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Abstract: The unitary dynamics of isolated quantum systems does not allow a pure state to thermalize.
Because of that, if an isolated quantum system equilibrates, it will do so to the predictions of the
so-called “diagonal ensemble” ρDE. Building on the intuition provided by Jaynes’ maximum entropy
principle, in this paper we present a novel technique to generate progressively better approximations
to ρDE. As an example, we write down a hierarchical set of ensembles which can be used to describe
the equilibrium physics of small isolated quantum systems, going beyond the “thermal ansatz” of
Gibbs ensembles.
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1. Introduction

The theory of Statistical mechanics is meant to address the equilibrium physics of macroscopic
systems. Both at the classical and at the quantum level, the whole theory is based on the thermal
equilibrium assumption. Such a physical condition is expressed, mathematically, by saying that the
system is described by one of the so-called Gibbs ensembles [1,2]. The theory has enjoyed a marvelous
success in explaining and predicting the phenomenology of large quantum systems and, nowadays,
we use its results and tools well beyond the domain of physics. However, strictly speaking, this course
of action is justified only in the thermodynamic limit. More realistically, the assumptions of Statistical
Mechanics are believed to be justified on a scale of, say, an Avogadro number of particles N ∼ 1023.
Despite that, both theoretical analysis [3–7] and experimental investigations [8–10] suggest that
Statistical Mechanics is able to describe equilibrium phenomena even in small isolated quantum
systems [11]. In turn, this points towards an “early emergence” of the thermal equilibrium assumption,
already for systems of modest sizes.

This picture results from a large-scale effort of the scientific community to understand
the thermalization mechanisms and provide solid foundations to the emergence of Statistical
Mechanics [12–30]. Borrowing the terminology from Seth Lloyd’s PhD thesis [31], we put all these
works under the name of “Pure States Quantum Statistical Mechanics”. The theory is not yet a coherent
and well understood set of statements, but it is founded on four main approaches: The Quantum
Chaos approach [21–25], the Eigenstate Thermalisation Hypothesis (ETH) [14,32–35], the so-called
Typicality Arguments [36–40], and the Dynamical Equilibration Approach [30]. All these approaches
have a highly non-trivial overlap and their interplay is not yet fully understood.

Moreover, in the last ten years, the will to provide solid foundations to statistical mechanics met
the necessity to understand how thermodynamics is modified at the nanoscale, where size-dependent
fluctuations and quantum effects are not negligible [41–45]. In this work, we use this mindset
and apply it to the equilibrium physics of (small) isolated quantum systems. Building on Jaynes’
Maximum Entropy Principle [46,47], we develop a novel technique to generate progressively better
approximations to the equilibrium state of an isolated quantum system. Using this perspective,
the Canonical Gibbs Ensemble is understood as the first-level of a hierarchical set of ensembles which
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can describe, in a progressively more precise manner, the equilibrium behaviour of isolated quantum
systems. A similar point of view was previously offered, in connection with the dynamics of classically
integrable quantum systems, in Refs. [48,49].

The relevance of our work stems from two main points of view. On the one hand, we are interested
in a better understanding of the equilibrium physics of mesoscopic and microscopic isolated quantum
systems. In particular, we are interested in developing a theory for isolated quantum systems at
equilibrium which goes beyond the thermal assumption. In turn, this will allow us to improve our
understanding of the conditions which lead to the emergence of thermal equilibrium. On the other
hand, because of the large domain of use of Thermodynamics and Statistical Mechanics, the relevance of
this issue goes beyond the realm of physics. For example, Thermodynamical statements are ordinarily
made in Biology and Biochemistry. Relying on such statements implicitly assumes the validity of
some “thermodynamic limit” which might not be justified at the small scale. For this reason, we ask:
How does the picture change when both quantum effects and system-size-dependent fluctuations are
not negligible? Our framework can be used to answer this and similar questions.

2. Isolated Quantum Systems

Throughout the paper, we always deal with quantum systems which can be described with
an Hilbert spaceH of finite dimensions D. Moreover, we assume to deal with a modular system made
by N identical units, each described by an Hilbert space of dimension d. Hence, D grows exponentially
with the size N of the system: D ∼ dN . Now we take a step back and look at the unitary dynamics
of isolated quantum systems, assuming it is generated by a non-degenerate and time-independent
Hamiltonian H, with the following spectral decomposition: H = ∑D

n=1 εnΠn and Πn := |εn〉〈εn|.
Given an initial state |ψ0〉 ∈ H, the solutions of the dynamical problem are given by a one-parameter
(time) family of states |ψt〉 = U(t)|ψ0〉, where U(t) is the unitary propagator U(t) := e−

i
h̄ Ht. Thanks to

the non-degeneracy assumption on H, its eigenbasis {|εn〉} is unique and it provides a basis for the
Hilbert space H. Thus, given |ψ0〉 = ∑n cn|εn〉, if we expand the time-dependent density matrix
ρ(t) := |ψt〉〈ψt| in the energy basis |εn〉:

ρ(t) =
D

∑
n=1
|cn|2 |εn〉〈εn|︸ ︷︷ ︸

ρDE

+ ∑
n 6=m

cnc∗me−
i
h̄ (εn−εm)t|εn〉〈εm|︸ ︷︷ ︸

δ(t)

(1)

we can see that there are two distinct contributions. The first one (ρDE) is called the diagonal
ensemble, and it does not depend on time. This is also the state that we obtain after performing
an infinite-time average:

lim
T→∞

1
T

∫ T

0
ρ(s) ds = ρDE + ∑

n 6=m
cnc∗m lim

T→∞

1
T

∫ T

0
e−

i
h̄ (εn−εm)sds = ρDE + ∑

n 6=m
cnc∗mδn,m = ρDE . (2)

The second one (δ(t)) accounts for the time-dependent fluctuations of ρ(t) around ρDE.
In the energy eigenbasis, the dynamics affects only the phases of the coefficients:

〈εn|ψt〉 = cne−
i
h̄ εnt, leaving their modulus unchanged. Thus, given any initial state |ψ0〉, specified

by its decomposition in the energy basis {cn = 〈En|ψ0〉}, the state will never forget completely about
its initial conditions. There is always a D− 1 number of (linearly independent) conserved quantities
|cn|2 := |〈ψ0|εn〉|2. They are the probabilities of finding the system in the eigenstate |εn〉 after we
measure the energy H and PE :=

{
p(εn) := Tr ρ(0)Πn = |cn|2

}D
n=1 is the probability distribution of

ρ(0) over the eigenvalues of H. It can be easily seen that the whole probability distribution never
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changes in time. Because of that, as shown in Refs. [50,51], if an observable A equilibrates, it will do so
to the predictions of the diagonal ensemble ρDE:

〈A〉DE = Tr AρDE =
D

∑
n=1
|cn|2〈En|A|En〉 . (3)

3. Results

There is a simple connection between ρDE and Jaynes’ Maximum Entropy Principle. The mindset is
as follows. Suppose we are forced to make predictions about the state of a quantum system, given that
we have some knowledge about its state, like the average value of the energy. Statistical Inference
can be used to tackle this issue. The Maximum Entropy principle states that our best guess is the
state that maximises the von Neumann entropy SvN(ρ) := −Tr ρ log ρ, compatibly with the presence
of some constraints {Cn = 0} which represent our state of knowledge about the system. Since we
are interested in addressing the equilibrium properties, it is natural to choose the full set PE of
conserved quantities as constraints. While this is highly impractical, as it requires the knowledge of all
energy eigenstates, it is the correct thing to do as PE provides a complete set of linearly independent
conserved quantities. Therefore, given an initial state |ψ0〉 = ∑n cn|εn〉, our constraints will be
Cn := Tr ρΠn − |cn|2. For each constraint Cn we introduce a Lagrange multiplier λn and then define the
auxiliary function Λ(ρ, {λn}) = SvN(ρ) + ∑D

n=1 λnCn, which can be freely optimized. The result
yields the state ρDE and the associated D Lagrange multipliers {λn}D

n=1 acquire a simple form
λn = 1 + log |cn|2. More details can be found in Appendix A. Here we are also assuming that all
the cn considered are non-vanishing. This means that we are working with an effective subspace of the
whole Hilbert space where we got rid of all the symmetries in the Hamiltonian.

We will now explore the consequences of the fact that the constraints {Cn} are linear functionals
of the density matrix. Because of that, using linear combinations of the Cn does not change the result
of the optimization procedure. In other words, using the constraints {Cn} or linear combinations of
them

{
C˜n
}

does not change the solution. In formulas, for any non-singular matrix M, with inverse
M−1, the auxiliary function Λ(ρ, {λn}) has the following symmetry:

Λ(ρ, {λn}) = SvN(ρ) + ∑
k

λkCk = SvN(ρ) + ∑
n

λ˜nC˜n = Λ˜ (ρ, {λ˜n}) (4)

with C˜n = ∑k MnkCk and λ˜n = ∑k λk(M−1)kn. As long as the transformation M is non-singular,
it can be absorbed in the value of the Lagrange multipliers, applying the inverse transformation M−1.
More details can be found in Appendix A. Such invariance under linear transformation can, and should,
inspire different approximation schemes. In principle, the optimization problem should include the
set of all conserved quantities {Tr ρΠn}. However, this is highly impractical, as it requires the exact
knowledge of all energy eigenstates and their overlaps with the initial state. Nevertheless, depending
on the physical situation under scrutiny, one might be able to choose decent approximation schemes
to obtain a solution which is sufficiently accurate for the required purposes. Thinking about entropy
maximization in a geometric fashion, the entropy landscape is a manifold which can be parametrized
with different coordinate systems. In other words, in the convex set of the density matrices, we are
using different coordinates to describe the very same landscape. Thus, it is natural to expect that
a “suitable” choice of coordinates, adapted to the landscape, can inspire useful approximation schemes.

In fact, this is what we have already been doing in using the thermal ansatz for isolated quantum
systems at equilibrium. To see this, we choose a specific form for the matrix M: The Vandermonde
matrix [52,53] of all the Hamiltonian eigenvalues, Mhk = (VH)hk := (Ek)

h−1. This is non-singular as its
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determinant is det M = ∏1≤n≤k≤D(En − Ek) and we already assumed to deal with a non-degenerate
Hamiltonian. With such choice for the matrix M we have:

C˜n = ∑
k
(VH)nkCk = Tr ρHn −∑

j
|cj|2En

j = Tr ρHn − µE
n . (5)

From the equivalence in Equation (4), we can see that using the full set of conserved quantities
PE is equivalent to using the set of the D statistical moments µE

j := Tr ρDEH j = ∑D
k=1 |ck|2Ej

k of
the energy probability distribution PE. Hence, C˜0 is the normalization of the state Tr ρ − 1 = 0;
C˜1 accounts for the fixed average value of the energy Tr ρH − µE

1 = 0; C˜2 for the fixed average
value of the square Hamiltonian Tr ρH2 − µE

2 = 0, and so on. Such a way of writing the constraints
inspires an approximation scheme that we already know: If we have no information whatsoever
about the energy of the system, we use as constraint only the normalization of the state C˜0 = 0.
The result of the optimization procedure gives the first-level ensemble, which we call γ0. From the
experimental perspective, this corresponds to the situation in which the energy fluctuates so much
that it is meaningless to trust its first moment.

γ0 = e(λ˜0−1)I =
I
Z0

λ0˜ = 1− logZ0 Z0 = D (6)

If the fluctuations are not too wild, we can trust the first moment of PE to give meaningful
information about the system. Therefore, the constrained optimization of the von Neumann entropy
is performed compatibly with the presence of the first two constraints C˜0 = C˜1 = 0. This gives the
first-level ensemble γ1:

γ1 = e(λ˜0−1)Ie(λ˜1−1)H =
e(λ˜1−1)H

Z1(λ˜1)
λ˜0 = 1− logZ1(λ˜1)

∂ logZ(λ˜1)

∂λ˜1
= µE

1 (7)

where Z1(λ˜1) := Tr e(λ˜1−1)H . Here we recognize the Canonical Gibbs’ Ensemble:

γ1 = ρG(β) =
e−βH

Z(β)
Z(β) = Z1(λ˜1) λ˜1 = 1− β (8)

If we are also able to evaluate the fluctuations of the energy around the average µE
1 , we can

include the variance in the set of constraints. Given that we also know the average value of
the energy, this is equivalent to specify the second moment C˜2 := Tr ρH2 − µE

2 = 0. This gives
the second-level ensemble γ2:

γ2 = e(λ˜0−1)Ie(λ˜1−1)He(λ˜2−1)H2
λ˜0 = 1− logZ2(λ˜1, λ˜2) (9)

where Z2(λ˜1, λ˜2) = Tr e(λ˜1−1)He(λ˜2−1)H2
and the constraint equations C˜1 = C˜2 = 0 provide the

following additional relations:

∂ logZ2(λ˜1, λ˜2)

∂λ˜1
= µE

1
∂ logZ2(λ˜1, λ˜2)

∂λ˜2
= µE

2 (10)

Moreover, we also have the following consistencies equations:

∂2 logZ2(λ˜1, λ˜2)

(∂λ˜1)2 =
∂ logZ2(λ˜1, λ˜2)

∂λ˜2
= µE

2 (11)

With respect to the thermal case, given by the first-level ensemble, the use of a Gaussian ensemble
constitutes a novelty which will be explored elsewhere. We now write down the generic solution for
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the n-th level ensemble. In this case, the constrained optimization problem takes into account the
normalization of the state and the first n statistical moments (µE

1 , µE
2 , . . . , µE

n ) of the energy probability
distribution PE:

γn = Exp

[
n

∑
k=0

(λ˜k − 1)Hk

]
=

Exp
[
∑n

k=1(λ˜k − 1)Hk
]

Zn(λ˜1, . . . , λ˜n)
(12)

with

Zn(λ˜1, . . . , λ˜n) := Tr Exp

[
n

∑
k=1

(λ˜k − 1)Hk

]
(13)

The presence of the constraints implies the existence of the following relations:

∂ logZn(λ˜1, . . . , λ˜n)

∂λ˜k
= µE

k k = 1, . . . , n (14)

which can be used to find the value of the Lagrange multipliers (λ˜1, . . . , λ˜n) as functions of the data
(µE

1 , µE
2 , . . . , µE

n ).
Moreover, given the exponential form of the solution, we have the following consistencies

equations:

∂p1+...+pN logZn(λ˜1, . . . , λ˜n)

(∂λ˜k1)
p1 . . . (∂λ˜kN )

pN
= µE

f ({kj},{pj}) where f ({k j}, {pj}) :=
N

∑
j=1

(k j − 1)pj ≤ n (15)

Whenever f exceed n, the relation does not necessarily reproduce the higher moments of PE.
However, if it does, this is an indication that the n-th level ensemble provides a good approximation to
the full diagonal ensemble ρDE.

4. Meaning of the Approximation

Intuitively, the hierarchy of ensembles {γn} provides progressively better approximations to ρDE.
Here we make the statement more rigorous, highlighting three important features of these ensembles.

• First, since we are maximizing the entropy, adding constraints can not increase the optimal value:

SvN(γn+1) ≤ SvN(γn) . (16)

Therefore, the different levels of the hierarchy have a specific order, which is set by the value of
their von Neumann entropy:

log D = SvN(γ1) ≥ SvN(γ2) ≥ . . . ≥ SvN(γD−1) ≥ SvN(γD) = SvN(ρDE) (17)

• Second, given that we are including progressively higher moments of the energy probability
distribution PE, the moment generating function Mn(t) of the n-th level ensemble provides
increasingly better approximations to the moment generating functions MDE(t) of the diagonal
ensemble. These are defined as:

MDE(t) := 〈eiHt〉DE = Tr ρDEeiHt =
D

∑
n=1
|cn|2eiEnt Mn(t) := 〈eiHt〉γn = Tr γneiHt (18)

The Taylor series of Mn(t) is:

Mn(t) =
∞

∑
l=1

∂l MDE(t)
∂tl

∣∣∣∣∣
t=0

tl = 1 + mE
1 t + mE

2 t2 + . . . + mE
n tn +

∂k Mn(t)
∂tk + . . . (19)
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and the first n derivatives of Mn(t) are the same as the ones of MDE(t). For this reason:

Mn(t)−MDE(t) =
∞

∑
l=n+1

(
∂l Mn(t)

∂tl

∣∣∣∣∣
t=0

−mE
l

)
tl (20)

From the physical perspective, this is relevant to provide predictions about the out-of-equilibrium
behaviour of the quantum system. Indeed, the moment-generating function MDE(t) is the fidelity
of the state |ψt〉 at the time t with the initial state: MDE(t) = |〈ψ0|ψt〉| := F(t). For pure states,
the trace-distance T(ρ, σ) := 1

2 Tr
[√

(ρ− σ)2
]

reduces to a simple function of the fidelity:

T(ρ(t), ρ(0)) =
√

1− F(t)2. Hence, F(t) evaluates how much the state at time t becomes
distinguishable from the initial state. We conclude that the approximation scheme proposed
before is clearly able to catch the behaviour of the fidelity at small times, where only the first few
derivatives (up to n) are relevant.

• Third, we now prove that the γn provide progressively better approximation to the diagonal
ensemble ρDE = γD. This is relevant to make predictions about the equilibrium physics, which go
beyond the thermal ansatz. We note that, thanks to the exponential form of the γn, we have:

SvN(γn)− SvN(γD) = DKL (γD||γn) (21)

where DKL(ρ||σ) is the relative entropy DKL(ρ||σ) := Tr ρ log ρ − Tr ρ log σ. Together with
Equation (16), this means that:

DKL (γD||γn+1) ≤ DKL (γD||γn) . (22)

Therefore, the sequence dn := DKL(γD||γn), for n = 1, . . . , D, converges monotonically to zero
as n approaches D. The relative entropy is undoubtedly an important quantity, as it provides
a measure for the distinguishability of two quantum states. Despite that, it is not a metric. Hence,
it does not provide a good definition of distance in the convex set of density matrices. Because of
that, we resort to the trace-distance. In order to prove convergence to the predictions of the
diagonal ensemble, we define the sequence tn := T(γn, γD), for n = 1, . . . , D. The Pinsker
Inequality provides an upper bound to the trace-distance of two quantum states which depends
on the relative entropy:

T(ρ, σ) ≤
√

1
2

DKL(ρ||σ) (23)

Therefore, thanks to the Pinsker inequality and to the fact that tk ∈ [0, 1], the sequence tk converges
to zero as n goes to D:

0 ≤ tk ≤
√

1
2

dk and lim
k→D

dk = 0 =⇒ lim
k→D

tk = 0 (24)

Even though we could not prove that the sequence tk is monotonic, the fact that it is
upper-bounded by the monotonically decreasing sequence of the relative entropies dk is sufficient
to conclude that as n increases, the γn provide increasingly better approximations to the diagonal
ensemble γD = ρDE.
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5. Examples

Now we discuss two simple examples of the proposed approximation scheme. We focus on the
following Hamiltonian model:

H =
L

∑
i=1

gσx
i + hσz

i + J
L−1

∑
i=1

σz
i σz

i+1 − J(σ1 + σL) (25)

where σ
x,y,z
i are the Pauli operator describing local magnetization at the i-th site. In particular, we focus

on the following choice of the parameters: g = 0.9, h = 0.75, J = 1 and we look at two system
sizes L = 4 and L = 10, to show how the technique works. The values of the parameters are
chosen, following Ref. [54], so that the level-spacing statistics of the Hamiltonian spectrum is robustly
non-integrable. The initial state that we consider is always the anti-ferromagnetic state aligned along
the z direction: |ψ0〉 = | ↑, ↓, . . .〉. On the one hand, we diagonalize the Hamiltonian and compute
the diagonal ensemble ρDE via its energy probability distribution pDE(Ej) = |〈ψ0|Ej〉|2. On the other
hand, we can compute the various moments of pDE(Ej) without diagonalizing the Hamiltonian:
µE

k = 〈ψ0|Hk|ψ0〉. The knowledge of the first n moments is then used to set up and solve the
constrained optimization problem, which yields the ensemble γn.

5.1. First Example: L = 4

We start with the L = 4 case, as it is simpler and it can be used to illustrate how the approximation
scheme works. In Figure 1 we show the behaviour of the relative entropy dn = DKL(γD||γn) as n
increases. As proven in the previous section, this is monotonically decreasing and it becomes zero only
when n = D− 1.

0 1 3 5 7 9 11 13 15
n = Number of constrained moments

0

0.05

0.1

0.15

0.2

0.25

0.3

D KL
(

D
||

n)

Figure 1. Relative entropy DKL(ρDE||γn) between γn and ρDE = γD. The diagonal ensemble ρDE is
built from |ψ0〉 = | ↑, ↓, . . .〉 and the eigenstates of the Hamiltonian in Equation (25). As n increases,
we can see that γn provides increasingly better approximations of ρDE.

To get a sense of what is happening, in Figure 2 we plot the shape of the energy distribution
computed from ρDE and γn, at different values of n. It is clear that higher moments encodes the
fine-grained details of the energy probability distribution. Thus, as we progressively constraint more
moments, the n-th order ensemble captures more details of ρDE.
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0

0.1

0.2

0.3

0.4
p(

E n)
1/16 Constrained Moments

True
Max Entropy

-6 -4 -2 0 2 4 6
En

0

0.1

0.2

0.3

0.4

p(
E n)

5/16 Constrained Moments

True
Max Entropy

-6 -4 -2 0 2 4 6
En

0

0.1

0.2

0.3

0.4

p(
E n)

10/16 Constrained Moments

True
Max Entropy

-6 -4 -2 0 2 4 6
En

0

0.1

0.2

0.3

0.4

p(
E n)

15/16 Constrained Moments

True
Max Entropy

Figure 2. Here we compare the shape of the true energy probability distribution (blue dots) with the
maximum entropy distribution obtained with different numbers of constrained moments: 1 (top left);
5 (top right); 10 (bottom left) and 15 (bottom right).

5.2. Second Example: L = 10

Now we turn to the L = 10 case, which is technically more involved, due to the fact that
the dimensionality of the maximization problem is the same as the dimension of the Hilbert space,
thus growing exponentially with the size of the system. Moreover, there is an upper limit about how
many moments our computer is able to take into account. This is due to the fact that the value of the
n-th moment is expected to grow exponentially with n. For example, considering that the spectrum
of our Hamiltonian has boundaries which grow linearly with the size of the system En ∈ (−αL, αL),
with α ∈ O(1), we might have to consider moments which are up to n ∈ O(2L). For L = 10, this means
moments up to n ∼ 103. The expected order of magnitude of these moments is (βnL)2L

, where βn is
some constant −1 < βn < 1. Therefore, irrespectively of what the concrete optimization algorithm is,
there is a limit to the number of moments that we are able to take into account, given a certain size.
Despite that, general informations about the shape of the distribution can always be obtained by taking
into account as many moments as possible. In Figure 3, we plot the behaviour of the relative entropy
between the diagonal ensemble, ρDE, obtained considering as initial state the antiferromagnetic state,
along the x direction |ψx

0 〉 = | ↑x, ↓x, . . .〉, as the n-th ensemble, γn.

0 5 10 15 20 25 30 35
n = Number of constrained moments

0.75

0.76

0.77

0.78

0.79

0.8

0.81

0.82

0.83

D KL
(

D
E||

n)

Figure 3. Relative entropy DKL(ρDE||γn) between γn and ρDE = γD. The diagonal ensemble ρDE is built
from |ψ0〉 = | ↑x, ↓x, . . .〉 and the eigenstates of the Hamiltonian in Equation (25) for system size L = 10.
As n increases, we can see that γn provides increasingly better approximations of ρDE. However, we
notice that only the first two moments provide a significant decrease in the relative entropy.
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Moreover, in order to understand how the entropy-maximization algorithms works, in Figure 4
we compare again the “true” energy probability distribution given by the diagonal ensemble ρDE with
the one given by the n-th ensemble, for increasing values of n. It becomes evident that, as we increase
the size of the system, only the first two/three moments provide a significant amount of information
about the whole probability distribution. This is witnessed by the fact that after n = 2, 3 we observe
a neat plateaux in Figure 3.

-15 -10 -5 0 5 10 15 20
En

0

0.005

0.01

0.015

0.02

0.025

p(
E n)

2/1024 Constrained Moments

True
Max Entropy

-15 -10 -5 0 5 10 15 20
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0

0.005

0.01

0.015

0.02

0.025

p(
E n)

10/1024 Constrained Moments

True
Max Entropy

-15 -10 -5 0 5 10 15 20
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0
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0.015

0.02

0.025

p(
E n)

20/1024 Constrained Moments

True
Max Entropy

-15 -10 -5 0 5 10 15 20
En

0

0.005

0.01

0.015

0.02

0.025

p(
E n)

30/1024 Constrained Moments

True
Max Entropy

Figure 4. Here we compare the shape of the true energy probability distribution (blue dots) with the
maximum entropy distribution obtained with different numbers of constrained moments: 2 (top left);
10 (top right); 20 (bottom left) and 30 (bottom right).

6. Summary and Conclusions

In this paper, we discuss a novel technique to address the equilibrium physics of isolated quantum
systems. The treatment builds upon Jaynes’ derivation of statistical mechanics, through the maximum
entropy principle. We have shown that, in order to obtain precise predictions about the equilibrium
ensemble, we need to know the full set of conserved quantities, which is given by the whole energy
probability distribution PE. Due to the fact that the dimension of the Hilbert space scales exponentially
with the size of the system, this is highly impractical already for microscopic systems of modest size,
as a chain of N ∼ 20 qubits. Because of that, we explored the possibility to generate approximation
schemes based on meaningful truncations of the full set of conserved quantities PE.

We based our treatment on the fact that the most accurate solution, given by the diagonal
ensemble ρDE, contains only constraints {Cn} which are linear functionals. Because of that, we can
use any (non-singular) linear combination of them C˜k = ∑n MknCn and the solution will be the same.
Thinking in a geometric way, this can be understood as using different coordinates to describe the
same entropy landscape. In the second part of the paper we studied a specific example: If we choose as
matrix, M, the Vandermonde matrix of the energy spectrum, Mnk = (Ek)

n−1, we see that specifying the
full set of conserved quantities PE =

{
|cn|2

}
is equivalent to specifying the D statistical moments µE

j
of PE. As previously argued for the general case, this suggests an approximation scheme, based on the
experimental knowledge that we can gather about the energy of the quantum system under scrutiny.
If the energy fluctuates so much that we can not even trust the average value, we use as constraint only
the normalization of the state. This provides the zeroth-level ensemble, called γ0. If the fluctuations
around the average value are not too wild, the first moment provides meaningful information about the
system and we can include it in the constraints. In this case we use the first-level ensemble, γ1, which is
equivalent to Gibbs Canonical Ensemble. Going further, if we are also able to evaluate properly the
fluctuations, we can use the second-level ensemble γ2, which has a Gaussian form. In general, if we
have knowledge of the first n statistical moments of the energy, plus the normalization of the state,
we can use the nth-level ensemble γn (see Equation (12)), which is the exponential of an order-n
polynomial in the Hamiltonian.
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The specific approximation scheme that we presented, based on the knowledge of the moments
of the energy probability distribution, was inspired by the so-called Moments Problem [55–57] and
the maximum entropy approach to tackle it. This technique is well-known within the Statistics
and Information Theory community. Moreover, it has been previously employed in Nuclear
Physics [58–66], to model the density of energy levels (call it g(E)) in Hamiltonian models of nuclei.
However, the analogy is purely technical as there is a key difference: Here we are trying to approximate
a mixed state ρDE, whose energy probability distribution is independent on the density of the energy
levels. While g(E) and p(En) are often summoned together, for example in the thermodynamic limit,
they are clearly independent on each other. On the one side, g(E) is a feature of the Hamiltonian
spectrum which does not depend on the initial state. On the other side, here we are interested in
addressing p(En) = |〈ψ0|En〉|2, which is an initial-state-dependent quantity that specifies how much
an energy eigenstates |En〉 is engaged during the time-evolution. Indeed, if one looks at the results
presented in [59,62,63,67], it appears that a Gaussian-like shape for the energy density is correct in
several cases. Hence, to characterize the behaviour of g(E) only the first two moments seem to be
important. On the contrary, in Figure 3 we see that this is not the case for p(En). While we can see
that the first two moments are “more informative” than others, we are still far away from having a
relative entropy which is sufficiently small. This can be confirmed by looking at Figure 4, where we
can see that if we take into account only the first two moments (as in the top-left panel) we loose
a large amount of detail about p(En). Thus, while we believe that a correct model for g(E) is an
important step to understand the equilibrium properties of isolated quantum systems, especially in
the large-system-size regime, this is conceptually separate from obtaining a decent approximation of
the equilibrium ensemble ρDE, which is the problem we are tackling here.

The choice of using the knowledge of the moments of the energy probability distribution is not
the only possible course of action. Indeed, in principle, the (non-singular) matrix M is completely
arbitrary. Therefore, a meaningful choice for M should be driven by the physical properties of the
system under scrutiny. For example, if we are dealing with a classically-integrable quantum system,
which in the classical domain has an extensive number of local conserved quantities, there will be
linear combinations of the energy eigenstates which provide conserved quantities which are local.
In this case, the knowledge of such conserved quantities can be included in the set of constraints and
it would give rise to the Generalised Gibbs Ensemble (GGE) [68–72], which is currently being used to
study the equilibrium properties of integrable quantum systems.

However, this is not the end of the story. It is clear from the treatment proposed in Section 3
that, in the most general case, the GGE thus defined is only an approximation to the full diagonal
ensemble ρDE. In this case, the approximation scheme is based on the degree of locality of the conserved
quantities which have been included. Indeed, the actual number of conserved quantities is always
exponentially large in the size of the system. In general, using an extensive number of them gives only
an approximation which will work well as long as we are interested only in observables which are not
“too non-local”.

We conclude by mentioning two directions where we would like to expand the present
work. First, the treatment proposed raises a fundamental question about the emergence of thermal
equilibrium. Isolated quantum systems which exhibit thermal equilibrium clearly have the property
that, in the thermodynamic limit, we only need the first one or two moments to make reliable
predictions. Figure 3 goes along with this intuition as it shows that the lowest 2 moments are the
only ones which are “really informative”. Their inclusion among the constraints lowers, significantly,
the relative entropy. This is not true for moments higher than 2, as we can see from the large plateaux

in Figure 3. Since T(ρDE, γn) ≤
√

1
2 DKL(ρDE, γn), the same argument can be applied to the trace

distance T(ρDE, γn), which evaluates our ability to tell apart two states. Because of that, to distinguish
γ2 from ρDE is essentially as difficult as to distinguish γ30 from ρDE. Hence, as far as distinguishability
between γn and ρDE is concerned, there is not much of a difference between n = 2 and n = 30 or 35.
Thus, we focus on γ2, which has a Gaussian energy probability distribution with mean and variance
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fixed by the initial state. In the limit of large system size, thermodynamic consistency requires
the energy fluctuations to be small. In concrete Hamiltonian systems it has been argued [7,73] that,
under very general conditions, the energy per particle has vanishing fluctuations in the thermodynamic
limit: ∆E ∼

√
N so that ∆E

N ∼
1√
N
� 1 when N � 1. This implies that, in the thermodynamic limit,

the probability distribution PE can become so narrow that the first moment might be representative of
the whole probability distribution. This argument is usually invoked in synergy with the Eigenstate
Thermalization Hypothesis to argue for the emergence of microcanonical expectation values [35,36].
For the same reason, in the thermodynamic limit, the Gaussian-shaped energy probability distribution
that we obtain from γ2 can be so narrow that, also thanks to the action of the density of states g(E),
it effectively acts as a microcanonical probability distribution. Further studies to understand how such
“narrowing” effect concretely occurs and how it is related to other approaches are certainly needed.

Second, sufficiently small quantum systems can certainly escape the thermal equilibrium
assumption. The framework developed here can be used to tackle their equilibrium (via the hierarchy
of ensembles) and out-of-equilibrium (via the generating function of these ensembles) properties,
given that the knowledge of a minimum number of statistical moments is available.
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Appendix A. Constrained Entropy Maximization

To solve the constrained maximization problem we exploit the Lagrange Multipliers technique.
In the first case, we have D constraints, given by the set PE of conserved quantities. Hence, the set
of constraints {Cn = 0} is simply: Cn := Tr ρΠn − |cn|2. Introducing a Lagrange multiplier λn for
each constraint Cn, we define the auxiliary function Λ(ρ, {λn}) = SvN(ρ) + ∑D

n=1 λnCn, which can be
freely optimized.

δΛ =
δSvN(ρ)

δρ
δρ +

D

∑
n=1
Cn δλn + λn

δCn

δρ
δρ = 0 (A1)

Variation with respect to the Lagrange multipliers enforces the validity of the constraints.
Variation with respect to the state ρ provides the solution, as a function of the Lagrange multipliers.
This can then be turned into a function of the data PE, enclosed in the definition of the constraints.
Given that:

δSvN(ρ)

δρ
= − log ρ− I δCn

δρ
= Πn (A2)

we obtain

Cn = 0 − log ρeq − I+
D

∑
n=1

λnΠn = 0. (A3)

This yields:

ρeq = e−I+∑D
n=1 λnΠn Tr ρeqΠn = |cn|2. (A4)

From the first equation, we can see that ρeq must be diagonal in the energy eigenbasis. The second
equation fixes these diagonal matrix elements to be |cn|2. Therefore, we obtain ρeq = ρDE. Moreover,
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putting this form back into the first equation, we can find the value of the Lagrange multipliers. Indeed,
using the properties of the projector ΠnΠm = Πnδnm and = I = ∑D

n=1 Πn, the first equation can be
written as:

ρeq = e∑D
n=1(λn−1)Πn = eX =

∞

∑
k=0

Xk

k!
=

D

∑
n=1

∞

∑
k=0

(λn − 1)k

k!
Πn =

D

∑
n=1

eλn−1Πn. (A5)

Using the second part of Equation (A4), we obtain |cn|2 = eλn−1 and therefore λn = 1 + log |cn|2.
Here we can straightforwardly see how the Lagrange multipliers are connected to the data PE enclosed
in the constraint equations {Cn = 0}.

Given the linear nature of the constraints {Cn}, the solution of the optimization procedure is the
same if we use linear combinations of them. In particular, using a vectorial notation for the Lagrange
multipliers~λ := {λn} and the constraints ~C := {Cn} we have:

~λ˜ ·~C˜ = ∑
n

λ˜nC˜n = ∑
n,h,k

λk(M−1)kn MnhCh = ∑
h,k

λkδkhCh = ∑
k

λkCk = ~λ · ~C (A6)

where ~C˜(ρ) := M~C or, C˜n(ρ) := ∑h MnhCh(ρ); ~λ˜ := ~λS−1, or λ˜n = ∑k λk
(
S−1)

kn and M is a real
non-singular matrix. In this way:

Λ(ρ,~λ) = SvN(ρ) +~λ · ~C(ρ) = SvN(ρ) +~λ˜ ·~C˜(ρ). (A7)

This proves that the solution of the optimization problem is the same, even though the specific
form of the constraints and of the Lagrange multipliers is not.
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