genes are
located at separate sites with two (JD001, KpV52) or three
(KpV79) intervening genes. They all encode a single putative
depolymerase, annotated as gluconolaconase, putative tail fiber
family protein or tail fiber protein/pectate lyase superfamily
protein, respectively. This RBP with depolymerase activity is
most likely attached to the anchor protein via a conserved
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N-terminal domain of about 70 aa, which is distinct from
the conserved peptides/domains found in both KP32- and
KP34viruses. The anchor protein has no T4gp10-like domain,
indicating a different mechanism of interaction (Figures 4A,B).

Viruses Belonging to the Menlow Group
The viruses of the Menlow group encode, amid a conserved
synteny of structural genes, four non-conserved putative RBPs
and one conserved RBP, all with putative depolymerase activity
(Figure 5A). Phages KpS110 and 0507-KN2-1 encode an
additional sixth RBP with a predicted depolymerase domain
(Table 4). The first two non-conserved RBPs (protein 2 and 3
in Figure 5) have N-terminal domains of 412 and 195 aa long,
respectively, which is conserved among the four members of the
Menlow group. The following two non-conserved RBPs have a
shorter domain/peptide of 38 and 67 aa, respectively, conserved
among all members of the Menlow group (Supplementary
Figures S1E–H).

To explore how this high number of putative RBPs might
be structurally organized, we searched for homology to T4gp10-
like domains 2/3 and N-terminally conserved domains/peptides
as they suggest branching points. Two domains homologous to
T4gp10 were located in the N-terminal part of RBP 2 (RBP with
anchor domain) and RBP 3, whereas RBPs 3, 5, 7 (Figure 5A)
contain conserved peptides in their N-terminus. A fifth RBP
(protein 8 is present and highly identical) in all members of the
Menlow group, while a sixth RBP with putative depolymerase
activity is only present in phage KpS110 and phage 0507-KN2-
1. Integrating the presence/absence of these structural elements
(Figure 5B) a possible model implies that the first RBP (protein 2,
Figure 5A) is directly attached to the tail via a conserved
N-terminal anchor and that its T4gp10-like domain probably
provides an attachment site for at least two RBPs (3 and 5 or
7 or 8, Figure 5B). Subsequently, the second RBP (protein 3)
provides attachment sites via its T4gp10-like domains for two
more RBPs (proteins 5 or 7 or 8). Together they constitute a unit
of branched tail fibers. The highly conserved fifth RBP (protein 8)
may be the central tail fiber that protrudes from below the plane
of the baseplate (Nobrega et al., 2018). More structural and
genetic studies will be needed for an improved understanding of
the elaborated RBP system in viruses from the Menlow group.

Viruses Belonging to the 8K64-1 Group
Klebsiella phages belonging to 8K64-1 group (8K61-1 and
RaK2; Supplementary Table S1E) have likely evolved the most
elaborate RBP apparatus (Table 5). 8K64-1 encodes 11 proteins
recognized as putative depolymerases, while in the genome
of RaK2 10 putative depolymerases are predicted. The middle
and C-terminal regions of five RBPs are different between
the corresponding genes of 8K61-1 and RaK2, reflecting the
diversity of capsular serotypes that can be recognized by
putative depolymerases of these two phages, whereas the middle
and C-terminal parts of other RBPs show more than 75%
identity between both phages, suggesting an overlap in the
host spectrum (Pan et al., 2017). We found in this study
that these proteins also contain a slew of structural elements
found in other complex tail fiber machineries such as one

N-terminal anchor domain, four short conserved peptides at
the N-terminus and five T4gp10-like domains (Supplementary
Figures S1I–M), indicating that phages of the 8K64-1 group
also re-use standardized units to build up a highly complex RBP
apparatus (Figure 6).

RBPs From Klebsiella Siphoviruses
KP36viruses
All 12 identified Klebsiella siphoviruses belong to the KP36viruses.
They are also featured by a synteny of genes encoding structural
proteins such as the tail length tape-measure protein, minor tail
proteins and a putative tail assembly protein. This synteny is
disrupted by one or two genes, depending on the phage. Three
groups can be categorized with the majority of phages belonging
to group A, while phage PKP126 (group B) and phage 1513 (group
C) represent exceptions from the general structure of group A
(Figure 7A and Table 6). Members of group A KP36viruses
(including the reference phage KP36) have a single predicted RBP
with putative depolymerase activity. It has been demonstrated
that the RBP of KP36 is enzymatically active against capsular
serotype K63 (Majkowska-Skrobek et al., 2016). The modular
structure of this RBP is similar to that of the RBP of group
B KP32viruses, having an N-terminal anchor domain, a highly
variable central domain with enzymatic activity, and a C-terminal
chaperone. KP36viruses belonging to group B and group C
also have an RBP with a similar N-terminal anchor domain
(Supplementary Figure S1N). Phage PKP126 RBP (group B) has
a predicted enzymatic activity in the central domain in contrast
to the truncated RBP of phage 1513 (group C). The chaperone
domain is missing in the RBP of both groups B and C.

No T4gp10-like domain was found in the N-terminal region
of KP36gp50 (RBP). Instead, a small domain (residues 4–63)
homologous to domain B (92–155 aa) of the distal tail protein
(Dit or T5pb9) of siphovirus T5 has been detected. Dit is located
in the T5 tail tip at the junction between the tail tube and the
ultimate conical structure and is composed of two domains.
Domain A forms a hexameric structure and connects to the end
of the tail tube, whereas domain B constitutes the attachment
site for three L-shaped tail fibers (Flayhan et al., 2014). These
L-shaped tail fibers initially bind reversibly to polymannose
containing O-antigens (Heller and Braun, 1982). Remarkably,
domain A of T5pb9 has not been found in KP36gp50 but is
instead present in the KP36 minor tail protein (residues 22–77
corresponding to amino acids 27–85 of T5pb9) that is encoded
four genes upstream of KP36gp50. This horizontal transfer event
indicates that in KP36viruses the conserved minor tail protein
only comprises domain A, which is located at the junction of
the tail tube and the conical tip of the tail. Domain A of the
minor tail protein is proposed to interact with the RBP via its
N-terminal domain B. This RBP may thus represent the side tail
fibers similar to the L-shaped tail fibers in phage T5. In other
words, the distal tail protein has been split into two separate
elements in KP36viruses.

Phage PKP126 and 1513 (groups B and C, respectively)
have an additional RBP with putative depolymerase activity.
Its exact role is difficult to predict and typical elements
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FIGURE 5 | Receptor binding protein systems of the Menlow group. Phages and their RBPs that are proposed to follow this system are summarized in Table 4.
(A) The modular composition of the RBP genes is shown relative to the broken gene synteny of Menlow. Annotations are given according to GenBank or according
to their modeled function as annotated in this study (between brackets): (1) – putative tail protein; (2) – tail spike protein (anchor with depolymerase); (3) – tail spike
protein (depolymerase with conserved peptide); (4) – hypothetical protein; this protein is not present in all Menlow group phages; (5) – tail spike protein
(depolymerase with conserved peptide); (6) – hypothetical protein; this protein is not present in all Menlow group phages; (7) – tail spike protein (depolymerase with
conserved peptide); (8) – hypothetical protein (depolymerase); (9) – neck protein. (B) Schematic model of the RBP system in Menlow with an anchor-mulibranched
attachment mode.

hinting at a specific structural organization such as a conserved
peptide or anchor domain are missing. We hypothesize that
those enzymes are not incorporated in the phage particle, but
rather are produced as soluble proteins. Upon cell lysis the
neighboring cells are sensitized for infection through enzymatic
removal of the capsule by the soluble, diffusible depolymerase.
This mechanism would be especially beneficial for phages
lacking depolymerase activity in the their first RBP (e.g.,
group C phage 1513).

An additional preceding RBP (Figure 7A; protein 2) is highly
conserved across all analyzed KP36viruses, except in phage 1513.
The role of this RBP is unclear. One possibility is that it is a second
side RBP as observed in some T5viruses (DT57C and DT571)
(Golomidova et al., 2016; Nobrega et al., 2018). An alternative
possibility is that this protein represents the central tail fiber.

Given its ambiguous role and location, this RBP was not included
in the model depicted in Figure 7B.

DISCUSSION

In this work we have performed an extensive in silico analysis
of the RBPs of Klebsiella phages genomes with a focus on
RBPs with depolymerase activity. The tripartite relationship
between depolymerase specificity, capsular serotype and phage
host spectrum has now extensively been demonstrated for
Klebsiella phages (Hsu et al., 2013; Lin et al., 2014; Majkowska-
Skrobek et al., 2016; Hsieh et al., 2017; Pan et al., 2017;
Solovieva et al., 2018). Podovirus KP32 possesses two
experimentally confirmed depolymerases, which are
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enzymatically active against capsule serotype K3 and K21,
respectively. Correspondingly, all strains infected by phage
KP32 have either a K3 or K21 serotype (Majkowska-Skrobek
et al., 2018). Podovirus KpV71 infects strains with serotype K1,
which perfectly matches the specificity of its experimentally
verified depolymerase. However, podovirus KpV74, which has
also a single RBP, infects strains with serotype K2 and K13.
These observations were explained by the structural similarity of
capsule types K2 and K13, which were also found to cross-react
with specific antibodies (Pieroni et al., 1994; Pan et al., 2015;
Volozhantsev et al., 2016; Solovieva et al., 2018). The more
diverse capsular specificity of podoviruses KpV763, KpV766,
and KpV289 (Volozhantsev et al., 2016; Solovieva et al., 2018)
is now explained in this study by the observed presence of

two RBPs (Table 1). Some large jumbo phages such as phage
8K64-1 produce an elaborated, broad-spectrum RBP apparatus.
Phage 8K64-1 encodes 11 putative RBPs from which nine are
confirmed to possess enzymatic activity against 10 serotypes
in total (K1, K11, K21, K25, K30/K69, K35, K64, KN4, and
KN5). Whereas eight RBPs are active against a single but
different serotype, the ninth RBP is active against two capsular
serotypes (protein 10, Figure 6; active against K30 and K69)
(Pan et al., 2017).

Based on the structural knowledge of RBPs of mainly
E. coli phages such as T7, K1F, K1-5, G7C and T5, we have
identified structurally conserved building blocks to model the
RBP apparatus of Klebsiella phages. The modularity of RBPs
in combination with intensive horizontal transfer of genes

TABLE 4 | Overview of RBPs of phages belonging to the Menlow group and with (predicted) depolymerase activity.

Alignment with Menlow RBP

Phage Accession number Number of aa Coverage E-value Identity Identity range

First RBP with anchor (protein 2, Figure 5)

Menlow AUG87748.1 960 aa 100% 0.0 100% 960/960

KpS110 AUV59228.1c 960 aa 42% 0.0 95% 383/424

May AUG87958.1 1180 aa 44% 0.0 90% 392/412

0507-KN2-1 YP_008532046.1c 1072 aa 43% 0.0 90% 385/427

Second RBP with conserved peptide (protein 3, Figure 5)

Menlow AUG87749.1 768 aa 100% 0.0 100% 768/768

KpS110 AUV59230.1 857 aa 25% 4E-120 96% 189/196

May AUG87959.1b 1288 aa 27% 1E-105 84% 178/212

0507-KN2-1 YP_008532047.1a 1245 aa 25% 5E-112 92% 180/195

Third RBP with conserved peptide (protein 5, Figure 5)

Menlow AUG87751.1b 660 aa 100% 0.0 100% 660/660

KpS110 AUV59232.1 674 aa 13% 6E-22 60% 55/91

May AUG87960.1b 660 aa 100% 0.0 99% 657/660

0507-KN2-1 YP_008532048.1b 657 aa 27% 8E-37 48% 91/190

Fourth RBP with conserved peptide (protein 7, Figure 5)

Menlow AUG87753.1 730 aa 100% 0.0 100% 730/730

KpS110 AUV59234.1 685 aa 19% 1E-40 61% 86/141

May AUG87962.1 692 aa 16% 2E-40 71% 86/121

0507-KN2-1 YP_008532049.1b 607 aa 14% 1E-35 72% 79/109

Fifth RBP (protein 8, Figure 5)

Menlow AUG87754.1b 1612 aa 100% 0.0 100% 1612/1612

KpS110 AUV59236.1b 1612 aa 100% 0.0 99% 1602/1612

May AUG87963.1b 1612 aa 100% 0.0 99% 1591/1612

0507-KN2-1 YP_008532051.1b 1616 aa 100% 0.0 99% 1604/1612

Additional RBP (not present in genome of Menlow)

Menlow No protein

KpS110 AUV59229.1 554 aa Not applicable

May No protein

0507-KN2-1 YP_008532050.1 542 aa

The RBP system of phages belonging to the Menlow group is visualized in Figure 5. aRBP for which the depolymerase activity has been experimentally verified
(Hsu et al., 2013). bRBP with a lower probability on depolymerizing activity. cRBP without enzymatic activity. BLASTp was used as computational alignment algorithm and
pairwise alignments were performed against the respective RBP from phage Menlow. The accession number of each RBP is given, along with its length and alignment
characteristics (cover-coverage, E-value,% identity, identity range-number of identical amino acids/length) of the region over which identical amino acids are found by
Blastp, starting from the N-terminus (amino acid 1). HHPred analysis revealed homology in RBPs to T4gp10-like domains: First RBP (protein 2) – 94–252 aa compared
to 61–248 aa of T4gp10 (Probability 99.88) and 92–251 aa compared to 214–386 aa of T4gp10 (Probability 44.31); Second RBP (protein 3) – 26–204 aa compared to
68–296 aa of T4gp10 (Probability 94.08) and 26–162 aa compared to 165–384 aa of T4gp10 (Probability 95.39) and 41–83 aa compared to 303–383 aa of T4gp10
(Probability 73.93). Values are shown for template phage Menlow.
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or gene domains (Casjens and Molineux, 2012) allows for a
maximum re-use of conserved, evolutionary optimized elements.
Simultaneously, the possibility to rapidly shift the host spectrum
based on an exchange of the depolymerase domain is retained.
Indeed, specific RBP domains, sometimes in pair with their
cognate chaperone, are present in each RBP system. This is

well-illustrated by the high similarity of the experimentally
verified depolymerase domains of KP36gp50 and KP34gp57.
Both proteins target capsular serotype K63, but have either an
N-terminal anchor or conserved peptide, respectively.

The high adaptability of Klebsiella phage RBPs is essential
since K. pneumoniae is featured by a high capsular diversity.

TABLE 5 | Overview of RBPs of phages belonging to the 8K64-1 group and with (predicted) depolymerase activity.

RBP

Alignment with 8K64-1 RBP

Phage Accession number Number of aa Coverage E-value Identity Identity range

First RBP (protein 1, Figure 6)

8K64-1 YP_009153165.1b 595 aa 100% 0.0 100% 595/595

RaK2 YP_007007253b 595 aa 100% 0.0 100% 595/595

Second RBP with conserved peptide (protein 2, Figure 6)

8K64-1 YP_009153195.1a 736 aa 100% 0.0 100% 736/736

RaK2 YP_007007681.1b 580 aa 15% 3E-30 61% 75/122

Third RBP (protein 3, Figure 6)

8K64-1 YP_009153196.1a 651 aa 100% 0.0 100% 651/651

RaK2 no protein

Fourth RBP with conserved peptide (protein 4, Figure 6)

8K64-1 YP_009153197.1a 702 aa 100% 0.0 100% 702/702

RaK2 YP_007007682.1 715 aa 96% 2E-39 26% 187/718

Fifth RBP with anchor (protein 5, Figure 6)

8K64-1 YP_009153198.1a 1193 aa 100% 0.0 100% 1193/1193

RaK2 YP_007007683.1 1113 aa 52% 0.0 82% 518/633

Sixth RBP (protein 6, Figure 6)

8K64-1 YP_009153199.1a 584 aa 100% 0.0 100% 584/584

RaK2 YP_007007684.1 584 aa 100% 0.0 99% 581/584

Seventh RBP (protein 7, Figure 6)

8K64-1 YP_009153200.1a 779 aa 100% 0.0 100% 779/779

RaK2 YP_007007685.1 779 aa 100% 0.0 97% 754/779

Eighth RBP with conserved peptide (protein 8, Figure 6)

8K64-1 YP_009153201.1a 888 aa 100% 0.0 100% 888/888

RaK2 YP_007007686.1 895 aa 29% 1E-147 89% 231/259

Ninth RBP with conserved peptide (protein 9, Figure 6)

8K64-1 YP_009153202.1a 996 aa 100% 0.0 100% 996/996

RaK2 YP_007007687.1 806 aa 28% 2E-129 76% 225/298

Tenth RBP (protein 10, Figure 6)

8K64-1 YP_009153203.1a 767 aa 100% 0.0 100% 767/767

RaK2 YP_007007688.1 767 aa 100% 0.0 90% 690/767

Eleventh RBP (protein 11, Figure 6)

8K64-1 YP_009153204.1b 719 aa 100% 0.0 100% 605/605

RaK2 YP_007007689.1b 688 aa 100% 0.0 75% 454/605

The gene syntheny of phages belonging to the 8K64-1 group is visualized in Figure 6. aRBP for which the depolymerase activity has been experimentally verified
(Pan et al., 2017). bRBP without enzymatic activity. BLASTp was used as computational alignment algorithm and pairwise alignments were performed against the
respective RBP from phage 8K64-1, respectively. The accession number of each RBP is given, along with its length and alignment characteristics (cover-coverage,
E-value,% identity, identity range-number of identical amino acids/length) of the region over which identical amino acids are found by Blastp, starting from the N-terminus
(amino acid 1). HHPred analysis revealed homology in RBPs to T4gp10-like domains: Fifth RBP (protein 5) – 113–305 aa compared to 68–384 aa of T4gp10 (Probability
93.67) and 108–241 aa compared to 160–385 aa of T4gp10 (Probability 90.92) and 130–171 aa compared to 305–384 aa of T4gp10 (Probability 48.74); Eighth RBP
(protein 8) – 67–221 aa compared to 151–393 aa of T4gp10 (Probability 96.28) and 95–138 aa compared to 303–384 aa of T4gp10 (Probability 74.61) and 79–214 aa
compared to 66–247 aa of T4gp10 (Probability 71.93); Ninth RBP (protein 9) – 175–225 aa compared to 303–390 aa of T4gp10 (Probability 92.73) and 160–219 aa
compared to 164–245 aa of T4gp10 (Probability 90.38); Tenth RBP (protein 10) – 165–217 aa compared to 303–392 aa of T4gp10 (Probability 89.93) and 123–209 aa
compared to 136–254 aa of T4gp10 (Probability 89.87). Values are shown for template phage 8K64-1.
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FIGURE 6 | Receptor binding protein systems of phage 8K64-1 and RaK2. Phages and their RBPs that are proposed to follow this system are summarized in
Table 5. The modular composition of RBP genes is shown relative to the broken gene synteny. Annotations are given according to GenBank or according to their
modeled function in this study (between brackets): (1) – putative tail fiber protein (depolymerase); (2) – tail spike protein (depolymerase with conserved peptide); (3) –
tail spike protein (depolymerase); (4)– putative tail fiber protein (depolymerase with conserved peptide); (5) – putative tail fiber protein (anchor with depolymerase); (6) –
putative tail fiber protein (depolymerase); (7) – putative structural protein (depolymerase); (8) – putative tail fiber protein (depolymerase with conserved peptide); (9) –
putative tail fiber protein (depolymerase with conserved peptide); (10) – putative structural protein (depolymerase); (11) – putative tail fiber protein (depolymerase).

Consequently, Klebsiella phages have often a very narrow
spectrum limited to strains from one or two capsular serotypes.
Colonization of new niches occupied by K. pneumoniae isolates
with a different capsular serotype thus necessitates a flexible
system for rapid adaptation. In addition, the same flexibility

is needed to respond to phenotypic serotype switches of
K. pneumoniae strains (Pan et al., 2015; Wyres et al., 2015).

In this study, we propose that RBPs of Klebsiella phages
are organized according to several distinct systems (Figure 8).
The simplest mechanism is similar to the anchor-based system

TABLE 6 | Overview of RBPs of phages belonging to the KP36viruses and with (predicted) depolymerase activity.

Phage RBP (protein 3, Figure 7)

Alignment with KP36 RBP

Accession number Number of aa Coverage E-value Identity Identity range

Group A (RBP with anchor)

KP36 YP_009226011.1a 883 aa 100% 0.0 100% 883/883

KLPN1 YP_009195383.1 756 aa 30% 3E-99 67% 187/280

KOX1 ARM70347.1 765 aa 21% 1E-89 90% 170/189

JY917 AVI03134.1c 812 aa 21% 2E-88 86% 173/201

Sushi YP_009196676.1b 832 aa 18% 2E-75 82% 144/176

MezzoGao ASV44964.1b 973 aa 20% 1E-72 78% 152/194

NJS1 AXF39389.1b 992 aa 18% 4E-72 81% 142/176

GML-KpCol1 AUE22051.1b 972 aa 18% 8E-71 80% 140/176

KpV522 AOZ65310.1b 1141 aa 20% 1E-68 72% 139/193

KPN N141 ASW27458.1b 879 aa 18% 1E-59 80% 140/174

Group B (RBP with anchor plus second depolymerase)

PKP126 YP_009284923.1b 833 aa 18% 1E-70 76% 137/180

YP_009284924 251 aa hypothetical
protein, no similarity

Group C (RBP with anchor plus second RBP)

1513 YP_009197878.1c 659 aa 21% 4E-86 88% 171/194

YP_009197879.1 541 aa Hypothetical
protein, no similarity

The RBP system of KP36viruses is visualized in Figure 7. aRBP for which the depolymerase activity has been experimentally verified (Majkowska-Skrobek et al., 2016).
bRBP with a lower probability on depolymerizing activity. cRBP without enzymatic activity. BLASTp was used as computational alignment algorithm and pairwise alignments
were performed against the respective RBP from phage KP36. The accession number of each RBP is given, along with its length and alignment characteristics (cover-
coverage, E-value,% identity, identity range-number of identical amino acids/length) of the region over which identical amino acids are found by Blastp, starting from the
N-terminus (amino acid 1).
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FIGURE 7 | Receptor binding protein systems of the KP36viruses. Phages and their RBPs that are proposed to follow this system, including their grouping into
groups A, B and C, are summarized in Table 6. (A) The modular composition of the RBP genes is shown relative to the broken gene synteny of the reference phage
KP36. Annotations are given according to GenBank or according to their modeled function in this study (between brackets): (1) – minor tail protein; (2) – tail fiber
protein; (3) – putative tail fiber protein (3A,B – anchor with depolymerase; 3C – anchor); (4) – hypothetical protein (4B,C – depolymerase); (5) – putative
single-stranded DNA binding protein. Proteins 1, 2, and 5 are present in all KP36viruses. (B) Schematic model of the RBP system in phage particles of KP36viruses
group A with a split T5 distal tail protein. Domain A is encoded by short minor tail protein forming a ring at the end of the phage tail tube and offers an attachment
point for domain B, which is incorporated in the anchoring part of the RBP that represents the putative side tail fiber.

described for phage T7 and K1F. In phages from KP32viruses
group B and KP36viruses, the single RBP is directly connected
with the phage particle via its conserved N-terminal anchor
domain. Other phages (KP32viruses group A; KP34 viruses group
B) that produce two RBPs encode the structural elements for
an anchor-branched mechanism as reported for phage G7C.
Here, the first RBP contains a conserved N-terminal anchor
serving for attachment to the virion, followed by a specific
fragment of a T4gp10-like domain providing the docking site for
a second RBP. Notably, the fragment encoding the T4gp10-like
docking site in those Klebsiella phages is shorter compared to
the corresponding domain in T4 and may therefore correspond
to a single attachment site. The second RBP is presumably
attached via a conserved peptide (KP32viruses, KP34viruses,
JD001 group, Menlow group, 8K64-1 group). This conserved
peptide is different for each group of phages, varies in length and

can be as short as seven amino acids. Such attachment via a short
peptide is in line with the RBP complex of K1E/K1-5/SP6-like
phages where both RBPs carry either a 7- or 11-residue conserved
peptide at their respective N-terminus. In the case of E. coli phage
G7C the shorter G7Cgp63.1 RBP carries a positively charged
surface that binds to the T4gp10-like domain of G7Cgp66, yet, the
conserved peptides in Klebsiella phages lack this positive charge,
inferring that different interacting forces take place between the
first and second RBP. Similar to the RBPs of phage K1-5, the two
experimentally verified depolymerases of phage KP32 target two
different capsular serotypes. In both cases the double RBP system
thus expands the host spectrum.

The presence of either an anchor- or an anchor-branched
system is not directly linked to the taxonomic organization. In
addition, there is no sequence homology between functionally
similar, structural building blocks across those phage groups.
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FIGURE 8 | Possible evolutionary linkages between diverse RBP systems, driven by the acquisition and loss of domains. The model RBP systems of phage T7, K1F,
G7C, K1-5, and K1-E have been reported before. The RBP systems of KP32viruses groups A, B, C, D (Figure 2 and Table 1), KP34viruses groups A, B, C
(Figure 3 and Table 2), phages belonging to the Menlow group (Figure 5 and Table 4) and phage belonging to the 8K64-1 group (Figure 6 and Table 5) have
been studied in this work.

E.g., the first 140 amino acids of the N-terminal anchor domains
of RBPs encoded by Klebsiella phages belonging to Podoviridae
show similarity with the well-characterized N-terminal domain
of T7 tail fiber and their first 300 amino acids are conserved
across different podoviruses analyzed in this study. The T7 tail
fiber attaches with its N-terminal anchor domain to the region
where the adaptor (gp11) interacts with nozzle (gp12) of the short
tail complex (Cuervo et al., 2013). The corresponding proteins of
phage KP32 share 62 and 61% sequence identity with the adaptor
and nozzle protein of phage T7, respectively, while in the case
of KP34 the identity is lower (29% identity with a coverage of
67% for the adaptor protein and 23% identity with a coverage of
98% for the nozzle protein). There is no amino acid similarity
between the conserved N-terminal anchor domains in RBPs
from different taxonomic groups of Klebsiella phages indicating
that also the interacting partner in the tail structure has also
evolved accordingly. In the case of KP36viruses (Siphoviridae),
a remarkable horizontal transfer event has taken place between
the distal tail protein and the tail fiber of KP36viruses when
comparing to the siphovirus T5 model. Domain B of the distal
tail protein has been transferred to the N-terminus of the tail

fiber protein in KP36viruses. Whereas in phage T5 protein–
protein interaction occurs between the N-terminus of the RBP
and domain B of the distal tail protein, novel interactions between
domain A of the minor tail protein and domain B embedded in
the tail fiber must have been evolved to compensate for the loss
of interaction by a direct covalent bond as in phage T5.

Interestingly, several phages with a single enzymatic RBP
do not follow the anchor system as described for phage T7,
but use the anchor-branched system of G7C with either the
first (KP32virus group D; KP34virus group A; JD001 group)
or second RBP (KP32virus group C; KP34virus group C)
being truncated. In the case of KP34viruses it is even the
predominant RBP system. The occurrence of these intermediate
RBP systems suggests evolutionary linkages between the different
RBP architectures. Starting from the simplest organization
with a single RBP (T7, K1F, and KP32viruses group B), the
acquisition of a fragment of a T4gp10-like domain allowed
for the attachment of a second RBP (KP32viruses group A
and KP34viruses group B). The first RBP from E. coli phage
G7C has acquired a full T4gp10-like domain (similarity to both
subdomain D2 and D3 of T4gp10), offering a potential second
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attachment site for a different RBP. This second site is not
occupied in phage G7C, whereas the E. coli model phages K1-
5, SP6, and K1E have effectively two RBPs attached to the same
intermediate protein that also comprises both subdomain D2 and
D3. In K1-5, SP6 and K1E, this intermediate protein with the
full T4gp10-like domain has lost its C-terminal receptor-binding
domain, resulting in an ‘adapter’ system – a short protein with
two sites for binding two different RBPs and no domain beyond
these two domains (Figure 8). It should be noted that a simple
adapter protein that provides attachment sites for two RBPs as
described for E. coli phage K1-5 and Salmonella phage SP6 is
not observed in the case of Klebsiella podoviruses. Obviously, an
opposite evolutionary trajectory of RBP systems (from adapter
to anchor) cannot be excluded as well. The success of the
modular build-up of the RBP apparatus and the extensive number
of horizontal transfer events have obscured possible insight in
the direction of this evolution. The assumption that evolution
generally takes place from simple to more complex systems, hints
at the first direction (from anchor to adapter). KP32viruses group
C and D, and KP34viruses groups A and C may have lost a
second intact RBP by retrograde evolution when thriving in a
new environment that is dominated by a single serotype Klebsiella
strain. Having a truncated second RBP may provide a fitness
advantage in such a situation. The truncated RBP may remain
as a temporal docking site to acquire a new RBP for host range
expansion by horizontal transfer when moving to a niche with
different Klebsiella serotypes. Phages belonging to the Menlow
group and 8K64-1 group carry multiple RBPs that obviously
recycle established structural elements such as a conserved
N-terminal domain, short conserved peptides and a T4gp10-
like domain (or fragments thereof). Yet, more experimental
(structural, genetic, biochemical) studies are required to make
a plausible prediction on the structural organization of these
elaborated RBP systems.

In summary, we have modeled the organization of diverse
RBP systems in Klebsiella phages. The modular composition
and re-use of established structural domains for anchoring and
branching provide the phages the full potential to rapidly shift
capsular serotype specificity or to expand the spectrum. We
expect that the increasing amount of (meta)genome sequencing
data will reveal further evolutionary relationships between some
of the groups we describe in this analysis, but the main groups
will remain in place. The data available to us today clearly
show that the architecture of RBP systems is dominated by
horizontal transfer events of modules that can be as small as
short peptides to as large as multiple domains. Although our
analysis was based on experimentally confirmed interactions

of E. coli phage RBPs (Leiman et al., 2007; Prokhorov et al.,
2017), further experimental validation of the presented models
is needed and has already been initiated by our team. To
analyze the interactions between the T4gp10-like domains and
conserved peptides, protein–protein interactions can be studied
by various techniques such as isothermal calorimetry (ITC), two-
hybrid systems, surface plasmon resonance (SPR), cryoEM, or
an enzyme-linked immunosorbent assay (ELISA). This work
also adds improved functional annotations to genes to which
previously no specific function has been assigned, but which are
putative tail fibers/spikes with depolymerizing activity. The high
number of newly predicted depolymerases in this study can be
verified by their recombinant production followed by activity
tests against strains with particular capsular serotypes.
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