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Abstract. Immature secretory granules (ISGs) in endo- 
crine and neuroendocrine cells have been shown by 
morphological techniques to be partially clathrin 
coated (Orci, L., M. Ravazzola, M. Amherdt,  D. Lon- 
vard, A. Perrelet. 1985a. Proc. Natl. Acad. Sci. USA. 82: 
5385-5389; Tooze, J., and S.A. Tooze. 1986. J. Cell Biol. 
103:839-850). The function, and composition, of this 
clathrin coat has remained an enigma. Here we demon- 
strate using three independent techniques that imma- 
ture secretory granules isolated from the rat neuroen- 
docrine cell line PC12 have clathrin coat components 
associated with their membrane. To study the nature of 
the coat association we have developed an assay 
whereby the binding of the AP-1 subunit ~/-adaptin to 

ISGs was reconstituted by addition of rat or bovine 
brain cytosol. The amount of 7-adaptin bound to the 
ISGs was ATP independent and was increased fourfold 
by the addition of GTPTS. The level of exogenous 
~/-adaptin recruited to the ISG was similiar to the level 
of 7-adaptin present on the ISG after isolation. Addi- 
tion of myristoylated ARF1 peptide stimulated binding. 
Reconstitution of the assay using AP-1 adaptor com- 
plex and recombinant ARF1 provided further evidence 
that ARF is involved in 7-adaptin binding to ISGs; 
BFA inhibited this binding. Trypsin treatment and Tris- 
stripping of the ISGs suggest that additional soluble 
and membrane-associated components are required for 
7-adaptin binding. 

I 
N neuroendocrine and endocrine cells, secretory gran- 
ules bud from the trans-Golgi network (TGN) when a 
dense-core aggregate, containing sorted regulated 

secretory proteins, is enveloped by a specifc membrane. 
These newly formed secretory granules have been re- 
ferred to as immature secretory granules (ISGs), 1 as they 
have been shown to be an intermediate in the biogenesis 
of secretory granules. During storage in the cell and vecto- 
rial transport to the plasma membrane, the ISG is con- 
verted into a mature secretory granule (MSG): immature 
and mature secretory granules can be distinguished by 
their morphological (Farquhar et al., 1978; Orci et al., 
1985a; Tooze and Tooze, 1986) and biochemical proper- 
ties (Tooze et al., 1991). ISGs are morphologically charac- 
terized as those secretory granules that are proximal to the 
TGN, have a partially condensed dense core, and an irreg- 
ular, loose membrane. Furthermore, a clathrin coat is 
present on parts of the ISG membrane as was demon- 
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1. Abbreviations used in this paper: AP, adaptor proteins; ARF, ADP- 
ribosylation factor; BFA, brefeldin A; CSV, constitutive secretory vesicle; 
CgB, chromogranin B; GTP~S, guanosine 5'-O-3-thiotriphosphate; hsPG, 
heparan sulfate proteoglycan; ISG, immature secretory granule; MSG, 
mature secretory granule; Pool 1, adaptor-enriched pool; PNS, postnu- 
clear supernatant; SglI, secretogranin II. 

strated by immunogold labeling of the ISGs with anti- 
clathrin antibodies (Orci et al., 1985a; Tooze and Tooze, 
1986). In addition, the processing of pro-hormones, for ex- 
ample pro-insulin, has been shown to begin in the ISG 
(Orci et al., 1985b). 

MSGs, on the other hand, occur distal from the TGN 
and have highly condensed dense cores and a more uni- 
form limiting membrane. Clathrin coats have not been de- 
tected on MSGs (Orci et al., 1985a; Tooze and Tooze, 
1986). Furthermore, MSGs contain predominantly fully 
processed hormones (Orci et al., 1985b). The maturation 
of the ISG to an MSG involves translocation of the matur- 
ing ISG to the periphery of the cell, changes in the struc- 
ture of the dense core (Michael et al., 1987), and in the size 
of the ISG (Farquhar et al., 1978; Tooze et al., 1991; 
Bauerfeind and Huttner, 1993). Concomitant with these 
changes is the loss of the clathrin coat from the membrane 
of the maturing ISG. 

Several intracellular membranes, for example the plasma 
membrane and the TGN, have regions which are clathrin 
coated (for review see Pearse and Robinson, 1990). The 
clathrin coats on the plasma membrane mediate the clus- 
tering of ligand-bound trans-membrane receptors and par- 
ticipate in the formation of coated vesicles (for reviews see 
Pearse and Robinson, 1990; Schmid, 1993). The clathrin 
coat is comprised of clathrin triskelions and adaptor pro- 
teins which are recruited from the cytoplasm (for reviews 
see Pearse and Robinson, 1990; Pley and Parham, 1993). 
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So far, two classes of adaptor protein complexes have been 
described: the AP-2 complex which is found primarily at 
the plasma membrane, and the AP-1 complex which is lo- 
calized predominantly to the Golgi complex (for review 
see Robinson, 1993). The binding of AP-1 to Golgi mem- 
branes requires ARF1, a low molecular weight GTP-bind- 
ing protein (Stamnes and Rothman, 1993; Traub et al., 
1993). The amino-terminal region of ARF contains the in- 
formation essential for ARF function and may be the re- 
gion of the molecule which interacts with the effector pro- 
tein, while the association of ARF with the membrane is 
regulated by GTP hydrolysis and mediated by the myristic 
acid moiety at the NH2-terminus (Boman and Kahn, 
1995). ARF1 has been identified as a component of Golgi- 
derived nonclathrin-coated (COP-coated) vesicles (Se- 
rafini et al., 1991), clathrin-coated vesicles isolated from 
brain cytosol (Lenhard et al., 1992), and of post-Golgi ves- 
icles (Nickel et al., 1994). 

The AP-1 and AP-2 adaptor complexes are highly ho- 
mologous heterotetramers comprised of two distinct sub- 
units each with a molecular mass in the range of 110 kD, a 
50-kD subunit, and an 18-kD subunit. The l l0-kD sub- 
units in the AP-2 complex are referred to as ot and 13, those 
in the AP-1 complex are designated ~/and 13' (for review 
see Robinson, 1992). The highly homologus [3- and 13'-sub- 
units mediate the interaction of the adaptor complex with 
the clathrin triskelions (Ahle and Ungewickell, 1989). The 
cx-and ~/- subunits are believed to confer the required 
binding specificity of AP-2 and AP-1, and have been pos- 
tulated to bind to components in the membrane (Wong 
and Brodsky, 1992; Robinson, 1994). ",/-Adaptin binding to 
Golgi membranes occurs via association with the cytoplas- 
mic domain of the mannose-6-phosphate receptor (M6PR) 
(Glickman et al., 1989; Le Borgne et al., 1993), and it has 
been suggested that this association, together with the 
ARF-mediated binding may be sufficient for clathrin-coat 
formation (Ludwig et al., 1995). In contrast, Traub and 
colleagues have recently proposed a model, based on their 
results and those of others (Wong and Brodsky, 1992; 
Robinson, 1993; Traub et al., 1993, 1995) in which the ini- 
tial interaction of ~/-adaptin with Golgi membranes re- 
quires -y-adaptin receptors or "docking" proteins. Traub et 
al. (1995) propose that these docking proteins, in addition 
to ARF, bind to the amino-terminal core domain of 
~-adaptin, before the interaction of the carboxy-terminal 
appendage with the cytoplasmic domain of a transmem- 
brane receptor. 

Although a clathrin coat has been seen by electron mi- 
croscopy on a wide variety of ISGs in different cell types 
(Orci et al., 1985a; Tooze and Tooze, 1986), its function is 
unknown. One unlikely possibility is that the clathrin coat 
has no specific function and is simply a remnant of the 
budding of the ISG from the TGN, and that during the 
maturation process the clathrin coat slowly dissociates 
from the ISG. Two lines of evidence argue against this 
possibility. First, the clathrin coat has never been seen by 
electron microscopy to encompass the entire surface of the 
nascent secretory granule budding from the TGN, thus it is 
unlikely that a clathrin coat physically drives the budding 
of the ISG. Second, the clathrin coat on the ISG often ap- 
pears to be enveloping small vesicular structures in the 
process of budding from the maturing granule (Tooze and 

Tooze, 1986). These electron micrographs strongly suggest 
that the clathrin coat is involved in the removal of mem- 
brane and content from the ISG by vesicular traffic and is 
not a functionless vestige. 

Regardless of their function, clathrin coats are present 
on the surface of the ISGs and this raises the question 
which class of adaptor complex is responsible for the clath- 
rin binding. Since the AP-1 complex is concentrated in the 
Golgi region of all cell types, and has been shown to bind 
to Golgi membranes (Robinson and Kreis, 1992; Wong 
and Brodsky, 1992; Le Borgne et al., 1993, Stamnes and 
Rothman, 1993; Traub et al., 1993) and mediate the inter- 
action of clathrin with the Golgi (Traub et al., 1995), it is a 
priori the most likely candidate, however, this has not 
been previously established experimentally. Elucidation of 
this question by morphological techniques is not straight- 
foward because of the low numbers of ISGs in regulated 
secretory cells, and the limited extent of the clathrin coats 
on the ISGs. Here we demonstrate that ~/-adaptin is 
present on ISGs from PC12 cells, and to obtain further in- 
formation regarding the role of the clathrin coat on the 
ISGs and the components involved in coat association, we 
have developed an assay to reconstitute binding of ~/-adap- 
tin to ISGs. 

Materials and Methods 

Reagents 
Carrier-free [35S]sulfate, 125I-protein A, and [3H]myristic acid were from 
Amersham (Little Chalfont, UK). Nucleotides, creatine phosphate, and 
creatine phosphokinase were from Boehringer Mannheim (Mannheim, 
Germany). Brefeldin A (BFA), myristic acid, p-nitrophenyl-a-o-manno- 
side, soybean trypsin inhibitor and trypsin were from Sigma (Poole, UK). 
Fine chemicals were from BDH (Lutterworth, UK), Boehringer Mann- 
helm, GIBCO-BRL (Paisley, UK), or Sigma Chem. Co. (St. Louis, MO). 

Cells and Antibodies 
PC12 cells (clone 251; Heumann et al., 1983), originally obtained from Dr. 
H. Thoenen (Martinsried/Germany), were maintained as described 
(Tooze and Huttner, 1990). Monoclonal antibodies against clathrin 
(TD.1) (N~ihtke et al., 1992), bovine ~,-adaptin (100/3) (Ahle et al., 1988), 
and ARF (1D9) were used at a dilution of 1:1,000. Monoclonal antibodies 
to TGN38 (2F7.1) (Horn and Banting, 1994) and chromogranin B (CgB) 
(219.6) (Rosa et al., 1989) were used at a dilution of 1:500. We raised a 
rabbit polyclonal antibody (STO-25) directed against "y-adaptin as follows. 
The complete mouse ~/-adaptin hinge region (Robinson, 1990) was cloned 
via PCR in frame to the COOH terminus of GST using the pGEX-3X sys- 
tem (Pharmacia, Milton Keynes, UK). The fusion protein was expressed 
in BL21 cells and purified using glutathione Sepharose 4B (Pharmacia) 
according to the manufacturer's protocol. The antibody was raised by im- 
munization of a rabbit with the fusion protein and used at a dilution of 
1:250. For competition experiments the antibody was preincubated for 
16 h at 4°C with 0.1 mg/ml GST/~/-adaptin hinge fusion protein or with 
GST alone. 

Radiolabeling of PC12 Cells 
PC12 cells were pulse labeled with [35S]sulfate and chased at 37°C as de- 
scribed (Tooze and Huttner, 1990; see figure legends for details). To label 
TGN, PC12 cells were incubated for 5 rain with 1 mCi [aSS]sulfate × m1-1. 
Labeling of ISGs and constitutive secretory vesicles was achieved by incu- 
bation for 5 min with I mCi [35S]sulfate × m1-1 and a subsequent chase for 
15 min, whereas to label MSGs, PC12 cells were incubated for 6 h with 0.2 
mCi [3SS]sulfate × m1-1 and chased for 12 h. 
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Preparation of PCl2 Immature and Mature 
Secretory Granules 
ISGs, CSVs, and MSGs were prepared from PC12 cells by velocity and 
equilibrium sucrose gradient centrifugation. Six 150-cm 2 dishes of cells, 
grown to 80% confluency, were used to prepare a postnuclear supernatant 
(PNS) as previously described (Tooze and Huttner, 1992), which was 
subjected to sucrose gradient fractionation except that a step gradient (0.8 
M-1.6 M sucrose) was used instead of a continuous gradient for the equi- 
librium gradient centrifugation. The ISGs used for the binding assay (frac- 
tions 7-9) contained ~0.5 txg/l~l protein. Protein concentrations of the 
respective fractions were determined using (BioRad, Hemel Hempstead, 
UK) IgG as a standard. 

Preparation and Gel Filtration of Bovine 
or Rat Brain Cytosol 
Bovine brain cytosol was prepared as described (Malhotra et al., 1989). 
Rat brain cytosol was prepared from three rat brains homogenized in 25 
mM Hepes, 25 mM KCI, 2.5 mM MgOAc (pH 7.2). Nuclei, membranes, 
and other sedimentable components were removed by centrifugation at 
30,000 g for 30 min at 4°C followed by a centrifugation at 100,000 g for 90 
min. Bovine and rat brain cytosols were dialyzed against 25 mM Hepes, 25 
mM KC1, 2.5 mM MgOAc (pH 7.2). Before use the cytosot was incubated 
for 30 min at 37°C and was clarified for I h at 100,000 g at 4°C in a TL-100 
table top ultracentrifuge except in Fig. 7 A. 

For the preparation of a ~/-adaptin-enriched pool, the bovine brain cy- 
tosol (2 ml of 22.3 mg/ml) was fractionated by size on a preparative grade 
Superose 6 column (1.6 × 51 cm, 100-ml bed vol, Pharmacia) according to 
Stamnes and Rothman (1993), using 25 mM Hepes, 25 mM KCI, and 2.5 
mM MgOAc (pH 7.2). Each column fraction (1 ml vol) was analyzed by 
Western blotting for the presence of clathrin, 7-adaptin, and ARF. Frac- 
tions containing ~#adaptin but not clathrin or ARF were pooled (Pool I), 
and concentrated 10-fold in a Centricon microconcentrator (Amicon, 
Stonehouse, UK). 

Preparation of Recombinant Myristoylated ARF I 
Recombinant myristoylated ARF1 (rnARF1) was purified from Escheri- 
chia coli (strain BL21[DE3]) coexpressing the ARF1 gene in p E T l l d  and 
yeast N-myristoyltransferase in pBB131 as described (Randazzo et al., 
1992) with the following modifications: the bacterial suspension was soni- 
outed for 3 × 30 s at the maximal settings with an Ultrasonic Processor 
(Jencons Scientific, Leighton Buzzard, UK)  on ice before clarification by 
centrifugation at 100,000 g for 60 rain at 4°C and the final gel-filtration 
step was excluded from the purification protocol. The resulting flow- 
through and wash from the D E A E  column were concentrated to 5 ml us- 
ing a YM10 membrane and dialyzed against 25 mM Hepes, 25 mM KCI, 
and 2.5 mM MgOAc (pH 7.2) (Amicon, Inc., Beverly, MA). As a control 
uninduced bacteria were grown and processed in the same way. Each pu- 
rification step was analyzed for the presence of ARF1 by 15% SDS- 
PAGE and immunoblotting with mAb 1D9. Myristoylation was followed 
by the incorporation of [3H]-myistic acid into the newly induced protein 
(Helms et al., 1993). 

Cell-Free Assay to Reconstitute y-Adaptin Binding to 
PC12 Secretory Granules 
Typically, 125 p.l of ISGs were mixed with varying amounts of rat brain cy- 
tosol or bovine brain cytosol (0-5.0 p.g/mi) (for details see figure legends) 
in a final volume of 250 p~l containing 25 mM Hepes, 25 mM KCi, and 2.5 
mM magnesium acetate (pH 7.2) (binding buffer). Where indicated, 8.3 p.l 
of an ATP-regenerating system (Tooze and Huttner, 1990) were added. In 
all experiments the ATP-regenerating system was used as the source of 
ATP. The amounts and types of other nucleotides present in the reactions 
are described in the figure legends. 

Alternatively, 125 p.1 ISGs and crude recombinant mARF1 (1130 p.g 
protein) or a noninduced bacterial control sample (100 Ixg protein), pre- 
pared as described above, were incubated with or without 100 I~M GTP~S 
for 10 min at 37°C in binding buffer (lst  step). After the addition of the 
~/-adaptin containing Pool I (50 p~g protein), prepared by size fractionation 
of bovine brain cytosol as described above, and the ATP-regenerating sys- 
tem or other nucleotides, as indicated in the figure legends, a further incu- 
bation was performed for 20 min at 37°C (2nd step). When BFA was used, 

the ISGs were preincubated for 10 min at 37°C with 10 p,g/ml BFA before 
the 1st step. Secretory granules were preincubated for 10 rain at 37°C 
with the [AIF4]- (prepared freshly from 50 mM NI-hAI[SO412 and 1 M KF 
stock solutions) before cytosol was added. A peptide representing the first 
14 NH2-terminal amino acids of human ARF1 (ARFlpep)  (Kahn et al., 
1992) as well as its N-myristoylated form (mARFlpep)  or myristic acid 
alone were added to the assay at a concentration of 100 I~M where indi- 
cated. Peptides were added from a 10-mM stock solution in dH20 (ARF- 
pep) or DMSO (mARFpep). A 10-mM stock solution of myristic acid was 
prepared in DMSO. 

After incubation for 30 min at 37°C, 750 ~1 of ice cold binding buffer 
were added and the secretory granules were pelleted by centrifugation for 
60 min at 4°C with 45,000 rpm in a TLA-45 rotor using a TL-100 table top 
ultracentrifuge. All assays were done at least in duplicate. The pellets 
were resuspended in 20 p~l of SDS sample buffer, analyzed by SDS-poly- 
acrylamide minigels, and subjected to immunoblot analysis followed by in- 
cubation with l~l-protein A. After exposure to film the amount of radio- 
activity bound was quantitated with a phosphorimager system (Molecular 
Dynamics, Chesham, UK). 

Membrane Stripping and Trypsin Pretreatment of lSGs 
To remove peripheral-associated proteins from the ISG membrane (strip- 
ping), the granules were preincubated before the binding assay in 0.5 M 
KC1, 0.5 M Tris/HCl, pH 7.2, or 10 mM Hepes pH 7.2 (control). After a 
15-rain incubation on ice, the granules were sedimented through a sucrose 
cushion (0.5 M sucrose, 10 mM Hepes, pH 7.2) for 1 h with 100,000 g at 
4°C and were resuspended in 1.2 M sucrose, 10 mM Hepes, pH 7.2. For 
trypsinization of exposed membrane proteins, the ISGs were incubated 
for 15 min at 37°C with or without trypsin as indicated. The reaction was 
terminated by the addition of 1 mg/ml soybean trypsin inhibitor (STI). As 
a control STI was added before the incubation with trypsin. The subse- 
quent ~-adaptin-binding assay was carried out as described above. 

Immunoisolation 
Immunoisolation of sulfate-labeled TGN, ISGs, or MSGs using polyclonal 
antibody STO-25 was carried out as previously described (Urb6 et al., 
1993) except BSA was omitted during all incubation steps. For competi- 
tion experiments the bound antibody was saturated before the immu- 
noisolation with 0.1 mg/ml GST/~/-adaptin-hinge fusion protein, and the 
fusion protein was added at the same concentration throughout the immu- 
noisolation. For the immunoisolation 100 v.l of the TGN enriched fraction 
9 of the velocity gradient, ISG equilibrium gradient fraction 8, and MSG 
equilibrium gradient fraction 11 were used, respectively. 

Immunoelectron Microscopy 
ISGs incubated with rat brain cytosol were fixed in 2% paraformaldehyde 
in 0A M S0reusen's phosphate buffer, pH 7.4, for 2 h and embedded in 
10% gelatine, immersed in 2.3 M sucrose/PBS for 4 h, and frozen in liquid 
nitrogen. Ultrathin cryosections were cut on an UltracutS microtome with 
FC4E cryo attachment and transferred onto Formvar-coated grids. Sec- 
tions were quenched for 15 min with 50 mM glycine, blocked for 15 min 
with 0.5% fish skin gelatin in PBS (FSG/PBS), and then labeled with 
STO-25, preimmune sera at a 1:5 dilution in 0.05% FSG/PBS, or the im- 
mune sera preincubated with the GST-fusion protein as described above. 
After an overnight incubation at 4°C the sections were washed three times 
over a 15-min period with 0.05% FSG/PBS, and then were labeled with a 
1:50 dilution of protein A-conjugated to 5-rim colloidal gold (Slot and 
Geuze, 1985) in 0.05% FSG/PBS for 30 min. After three 5-min rinses in 
PBS, the sections were fixed in 2.5% glutaraldehyde in PBS for 5 min, and 
then washed three times for 5 rain in PBS and dH20. After immunolabel- 
ing the sections were stained with uranyl acetate in dH20 and embedded 
in PVA as described by Tokuyasu (1989). The sections were examined ei- 
ther with a JEOL 1200 FX or Zeissl0C electron microscope. Quantitation 
of the number of gold particles was performed using fields similar to those 
in Fig. 5, a and b. The background (i.e., gold particles over section areas 
without membranes) observed with each condition was extremely low and 
therefore ignored. Grids were examined at magnifications of 120,000. For 
each treatment, number of gold particles bound specifically per ISG was 
counted on a 60 p~m 2 surface of random sections on three grids. Measure- 
ments were performed directly with a JEOL 1200 EX electron microscope 
with a video attachment. 
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Figure L Characterization of the anti-~-adaptin antibody ST0-25. (A) Equal amounts of protein either from a PC12 cell PNS (lanes 1 
and 3) or rat brain cytosol (lanes 2 and 4) were immunoblotted with ST0-25 (lanes I and 2) or with ST0-25 preincubated with the GST/ 
~-adaptin hinge fusion protein (comp.; lanes 3 and 4). The asterisk indicates ~/-adaptin. (B) Double labeling of PC12 cells for ~-adaptin 
using ST0-25 (a and c), and monoclonal antibodies to either TGN38 (b) or CgB (d) by indirect immunofluorescence. ST0-25 is revealed 
by anti-rabbit antibodies conjugated to Cy3, while TGN38 and CgB are revealed by anti-mouse antibodies conjugated to DTAF. Note, 
different fixation conditions are used in a and b and c and d, which leads to slight differences in the appearance of the ST0-25 labeling. 
Bar equals 10 ~m. 
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Indirect Immunofluorescence 
For double labeling with antibodies against -y-adaptin and CgB, the PC12 
cells were fixed and processed as previously described (Ditti6 and Tooze, 
1995). For double labeling with antibodies against ~-adaptin and TGN38 
the cells were fixed for 10 min at -20°C in methanol and permeabilized 
for 1 min in acetone. The double labeling was carried out by sequential in- 
cubation of the cells with a mixture of the appropriate primary and sec- 
ondary antibodies diluted in PBS/0.2% gelatin. The primary antibody was 
detected using Cy3 and DTAF-conjugated secondary antibodies (Jackson 
Immuno Research, West Grove, CA). The cells were mounted in Moviol 
4-88 (Harco, UK), viewed with a Zeiss axiophot, and photographed using 
standard techniques. 

Results 

Membrane-associated Clathrin and 7-Adaptin 
Codistribute with Immature Secretory Granules 

To investigate whether secretory granules from PC12 cells 
have AP-1 coat-protein components we employed anti- 
bodies recognizing ,,/-adaptin and clathrin. The anti-~- 
adaptin antibody, ST0-25, was raised to a GST-fusion pro- 
tein containing the entire hinge region of mouse ~-adaptin. 
Analysis of immunoblots revealed that ST0-25 recognizes 
rat ~/-adaptin from PC12 cells and rat brain (Fig. 1 A, lanes 
1 and 2). The specificity of ST0-25 for rat -y-adaptin was 
shown by competition experiments with the GST/~/-adap- 

tin-hinge fusion protein, which abolished the specific sig- 
nal (Fig. 1 A, lanes 3 and 4), whereas the control GST fu- 
sion protein alone had no effect (data not shown). ST0-25 
was further characterized by indirect immunofluorescent 
labeling. Using a species-specific monoclonal antibody 
(100:3), -y-adaptin has been previously localized to the 
Golgi complex in bovine and human cells (Ahle et 
al., 1988). Furthermore, colocalization of ~/-adaptin with 
TGN38, a trans-Golgi network resident membrane protein 
(Luzio et al., 1990), has been demonstrated using indirect 
immunofluorescence labeling (Reaves and Banting, 1994). 
In PC12 cells in double-labeling experiments the pattern 
obtained with ST0-25 is predominantly perinuclear, and 
largely coincident with the labeling for TGN38 (Fig. 1 B, 
panels a and b). In contrast, double-labeling experiments 
with ST0-25 and 219.6, a monoclonal antibody specific for 
a secretory granule core protein CgB (Rosa et al., 1989) 
show there is little overlap between ~-adaptin with CgB 
(Fig. 1 B, panel c and d). The mAb 219.6 labels both MSGs 
and ISGs in the PC12 cells and since the latter are in the 
minority, only a small overlap in the signals obtained for 
~-adaptin and CgB is to be expected. 

The distribution of the clathrin coat components was de- 
termined by immunoblotting enriched fractions of ISG 
and MSGs obtained from sucrose gradients (Fig. 2). To re- 
move the soluble, cytoplasmic pool of coat proteins before 

Figure 2. Clathrin coat components codistribute with ISGs on equilibrium sucrose gradients. Membrane pellets prepared from PC12 
cells labeled with [35S]sulfate as indicated in A and D, or unlabeled PC12 cells (B, C, E, and F) were fractionated by velocity sucrose gra- 
dient centrifugation. The light vesicle pool (fractions 2--4) or the heavy vesicle pool (fractions 5-7) were further fractionated by equilib- 
rium sucrose gradient centrifugation (EG) as described in Materials and Methods. In A and D equal volumes of each fraction were ana- 
lyzed by SDS-PAGE followed by fluorography. The positions of SglI and the hsPG, or SglI and CgB are indicated in A and D, 
respectively. In B, C, E, and Fequal volumes of each fraction were analyzed by immunoblotting with TD.1 and ST0-25. In B and E the 
clathrin heavy chain (CHC) is indicated, while in C and F'y-adaptin is indicated. 
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Figure 3. Immunoisolation of membranes 
with the anti--~-adaptin antibody ST0-25. 
[35S]Sulfate-labeled TGN (5 min pulse, no 
chase), ISG (5 min pulse, 15 min chase), and 
MSG fractions (6 h label, O/N chase) from 
PC12 cells were prepared as described in Ma- 
terials and Methods. For each immunoisola- 
tion an equal volume of starting material was 
incubated with Staph A alone (-1.Ab), with 
Staph A precoated with preimmune sera (P/), 
Staph A precoated with ST0-25 (ST0-25), or 
with Staph A precoated with ST0-25 preincu- 
bated with GST/-/-adaptin-hinge fusion pro- 
tein (competition). The immunoisolated ma- 
terial was analyzed by 7.5% SDS-PAGE and 
subsequent fluorography. Positions of the sul- 
fate-labeled molecules, hsPG, CgB, and SglI 
are indicated. 

fractionation, a membrane pellet was prepared from the 
postnuclear supernatant, and then subjected to velocity 
controlled centrifugation. From this gradient a light vesicle 
pool containing post-Golgi vesicles (CSVs and ISGs) and 
a heavy vesicle pool containing MSGs, were obtained and 
subjected to equilibrium centrifugation. Equilibrium cen- 
trifugation of the light vesicle pool containing the post- 
Golgi vesicles allows the resolution of those vesicles which 
contain a heparan sulfate proteoglycan (hsPG), the marker 
for the CSVs, from those vesicles which contain secreto- 
granin II (SgII), the marker for both ISGs and MSGs 
(Tooze and Huttner, 1990; Rosa et al., 1985). As both the 
hsPG and SgII are sulfated in the TGN the distribution of 
these post-Golgi vesicles on the equilibrium gradient 
(Tooze et al., 1991) was confirmed by pulse-labeling PC12 
cells with a 5-min pulse of [35S]sulfate followed by a 15- 
min chase: the bulk of the SglI was found in fractions 7-9 
in ISGs, whereas most of the hsPG was found in fractions 
5 and 6 in CSVs (Fig. 2 A). 

The fractions from the gradient of the light vesicle pool 
containing post-Golgi vesicles were immunoblotted with 
TD.1 to reveal the distribution of clathrin. As seen in Fig. 
2 B, most of the membrane-associated clathrin heavy 
chain was detected in fractions 5-9. The distribution of 
",/-adaptin, detected by immunoblotting the same fractions 

withST0-25 (Fig. 2 C) coincided with the distribution of 
ciathrin (Fig. 2 B). The peak of immunoreactivity for both 
clathrin and ~/-adaptin was found in fractions 7 and 8, the 
fractions which contain the peak of laSS]sulfate-labeled 
SgII. These results demonstrate that both clathrin and 
~/-adaptin cosediment with ISGs during equilibrium gradi- 
ent centrifugation. 

After equilibrium centrifugation of a heavy vesicle pool 
from PC12 cells, the MSGs, identified by sulfate-labeled 
SgII (Fig. 2 D), were found in fractions 9-12 as expected 
(Tooze et al., I991). Immunoblotting of the fractions ob- 
tained from the heavy vesicle pool revealed no clathrin 
(Fig. 2 E) and only very low amounts of ~-adaptin (Fig. 2 F). 

Immunoisolation of lSGs with 
Anti- ~-Adaptin Antibody 

As a control we tested whether TGN membranes, which 
are known to have membrane-associated ~-adaptin (for 
review see Robinson, 1992), could be immunoisolated 
with anti-~-adaptin antiserum ST0-25. After a 5-min pulse 
the [35S]sulfate-labeled molecules, SgII and the hsPG, 
present in the TGN fraction from a velocity gradient (frac- 
tion 9, see Fig. 2, Tooze and Huttner, 1990) were both im- 
munoisolated with ST0-25 (Fig. 3, lane 3). Having thus es- 
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Figure 4. Endogenous and exogenous -y-adaptin binding to PC12 ISGs. 
(A) PC12 ISGs were incubated for 30 min at 4°C or 37°C either without 
ATP (lanes I and 6), with ATP (lanes 2 and 7), ATP and GTP~/S (lanes 
3 and 8), ATP, GTP-/S, and rat brain cytosol (lanes 4, 5, and 9, 10), or 
ATP and rat brain cytosol (lanes 11 and 12). The amount of clathrin 
heavy chain (CHC) and ~-adaptin bound to the ISGs was determined 
after sedimentation and immunoblotting the appropriate regions of the 
same blot with TD.1 (upper panel) or ST0-25 (lower panel). A represen- 
tative experiment is shown. The ~-adaptin quantitation by phosphorim- 
ager analysis with ST0-25 is relative to the amount of ~/-adaptin present 
at 4°C without additions and is the average of duplicate values. (B) 
PC12 ISGs were incubated for 30 min at 37°C with 2.0 mg/ml bovine 
brain cytosol in the presence (+) or absence ( - )  o(ATP. Where indi- 
cated, 100 p.M ATP-yS, 1 mM GTP, or 100 t~M GTP~/S were also in- 
cluded in the reaction. (C) Increasing amounts of PC12 cell ISGs were 
incubated for 30 min at 37°C with 2.0 mg/ml bovine brain cytosol and 
ATP in either the presence or absence of 100 ~M GTP~/S. For both B 
and C, the amount of bovine 7-adaptin bound to the ISGs was deter- 
mined after sedimentation and immunoblotting with 100/3, followed by 
phosphorimager quantitation. In B the data are expressed as percent of 
control (+ATP), in C the data are expressed as percent of maximal 
binding. The data presented are the average of two or more indepen- 
dent experiments done in duplicate, the error bars indicate the standard 
deviation. 

tablished that ST0-25 can be used to immunoisolate  vesicles 
with ~/-adaptin on their  membrane ,  ISGs,  containing SgII 
pulse labe led  with [35S]sulfate for 5 rain and chased for 15 
min, were immunoiso la ted  with ST0-25 (Fig. 3, lane 7). 
Nei ther  the T G N  fractions nor  the ISGs were immunoiso-  
la ted in the absence of the pr imary  ant ibody or  with the 
p re immune  serum (Fig. 3, lanes 1 and 2, and 5 and 6) and 

compet i t ion  with the GST/7-adap t in -h inge  fusion protein,  
abol ished the specific signal (Fig. 3, lanes 4 and 8). This 
demons t ra tes  directly that  the "y-adaptin de tec ted  in the 
ISG fractions is present  on ISGs.  

MSGs,  containing [35S]sulfate-labeled SglI,  were not  
specifically immunoiso la ted  with ST0-25 (Fig. 3, lane 11). 
The nonspecific binding was however  much greater  in 
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Figure 5. Ultrastructural  localization of "y-adaptin on PC12 ISGs. PC12 ISGs were incubated for 30 rain at 37°C with 4.0 mg/ml rat brain 
cytosol in the presence of GTP,/S. After  sedimentat ion the granules were prepared for cryosectioning as described in Materials and 
Methods. Bound -,/-adaptin was detected by incubation of the sections with ST0-25 followed by incubation with 5-nm gold-conjugated 
protein A. a and b are representat ive overviews of the results, c-h are selected fields. The arrowheads in a and b indicate ISGs which are 
labeled with ST0-25. Bar  equals 100 nm. 
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these fractions (Fig. 3, lanes 9-12) and was observed even 
without the primary antibody (Fig. 3, lane 9). Similar im- 
munoisolation experiments (data not shown) performed 
with TGN, ISG, and MSG fractions and the anti-clathrin 
antibody X22 coupled to Sepharose (obtained from F. 
Brodsky), confirmed the result with ST0-25, namely that 
the ISGs have clathrin coat components associated with 
their membrane. 

Reconstitution of  y-Adaptin Binding to Immature 
Secretory Granules 

Golgi membranes have a saturable pool of endogenous 
~/-adaptin which remains associated during their isolation 
at 4°C (Traub et al., 1993). This pool of endogenous -y-adap- 
tin has been shown to dissociate from the membranes at 
37°C, exposing free binding sites which can be occupied by 
exogenous ~/-adaptin in the presence of GTP~/S. To deter- 
mine if the ~-adaptin bound to isolated ISGs showed a 
similar behavior, ISGs were incubated at 37°C in the pres- 
ence of rat brain cytosol and GTP~/S, and the ~/-adaptin 
bound to the ISG was quantitated using ST0-25. 

A significant amount of ~/-adaptin was detected on ISGs 
incubated at 4°C either without or with ATP, or with ATP 
and GTP~/S (Fig. 4 A, lanes 1-3). Addition of 2.5 or 5.0 
mg/ml rat brain cytosol, in the presence of ATP and 
GTP~S at 4°C did not increase the level of rat ~/-adaptin 
bound (Fig. 4 A, lanes 4 and 5). Upon incubation of ISGs 
at 37°C without cytosol either in the absence or presence 
of ATP, or ATP and GTP-,/S the amount of ,/-adaptin 
bound was reduced (Fig. 4 A, lanes 6-8) to ,-o25% of that 
bound at 4°C. Addition of 2.5 or 5.0 mg/ml rat brain cyto- 
sol in the presence of ATP and GTP"/S resulted in a satu- 
rable increase in the amount of -,/-adaptin bound to the 
ISGs to a level comparable to that detected at 4°C (Fig. 4 
A, lanes 9 and I0). Furthermore, the amount of ~-adaptin 
bound after incubation with rat brain cytosol in the ab- 
sence of GTP-~S (Fig. 4 A, lanes I1 and 12) was similar to 
that detected at 37°C with ATP and GTP~/S alone (Fig. 4 
A, lane 8). These results demonstrate that a discrete num- 
ber of ,/-adaptin-binding sites are present on the ISGs, 
and that at 37°C there is dissociation of the endogenous 
~-adaptin from the ISG membrane and saturable rebind- 
ing of exogenous ",/-adaptin from cytosol, dependent upon 
GTP~/S. In these experiments the behavior of clathrin was 
similar to that of the ~/-adaptin (Fig. 4 A). Incubation of 
ISGs at 37°C without cytosol and GTP~S resulted in the 
dissociation of endogenous bound clathrin from the mem- 
brane. Upon addition of cytosol and GTP',/S clathrin was 
rebound to the membrane (Fig. 4 A). 

To analyze further the nature and requirements for clath- 
rin coat assembly on the ISG, and in particular the binding 
of "v-adaptin, we employed an in vitro assay previously de- 
scribed which exploits the monoclonal antibody 100/3 to 
study the association of exogenous bovine ~/-adaptin with 
isolated Golgi membranes of other species (Stamnes and 
Rothman, 1993). We incubated ISGs with bovine brain cy- 
tosol in the absence or presence of ATP, and the exoge- 
nous bovine ~/-adaptin bound was quantitated by immuno- 
blotting with 100/3. As seen in Fig. 4 B, ~/-adaptin binding 
to ISGs was detected both with and without ATP. These 
results support those of Traub and co-workers (Traub et 

al., 1993) who did not observe an ATP-dependent binding 
of AP-1 to Golgi membranes. To determine if other nucle- 
otides were required, ATP~S, GTP, and GTP~/S were 
added. Addition of GTP~/S resulted in maximum bovine 
~/-adaptin binding to ISGs, on average fourfold over the 
control without GTP~/S. Note the fourfold increase in 
-,/-adaptin binding observed with bovine brain cytosol after 
addition of GTP'yS is comparable to the increase obtained 
using rat brain cytosol and GTP~/S (cf Fig. 4 A, lanes 9 and 
11, and 4 B). Addition of GTP resulted in at most a two- 
fold increase in the binding of ~/-adaptin (Fig. 4 B). A 
similar stimulatory effect of GTP~S has been previously 
described for ~/-adaptin recruitment to isolated Golgi 
membranes (Traub et al., 1993; Stamnes and Rothman, 
1993) and permeabilized cells (Robinson and Kreis, 1992; 
Wong and Brodsky, 1992; Le Borgne et al., 1993). 

Using bovine brain cytosol at a protein concentration of 
2 mg/ml in the presence or absence of GTP'vS, the amount 
of exogenous bovine ~/-adaptin bound was proportional to 
the amount of ISGs added. As expected from Fig. 4 B, 
~/-adaptin binding to ISGs was significantly higher in the 
presence of GTP~/S. Only a minor amount of ~-adaptin 
was detected in the pellet in the absence of ISGs, demon- 
strating that the signaJ obtained is not a result of nonspe- 
cific aggregation and sedimentation of the bovine ~/-adap- 
tin (Fig. 4 C). 

~-Adaptin Can be Labeled with ST0-25 on the 
Membrane of  ISGs Using Immunoelectron Microscopy 

Although no morphologically intact stacked Golgi mem- 
branes were seen in epon sections of the ISG fraction, and 
no sialyltransferase and mannosidase II activities were 
found in the ISG fraction (Tooze and Huttner, 1990, and 
data not shown), it remained possible that the ~/-adaptin 
binding we measured in the ISG fraction was to contami- 
nating fragmented Golgi membranes or other vesicles 
rather than to ISGs. To demonstrate directly that ~/-adap- 
tin is bound to ISGs after incubation with rat brain cytosol 
immunoelectron microscopy was performed using ST0-25. 
Two representative overview sections and a gallery of se- 
lected micrographs are shown in Fig. 5. After incubation 
of ISGs at 37°C with rat brain cytosol and GTP~/S, immu- 
nogold labeling demonstrated that ~/-adaptin was detected 
on the membrane of ISGs. Quantitation of the number of 
gold particles present on the ISG membrane was per- 
formed on ISGs incubated at 37°C with rat brain cytosol in 
the presence of GTP'vS after labeling with either ST0-25, 
or preimmune sera, or ST0-25 preincubated with the GST- 

Table L Quantitation of the Immunogold Labeling of lSGs 

No. of gold particles/ISG 
No. of ISGs No. of ISGs 

counted positive l 2 3 ~>4 

ST0-25 1190 248 151 60 22 15 
ST0-25 pi 997 9 6 3 0 0 
ST0-25 cornp 1125 53 37 15 1 0 

Sections were incubated with either ST0-25, the preimmune sera for ST0-25 (ST0-25 
pi), or ST0-25 preincubated with the GST/3,-adaptin hinge fusion protein (ST0-25 
comp), and processed as described in Materials and Methods. Quantitation of the 
number of gold particles was performed using fields similar to those in Fig. 5, a and b 
as described in Materials and Methods. 
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Figure 6. R e c o n s t i t u t i o n  3,-adaptin b ind ing  to PC12 ISGs  is 
dependent upon mARF1. (A) PC12 ISGs were incubated for 30 
min at 37°C with ATP and increasing amounts of bovine brain 

hinge fusion protein (Table I). Using ST0-25, of  the 1190 
ISGs counted, 21% were labeled, and of  these, ~ 1 5 %  
were labeled with three or more gold particles. 

MSGs incubated under identical conditions with rat 
brain cytosol followed by immunogold labeling with ST0- 
25 showed no specific labeling. Approximately 3% of the 
MSGs had one or two gold particles on their membrane.  
Finally, no other morphologically identifiable structures 
were labeled above background with ST0-25 in the cryo- 
sections, confirming that the signal obtained by immuno- 
blotting is a result of ~-adaptin binding specifically to ISGs. 

T-Adaptin Binding to ISGs Is Mediated by ARF 

The stimulatory effect of GTP~/S on the binding of  ~/-adap- 
tin to ISGs, and the previous results obtained with Golgi 
membranes (Stamnes and Rothman,  1993; Traub et al., 
1993) suggested that A R F  might be involved. To test this, 
we added a myristoylated peptide corresponding to the 
NH2-terminal sequence of ARF1 to the reaction mixture 
while increasing the concentration of the bovine brain cy- 
tosol (Fig. 6 A). At  low cytosol concentrations the addition 
of 100 ~M myristoylated ARF1 peptide ( m A R F l p e p )  
stimulated the ~-adaptin binding ~4-5-fo ld  over the 
~/-adaptin binding observed with the nonmyristoylated 
ARF1 peptide (ARFlpep) .  At  high concentrations of  cy- 
tosol (2-4 mg/ml), the myristoylated ARF1 peptide in- 
creased the ~/-adaptin binding N2-3-fold (Fig. 6 A). The 
addition of an equivalent volume of the solvent or 100 IxM 
myristic acid in D M S O  (data not shown), caused no signif- 
icant change in the ",/-adaptin binding. 

To show directly that A R F  is involved in ~/-adaptin 
binding, the binding assay was reconstituted in a two-step 
protocol using recombinant myristoylated ARF1 (mARF1)  
and an adaptor-enriched pool (Pool I) obtained from bo- 
vine brain cytosol after gel-filtration (Fig. 6 B). Maximum 
~/-adaptin binding was observed when the ISGs were pre- 
incubated with recombinant  mARF1  and GTP~/S followed 
by the addition of Pool I and ATP,  compared to the con- 

cytosol. Synthetic NH2-terminal ARF1 peptides, myristoylated 
(rnARFlpep) or nonmyristoylated (ARFlpep), were added to fi- 
nal concentration of 100 p~M. The amount of bovine ~-adaptin 
bound was determined after sedimentation and immunoblotting 
with 100/3, followed by phosphorimager quantitation. The data 
shown are the average of duplicate values and are normalized to 
the amount of ~/-adaptin bound in presence of the ARF1 peptide 
and 4.0 mg/ml cytosol. (B) PC12 ISGs were incubated for 10 min 
at 37°C with recombinant mARF1 or a noninduced bacterial con- 
trol sample (control) in the absence or presence of either 100 I~M 
GTP~/S or 1 mM GTP. Then, a ~/-adaptin-enriched fraction (Pool 
/) and ATP were added and the incubation was continued for an 
additional 20 min at 37°C. The 7-adaptin bound was determined 
as in A and the data are expressed as percent of maximal binding 
(mARF1 and GTPyS) and represent the average of three or 
more independent experiments done in duplicate. The error bars 
indicate the standard deviation. (C) PC12 ISGs were preincu- 
bated at 37°C with no additions, with 10 ~g/ml BFA, or recombi- 
nant mARF1 and 100 I~M GTP~/S. After 10 min, recombinant 
mARF1 and GTP'yS, or BFA were added as indicated. After an 
additional 10 min at 37°C, Pool I and ATP were added, and incu- 
bated for an additional 20 rain at 37°C. The "y-adaptin bound was 
determined as in A and the data are expressed as percent of con- 
trol ( -BFA) and represent the average of duplicate values. 
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trol. The binding of 3,-adaptin to ISGs using Pool I and re- 
combinant mARF1 was not influenced by the addition of 
[A1F4]-, a known activator of heterotrimeric G-proteins 
(Finazzi et al., 1994), either in the presence or absence of 
ATP and GTP (data not shown). These data demonstrate 
that mARF1 is involved in the binding of ~/-adaptin to 
ISGs. 

Additional data to support the involvement of ARF in 
the ~/-adaptin binding to ISGs was obtained by testing the 
sensitivity of this binding process to BFA. BFA causes dis- 
sociation of both ~/-adaptin and 13-COP, a subunit of COP- 
coats, from Golgi membranes (Klausner et al., 1992). The 
target of BFA is thought to be the guanine nucleotide ex- 
change factor responsible for the exchange of GDP for 
GTP bound to ARF (Donaldson et al., 1991; Helms et al., 
1993; Donaldson and Klausner, 1994). Pretreatment of the 
ISGs with 10 txg/ml BFA before the addition of mARF1 
and GTP~/S resulted in an ~60% decrease in the amount 
of ~/-adaptin bound from Pool I. This decrease in ~-adaptin 
binding to ISGs could be prevented by incubation of the 
ISGs with mARF1 and GTP~S before the addition of 
BFA (Fig. 6 C). 

Binding of  T-Adaptin Requires Components on the 
ISGs Membrane 

To test if the binding of ~/-adaptin to ISGs requires mem- 
brane proteins, or membrane-associated proteins, ISGs 
were pretreated with increasing amounts of trypsin for 10 
min at 37°C, incubated with bovine brain cytosol, and the 
exogenous ~-adaptin binding was determined. As shown 
in Fig. 7 A, pretreatment of the ISGs with 0.5 mg/ml 
trypsin decreased by ~50% the v-adaptin binding to the 
ISGs, and binding was completely abolished by pretreat- 
ment with 1 mg/ml trypsin. These results indicate that a 
membrane-associated protein (or proteins) is required 
which is susceptible to trypsin cleavage. 

To investigate an additional requirement for mem- 
brane-associated proteins ISGs were preincubated with 
0.5 M Tris/HC1 at pH 7.2, to remove the clathrin and asso- 
ciated adaptor complexes from the ISG membrane (Chang 
et al., 1993; Anderson, 1993). After Tris-stripping, virtu- 
ally all of the endogenous ~/-adaptin, revealed by ST0-25, 
and clathrin present on the ISG membrane were removed 
(Fig. 7 B, compare lanes 1 and 6 and 2 and 7) together with 
the small amount or ARF present (Fig. 7 B, lanes 2 and 7). 
Upon addition of bovine brain cytosol to unstripped and 
stripped ISGs, translocation of ~/-adaptin from the cytosol 
to the ISGs was detected (Fig. 7 B, lanes 3 and 8). High- 
Tris-stripping reduced the efficiency with which clathrin 
rebound to the ISG membrane (Fig. 7 B, lanes 3 and 8) as 
previously reported using Tris-stripped plasma mem- 
branes (Moore et al., 1987). 

Interestingly, the amount of ~/-adaptin bound was simi- 
lar for both unstripped and stripped ISGs, suggesting that 
the recruitment of the exogenous ~/-adaptin from cytosol 
cannot be increased by prior removal of the endogenous 
coat components. A similar observation was made after 
treatment of the ISGs with 0.5 M KC1 instead of Tris, i.e., 
no increase in the amount of exogenous -y-adaptin bound 
to the salt-treated ISGs was observed in comparison to the 
untreated controls (data not shown). 

Figure 7. Pertubation of endogenous ISG membrane compo- 
nents required for ~/-adaptin-binding by trypsin treatment and 
stripping with high concentrations of Tris. (A) Before the ~-adap- 
tin binding assay, PC12 ISGs were preincubated for 10 min at 
37°C with increasing concentrations of trypsin (0-1,000 ixg/ml). 
Soybean trypsin inhibitor was added either before the trypsin 
(+STI/+trypsin) or at the end of the preincubation period 
(+trypsin/+STI). The ISGs were then incubated for 30 min at 
37°C with 2.0 mg/ml bovine brain cytosol, ATP, and 100 I~M 
GTP-/S. ~/-Adaptin was quantitated by phosphorimager analysis 
after immunoblotting with 100/3. The data are expressed as per- 
cent of the control without trypsin and are the average of dupli- 
cate values. (B) The PC12 ISGs were incubated for 15 min at 4°C 
without (lanes 1-5) or with (lanes 6-10) 0.5 M Tris/HC1, pH 7.2, 
and then pelleted. The resuspended ISGs were incubated for 10 
min at 37°C with 100 I~M GTP~/S (lanes 1, 2, 6, and 7), recombi- 
nant mARF1 (100 ~g) and 100 I~M GTP'yS (lanes 4 and 9), or 100 
ixM mARF1 peptide (lanes 5 and 10). Finally, 4.0 mg/ml bovine 
brain cytosol, 100 ixM GTP~S and ATP (lanes 3 and 8), or Pool I 
and ATP (lanes 4, 5, 9, and 10), or ATP (lanes 1, 2, 6, and 7) were 
added, and the ISGs were incubated for an additional 20 min at 
37°C. After sedimentation the ISGs were analyzed by immuno- 
blotting. To assess the endogenous level of -/-adaptin with or 
without stripping STO-25 (lanes 1 and 6) was used. In lanes 2-5 
and 7-10, the clathrin heavy chain (CHC), ~/-adaptin, and ARF 
bound to the ISGs was revealed with antibodies TD.1, 100/3, or 
1D9, respectively. Incubations to detect the clathrin heavy chain 
and bovine ~-adaptin on the same blot were performed in a mix- 
ture of TD.1 and 100/3. A representative experiment is shown. 
Note that upon addition of Pool I and the mARF1 peptide a band 
(*) with a molecular weight which is lower than ~-adaptin ap- 
pears (lanes 5 and 10). This band cross-reacts with 100/3 and 
might be a degradation product of ~/-adaptin. 
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Surprisingly, however, using recombinant mARF1 and 
Pool I, ~-adaptin binding to stripped [SGs was drastically 
reduced compared with unstripped ISGs (Fig. 7 B, lanes 4 
and 9). A 3--4-fold reduction in the ~/-adaptin binding was 
also observed after incubation of the Tris-stripped ISGs 
with the Pool I and the mARF1 peptide compared to the 
unstripped ISGs (Fig. 7 B, lanes 5 and 10). These results 
are in contrast to the data obtained using complete cytosol 
and suggest that a component, or components, required 
for maximum -/-adaptin binding are removed from the 
ISG membrane by the Tris-stripping. These components 
would be predicted to be present in the cytosol, but not in 
Pool I or the recombinant mARF1 preparation. 

As shown above the binding of the -/-adaptin to ISGs is 
mediated by mARF1, therefore the component removed 
by Tris-stripping may be directly involved in the ARF 
binding, e.g., the nucleotide exchange factor, or the puta- 
tive ARF receptor. To test this hypothesis we measured 
the amount of ARF present on the ISGs both before and 
after Tris-stripping, and after incubation with either cyto- 
sol or Pool I and recombinant mARF1. The level of en- 
dogenous ARF on the ISGs (see Fig. 7 B, lane 2) was com- 
parable to that detected on TGN membranes and 
significantly higher than that on MSGs (data not shown). 
Incubation of ISGs in the presence of GTP~S and either 
bovine brain cytosol or recombinant mARF and Pool I re- 
suited in a large increase in the level of ARF on the ISG 
membrane (Fig. 7 B, compare lane 2 with lanes 3 and 4). It 
is likely, however, that some of the bound mARF1 we 
measure after incubation is only loosely associated with 
the lipid bilayer and not stabilized by interaction with a 
membrane component (Helms et al., 1993). Control exper- 
iments, done by incubating Pool I and recombinant 
mARF1 at 37°C with GTP~/S without ISGs, confirmed that 
the recombinant mARF1 was not precipitating during the 
incubation (data not shown). The low level of endogenous 
ARF measured on the ISGs was not changed by incuba- 
tion with Pool I and the mARF1 peptide (Fig. 7 B, com- 
pare lane 2 with 5). After Tris-stripping the efficiency of 
ARF recruitment to the ISGs, using either cytosol or Pool 
I and recombinant mARF1 was not significantly affected 
(Fig. 7 B, cf lanes 3 and 8 and 4 and 9). The level of ARF 
bound to the stripped ISGs was not correlated with the 
amount of ~-adaptin bound. These results suggest that al- 
though mARF1 is necessary, it is not sufficient for the 
binding of ~-adaptin to the ISG membrane, and other 
components sensitive to Tris-stripping are required. 

Discussion 

In this study we show that the association of the clathrin 
coat on PC12 cell ISGs is mediated by "y-adaptin. These 
data, together with the requirements for ARF, imply that 
it is the AP-1 complex (~/13'-adaptins) which is involved in 
the clathrin binding to ISGs. The recruitment of exoge- 
nous ~/-adaptin to ISGs is a result of exchange with the en- 
dogenous pool: no significant increase in the total amount 
of -,/-adaptin bound to the ISG membrane compared to 
ISGs kept at 4°C can be observed after addition of cytosol 
and GTP~/S and incubation at 37°C. These results demon- 
strate that the endogenous pool of ~/-adaptin dissociates 

from the ISG membrane to expose a limited number of 
~/-adaptin-binding sites, which are then occupied by the 
added exogenous ~-adaptin. These results are consonant 
with those obtained using Golgi membranes (Traub et al., 
1993). 

The level of both the endogenous ~/-adaptin and clathrin 
on the ISGs decreases upon incubation at 37°C in the ab- 
sence of added cytosolic factors and nucleotides. It is 
unlikely that this decrease is due to the formation of clath- 
rin-coated vesicles during the incubation because the re- 
quirements for clathrin-coated vesicle budding include 
ATP and cytosol (for review see Schmid, 1993). It remains 
a possibility that when the incubation conditions are favor- 
able there may be clathrin-coated vesicle formation in the 
binding assay. We have not yet addressed this point and 
assume any newly formed clathrin-coated vesicles would 
sediment during the assay and contribute to the signal we 
measure; our assay will have to be modified to allow sepa- 
ration of putative newly formed clathrin-coated vesicles 
from the ISGs. 

The data reported here extend our knowledge of the 
clathrin coat on the ISG, and the composition of ISG. The 
ISG is an intermediate in the biogenesis of mature dense 
core secretory granules and has been predicted to have a 
distinct composition compared to the MSG (for review see 
Tooze, 1991), although to date the composition of the ISG 
has not been elucidated by biochemical methods. We have 
shown that ",/-adaptin binding to ISGs requires mARF1 in 
a GTP-bound form, and therefore additional components 
of the ISG might be the guanine nucleotide exchange fac- 
tor, and an ARF receptor. Furthermore, these compo- 
nents may be either inactive or not present on MSGs since 
MSGs do not have clathrin coats, are unable to bind 
~-adaptin, and the MSG fraction contains significantly less 
ARF than the ISG fraction (data not shown). In addition, 
the results obtained with high Tris-stripping suggest that 
membrane-associated proteins required for ,/-adaptin bind- 
ing, and present also in cytosol, may be additional uniden- 
tified components of the ISG. 

Removal of membrane from the ISGs is a prerequisite 
of their maturation which involves changes in the ratio of 
volume to the surface area (Salpeter and Farquhar, 1981) 
as a result of ISG-ISG fusion (Tooze et al., 1991) or a de- 
crease in size of the ISG (Bauerfeind and Huttner, 1993). 
Using sedimentation analyses the change in the size of the 
ISG has been quantitated: it is estimated that the homo- 
typic fusion of three to five ISGs occurs during matura- 
tion, resulting in a size increase of the secretory granule 
core diameter from 80 to 120 nm (Tooze et al., 1991). Our 
hypothesis is that the clathrin coat on the ISG mediates 
the removal of the excess membrane, present as a result of 
ISG-ISG fusion, through the formation of clathrin-coated 
vesicles, and that budding of clathrin-coated vesicles will 
prove to be correlated with the homotypic fusion of ISGs. 
We have calculated based on the known size of the ISG 
core diameter (80 nm) and MSG core diameter (120 nm) 
and clathrin-coated vesicle diameter (50 nm) that approxi- 
mately three ISGs would have to fuse during maturation 
to provide sufficient excess membrane to form one coated 
vesicle. 

While serving to remove membrane from the surface of 
maturing ISGs, clathrin-coated vesicles will remove mem- 
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brane-bound proteins, and, in their lumen, soluble pro- 
teins destined for vesicular transport. This raises the fol- 
lowing questions, (a) which proteins are removed and 
why, and (b) are these proteins responsible for binding the 
-/-adaptin to the membrane? The purpose of this vesicular 
transport step could conceivably be to recycle, or sort pro- 
teins from the maturing ISG. There are three possible des- 
tinations for these vesicles; (a) the TGN, (b) the endo- 
some/lysosome, and (c) the plasma membrane. An example 
of a protein recycled from the ISG back to the TGN might 
be the putative sorting receptor which has been postulated 
to mediate binding either of individual molecules, or ag- 
gregates of regulated secretory proteins in the TGN to ini- 
tiate budding (for review see Burgess and Kelly, 1987; 
Chanat et al., 1992). Examples of proteins sorted from the 
ISG to the endosome could be the M6PR or TGN38. Fi- 
nally, the ISG-derived coated vesicle may be removing 
components destined for constitutive or constitutive-like 
(Kuliawat and Arvan, 1994) secretion from the cell. We do 
not however believe that the ISG-derived clathrin-coated 
vesicles are removing missorted proteins destined for con- 
stitutive secretion: our result obtained by immunoisolation 
of ISGs with ST0-25 shows that there was essentially no 
hsPG, the marker for the constitutive secretory pathway in 
PC12 cells, in the ~/-adaptin positive ISG population. It has 
also previously been demonstrated that the hsPG is sorted 
from the ISG in the TGN (Tooze and Huttner, 1990). 

In the absence of data which conclusively demonstrate 
which proteins initially mediate the binding of ~-adaptin 
to the membrane, and which are transported by clathrin- 
coated vesicles, we favor the hypothesis that in PC12 cells 
it is M6PR and lysosomal enzymes which are being re- 
moved from the maturing ISG, and that this receptor and 
these lysosomal enzymes are partially missorted into the 
ISG during formation in the TGN. Two independent 
pieces of evidence support this proposal. First, it has been 
shown that AP-1 binds to the M6PR in the Golgi complex: 
~/-adaptin binding to the cytoplasmic domain of the M6PR 
is specific for sequences containing a phosphorylated 
serine residue (Glickman et al., 1989; Le Borgne et al., 
1993). Secondly, lysosomal enzymes have been detected in 
the immature secretory granules isolated from the 13-cells 
of the endocrine pancreas, and although it has not been 
shown that M6PR is present in these immature secretory 
granules, the removal of the lysosomal enzymes from the 
ISG is sensitive to tunicamycin which blocks the formation 
of the M6P-recognition sequence (Kuliawat and Arvan, 
1994). 

This assumption does not however mean that the M6PR 
is the -/-adaptin docking receptor in the ISGs. It remains a 
possibility that other transmembrane receptor molecules, 
or membrane-associated proteins which are analogous to 
the putative docking protein (Traub et al., 1995), may bind 
-/-adaptin in a secretory granule specific mechanism. Po- 
tential candidates could include secretory granule mem- 
brane constituents which are only required for maturation. 
It also cannot be excluded that several distinct compo- 
nents, for example a separate receptor for both ~-adaptin 
and ARF, are required: stable association of-y-adaptin 
leading to clathrin coat formation might require regulation 
of these binding sites or even cooperation between the two 
receptors to form an active-binding complex on the ISG 

membrane which could then interact with the protein(s) 
destined for vesicular transport. During secretory granule 
maturation one, or all of these proteins might be removed 
from the ISG membrane by budding of coated vesicles, 
and targeted to another membrane. The trypsin sensitive 
protein(s) and the soluble components removed by Tris- 
stripping remain to be characterized; the identification of 
these components should help elucidate the function of 
the clathrin coat on the ISG. 
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