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Objectives
This study aimed to investigate time-dependent gene expression of injured human anterior 
cruciate ligament (ACL), and to evaluate the histological changes of the ACL remnant in 
terms of cellular characterisation.

Methods
Injured human ACL tissues were harvested from 105 patients undergoing primary ACL 
reconstruction and divided into four phases based on the period from injury to surgery. 
Phase I was < three weeks, phase II was three to eight weeks, phase III was eight to 
20 weeks, and phase IV was ≥ 21 weeks. Gene expressions of these tissues were analysed in 
each phase by quantitative real-time polymerase chain reaction using selected markers 
(collagen types 1 and 3, biglycan, decorin, α-smooth muscle actin, IL-6, TGF-β1, MMP-1, 
MMP-2 and TIMP-1). Immunohistochemical staining was also performed using primary 
antibodies against CD68, CD55, Stat3 and phosphorylated-Stat3 (P-Stat3). 

Results
Expression of IL-6 was mainly seen in phases I, II and III, collagen type 1 in phase II, MMP-1, 
2 in phase III, and decorin, TGF-β1 and α-smooth muscle actin in phase IV. Histologically, 
degradation and scar formation were seen in the ACL remnant after phase III. The numbers 
of CD55 and P-Stat3 positive cells were elevated from phase II to phase III. 

Conclusions
Elevated cell numbers including P-Stat3 positive cells were not related to collagens but to 
MMPs’ expressions.

Article focus
 Our hypothesis was that there is a time-

dependent alteration of anabolic and cat-
abolic matrix gene expression and cell
distribution in an injured anterior cruciate
ligament (ACL)

Key messages
 Expressions of COL1 and -3 were seen

mainly in the subacute phase, and the
expressions of MMP-1 and MMP-2 fol-
lowed by biglycan, decorin and α-SMA
were seen in the chronic phases

 Stat3-activated cells also existed in
injured ACL mainly in the chronic phases

Strengths and limitations
 We showed the changes of gene expres-

sions of remnant human ACL over time

 The limitations of this study were that a
normal control was lacking and protein
levels were not examined

Introduction
The injured anterior cruciate ligament (ACL)
is considered to exhibit an impaired healing
response and attempts at surgical repair have
not been successful.1,2 The reasons for this
have been attributed to the hostile environ-
ment of synovial fluid.3 In the intra-articular
environment of the ACL, there is no evidence
of tissue-bridging between the femoral and
tibial remnants of the ACL, and this structural
defect is likely to be a key factor in the failure
of the ACL healing.4 Many studies using a
provisional scaffold have been conducted to
improve the results of strategies for ACL heal-
ing; however, the mechanical properties of
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these products were not satisfactory when compared
with the intact ACL.5,6

Besides the structural aspects, cellular factors are also
important for ACL healing. Histologically, the ruptured
human ACL undergoes four phases: inflammation,
epiligamentous regeneration, proliferation and remodel-
ing, and a synovial lining cell layer containing
myofibroblast-like cells expressing α-smooth muscle actin
(α-SMA) is formed on the surface of the ruptured ACL
between eight and 20 weeks after rupture.4 Myofibroblasts
activated by transforming growth factor-β1 (TGF-β1) pro-
mote the formation of scar tissue in wound healing7 and
also in knee arthrofibrosis tissue; myofibroblasts express-
ing α-SMA may be involved in tissue fibrosis.8 It is possible
that myofibroblast-like cells in the synovial layer of the
injured ACL also play an important role in scar tissue for-
mation that can negatively affect the mechanical proper-
ties of the ligament.

The degeneration of the remnant ACL, caused by pro-
teases and enzymes, progresses gradually after injury.9

Previous studies have revealed that higher levels of active
matrix metalloproteinase (MMP)-2 are seen in ACL fibro-
blasts than in those of the medial collateral ligament
(MCL), and may be one of the reasons for the poor heal-
ing response of the injured ACL.10,11 The differences of the
characteristics of ACL and MCL fibroblasts may be due to
the environment of synovial fluid. Interleukin (IL)-6, one
of the inflammatory cytokines, was found to be highly
elevated in synovial fluid from ACL injured knees com-
pared with uninjured controls.12 The IL-6-type cytokines
exert a inflammatory effect through the transcription fac-
tors termed STATs (signal transducer and activator of tran-
scription),13 and Stat3 has been shown to be active in
synovial fibroblasts secreting proteases and enzymes that
degrade surrounding matrix in adjuvant arthritis and
rheumatoid arthritis (RA).14 It is possible that these syno-
vial fibroblasts also exist in the remnants of the ruptured
ACL, leading to further degeneration. 

The objectives of this study were to examine the time-
dependent gene expression for various proteins that con-
tribute to the composition of ACL tissue, its structural
organisation and reaction to injury, and also to evaluate the
remnant ACL histologically in terms of degradation of extra-
cellular matrix and cellular characterisation. Our hypothesis
was that in injured ACL, gene expressions involved in deg-
radation of surrounding matrix are elevated besides increas-
ing Stat3-activated cells, followed by high expressions
related to the subsequent formation of scar tissue.

Materials and Methods
Injured ACL tissue was harvested from 105 patients during
primary ACL reconstruction. There were 38 males and
67 females with a mean age of 24.2 years (12 to 59). The
injured ligaments were transected at their tibial attach-
ment, femoral attachment or adhesive site of the ruptured
end, and these tibial stumps removed en bloc

arthroscopically. The removed stumps were marked with a
suture at the site of tibial transaction. These specimens
were divided into four phases based on the interval from
injury to surgery, according to a previous histological
study4: phase I was < three weeks (n = 20); phase II three to
eight weeks (n = 35); phase III eight to 20 weeks (n = 27);
and phase IV > 20 weeks (n = 23). All specimens were
obtained with informed consent and with the approval of
the Committee of Medical Ethics of our institute.

A total of 16 injured samples were allocated to histological
and immunohistochemical analysis (comprising four in each
group) and another 16 allocated to western blotting test
(four in each group). The remaining 73 injured ACLs were
used for identification of gene expression.
Identification of up- and down-regulated gene expres-
sion during injury using quantitative polymerase chain
reaction (PCR). A total of 73 injured ACLs were used for
mRNA expression analysis. These 73 patients had a mean
age of 23.9 years (12 to 59); 12 were phase I, 27 phase II,
19 phase III and 15 phase IV. Two sections were removed
from each ligament: from the ruptured end and from the
mid substance approximately 1 cm from the bony inser-
tion. In the cases of partial tear, specimens were har-
vested from ruptured bundles in the same way. A total
30 mg of tissue pieces were homogenised in Buffer RLT
(Qiagen, Austin, California) using a Polytron (Kinematica
Inc., Bohemia, New York). Total RNA was isolated from the
samples with an RNeasy Fibrous Tissue Midi Kit (Qiagen)
and 0.5 μg of total RNA was reverse transcribed to com-
plementary DNA (cDNA) using the SuperScript First-
Strand Synthesis System for RT-PCR (Invitrogen, Carlsbad,
California). PCR reactions were performed and monitored
using an ABI Prism 7300 Sequence Detection System
(Applied Biosystems, Foster City, California). The data
were analysed by SDS 2.1 software (Applied Biosystems),
and all the markers were normalised to the reference
gene, glyceraldehydes-3-phosphate dehydrogenase
(GAPDH). The Ct value of each marker was subtracted
from the Ct value of GAPDH to derive ΔCt value. The nor-
malised expression of each marker was calculated as 2-ΔCt

(Applied Biosystems). Primers for human collagen types 1
(COL 1) (Hs00164004_ml) and 3 (COL 3)
(Hs00164103_ml), biglycan (Hs00156076_ml), decorin
(Hs00370385_ml), α-SMA (Hs00426835_gl), IL-6
(99999032_ml), TGF-β1 (Hs00998133_ml), MMP-1
(Hs00233958_ml), MMP-2 (Hs00234422_ml), tissue
inhibitor of metalloprotainases-1 (TIMP-1)
(Hs00171558_ml) and GAPDH (Hs99999905_ml) were
pre-designed by Assays-on-demand Gene Expression
products (Applied Biosystems). These markers were
selected for the study based on their functions that were
suspected to contribute toward ACL tissue composition
and structural organisation15 and reaction to injury.
Histological and immunohistochemical analysis. A total
of 16 ACLs were used for histological and immunohisto-
chemical analysis. The patients from which the samples
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were harvested had a mean age of 22.3 years (14 to 43),
and there were four samples from each phase. After the
ligaments removed en bloc were fixed in 10% neutral
buffered formalin, specimens were embedded longitudi-
nally in paraffin and sectioned. Serial sections of 4 μm
were stained with haematoxylin and eosin (H&E). Next,
tissue sections were stained with primary antibodies to
the macrophage marker CD68 (clone KP1; Dako, Ham-
burg, Germany) at a dilution of 1:100, the fibroblast
marker CD5516,17 (H-319; Santa Cruz Biotechnology, Inc.,
Santa Cruz, California) at a dilution of 1:25, Stat3 (79D7;
Cell Signaling Technology Inc., Danvers, Massachusetts)
at a dilution of 1: 25 and Phospho-Stat3 (Tyr705, D3A7;
Cell Signaling Technology Inc.) (P-Stat3) at a dilution of
1:50 on automated Benchmark system (Ventana Medical
Systems Inc., Tucson, Arizona). Image analysis was per-
formed in ruptured ends and midsubstances with multi-
ple digital photomicrographs (Olympus, Tokyo, Japan) of
sections taken under high-power field. Immunopositive
areas in ten representative sections of each sample were
analysed with ImageJ (National Institute of Health,
Bethesda, Maryland) software.
Western blotting. A total of 16 ACLs were used for west-
ern blotting. The patients from which the samples were
harvested had a mean age of 26.3 years (13 to 56), and
there were four samples from each phase. Samples were
homogenised in ice-cold lysis buffer containing 1%
Nonidet P-40, 140 mM NaCl, 10 mM EDTA (3 Na), 20 mM
Tris-HCl PH 7.4, 1 mM phenylmethylsulfonyl fluoride and
1 mg/ml iodoacetamide. Proteins were quantified
(Bradford; Bio-Rad, Hercules, California) and equal
amounts of protein (15 μg) were separated on SDS-
polyacrylamide gel electrophoresis, transferred to poly-
vinylidine fluoride transfer membrane, and blocked for
1 h at 25°C with PhosphoBLOKER Blocking Reagent (Cell
Biolabs Inc., San Diego, California). The membrane was
then incubated with an appropriate dilution of anti-
phosphorylated Stat3 antibody (Tyr705, D3A7; Cell
Signaling Technology Inc.) and anti-Stat3 antibody
(79D7; Cell Signaling Technology Inc.) overnight at 37°C,
and reacted with enhanced chemiluminescence anti-
rabbit IgG antibody labeled with horseradish peroxidase
(Amersham, Buckinghamshire, United Kingdom).
Immune complex detection was performed using a
Kodak X-AR (Eastman Kodak Co. Scientific Imaging
Systems, Rochester, New York). Semi-quantitative analy-
sis was performed with ImageJ software.
Statistical analysis. Data from gene expression and
immunohistochemical analysis are presented as a median
and a Steel-Dwass test was performed to detect time-
dependent variation of each marker for multiple compar-
isons. Data from western blotting are presented as mean
with standard deviation (SD) and Tukey’s post-hoc test was
performed on the image data to detect time-dependent
variation of protein levels for multiple comparisons.
Statistical significance of was set at p < 0.05.

Results
Pattern of gene expression. There were no significant
differences between the four phases in patient gender or
age. Although there was a wide age range of the patients,
this study found that there was no significant difference
between age and gene expression of the measured sub-
stances (Spearman’s rank correlation coefficient,
p > 0.05). COL 1 was significantly higher in phase II than
in phases I and IV (p = 0.008 and p = 0.009, respectively)
(Fig. 1). COL 3 showed no statistical differences among the
phases. Biglycan was significantly higher in phases II and III
than in phase I (p = 0.039 and p = 0.026, respectively) and
decorin was significantly higher in phase IV than in the
other phases (p = 0.017, p = 0.0005 and p = 0.018, respec-
tively). α-SMA was significantly higher in phase IV com-
pared with phase I only (p = 0.029). IL-6 was higher in
phases I, II and III compared with phase IV (p = 0.011,
p = 0.013 and p = 0.016, respectively). TGF-β1 was signifi-
cantly higher in phase IV than in phases I and II (p = 0.020
and p = 0.031, respectively). MMP-1 and MMP-2 were
higher in phase III compared with phase IV (p = 0.003 and
p = 0.025, respectively). TIMP-1 expression level was
constant throughout all phases.
Histological change and distribution of Stat3-activated
fibroblast-like cells. H & E staining showed that the
encapsulation of the synovial tissue and tissue degrada-
tion were seen at the ruptured end from phase II to III,
and tissue changed to fibrosis in phase IV (Fig. 2a). CD68
positive cells existed in phase I in the ruptured end and
midsubstance, and from phase II, CD68 positive cells
were mainly seen in the synovial layer. Conversely, the
number of CD55 positive cells was higher in phase III than
in other phases in both ruptured end (all p < 0.001) and
midsubstance of the remnant ACL (p < 0.001, p = 0.042
and p = 0.001 for phases I, II and IV) (Fig. 2b). In phase IV,
these cells existed merely in the synovial lining layer of the
ruptured end and were noticeably low in density. Stat3
positive cells as a positive control were also localised
with CD55 positive cells on serial sections. The number
of P-Stat3 positive cells was higher in phase III in both
the ruptured end and midsubstance than in the early
phases (both p < 0.001), being especially prominent in
the synovial lining layer (Fig. 2c). In phase IV, the positive
cells remained in the synovial lining layer, particularly in
the ruptured end. Expression levels of P-Stat3 were higher
in phases III and IV than in phases I and II from the west-
ern blotting analysis (Fig. 3).

Discussion
The present study showed that COL 1 and 3 expressions
were seen mainly in phase II. Conversely, MMPs expres-
sions and the number of CD55 and P-Stat3 positive cells
were highest in phase III among the phases. Expressions
of decorin, α-SMA and TGF-β1 were observed mainly in
phase IV compared with other phases. These results cor-
responded to our hypotheses.
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A time-dependent alteration of anabolic and catabolic
gene expression has been shown after ACL injury in a rab-
bit experimental model,18 and the results of our human
study corresponded in some points and differed in oth-
ers. COL1 and 3 expressions were mainly seen in the sub-
acute phase (phase II). These results were consistent with
the experimental model. High COL1 expression in the
early phase after rupture was also seen in other
studies15,19 and the increase in collagen production
including COL1 and COL 3 early after injury is a typical
cell response during tissue healing.20

In the chronic phase after injury (phases III and IV), the
genetic expression of some proteins changed dramati-
cally. Expression of MMPs, especially MMP-2 was seen
mainly in phase III, suggesting a degradable rather than a
regenerative feature of organisation on a genetic level,
because MMP-2 expression was higher in contrast to
unchanged remained expression of TIMP-1. Furthermore,
expressions of proteoglycans and α-SMA were seen
mainly in phase IV. These results were different from an
experimental study that showed high expression of MMP-
13 and α-SMA at 1 week after ACL injury.18 One of the rea-
sons for these differences might be the differences of
cytokine profiles. First, the present human study showed
that IL-6 expression was seen mainly from phase I to III.
Previous studies confirmed high levels of IL-6 in the syno-
vial fluid in the acute phase after ACL injury12,21 and the IL-
6 type cytokines are an important family of mediators

involved in general inflammation and healing response.13

These results suggested that injured human ACL is chron-
ically inflamed and native tissue healing is delayed com-
pared with other connective tissues. Second, TGF-β1
expression was seen mainly in phase IV. TGF-β1 is a major
stimulator that plays a significant role in both the initia-
tion of fibrotic cascades in skeletal muscle and the induc-
tion of myogenic cells to differentiate into myofibroblastic
cells expressing vimentin and α-SMA in injured muscle.22

Murray et al4 described in a previous study that many of
the epiligamentous and synovial cells encapsulating the
remnants of the ACL contained α-SMA after rupture, and
the results of our study partly correlated with theirs.
Expression of decorin was also significantly elevated in
phase IV. A previous study has shown that increased deco-
rin expression is associated with scar formation.23 The
higher expression of proteoglycans in addition to TGF-β1
and α-SMA suggested fibrotic characteristics in phase IV.

These observed gene expressions raised a new theory
that higher expression of COL 1 is not related to cell num-
ber. CD55 positive cells were significantly highest in phase
III among the phases, but COL 1 expression was lower and
MMPs, PGs, TGF-β1 and α-SMA expressions were elevated.
Therefore, we speculated that increased cells at the
remnant ACL contained several cell types of fibroblast hav-
ing different characteristics. Synovial fibroblast-like cells
appeared to be of fibroblast origin,24 however, the authors
demonstrated that the functional spectrum of these cells

Fig. 1

Box plots showing the relative mRNA expression of collagen type 1 (COL 1), COL 3, biglycan, decorin, α-smooth muscle actin (α-SMA), interleukin-6 (IL-6), trans-
forming growth factor-β1 (TGF-β1), matrix metalloproteinase-1 (MMP-1), MMP-2 and tissue inhibitor of metalloproteinases-1 (TIMP-1). In each box plot the y-axis
represents the normalised ratio, the box the median and interquartile range, the whiskers the 10th and 90th percentiles and ° the outliers. (* p < 0.05, ** p < 0.01).
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showed clear differences from fibroblasts from other
sites.25,26 These cells secrete a variety of cytokines27 as well
as matrix metalloproteinase,28 proteoglycans and arachi-
donic acid metabolites.29 Moreover, another study

indicated that Stat3 may be an important molecule for RA
synovial fibroblast survival, secreting proteases and
enzymes that degrade surrounding matrix.30 Our results
revealed that higher IL-6 expression was seen until phase III
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Figure 2a – haemotoxylin and eosin staining (H & E) and cell distributions positive for CD68, CD55, Stat3 and P-Stat3 of the ruptured end of the ligament in each
phase. Figures 2b and 2c – box plots showing quantification using ImageJ software of b) the CD55 positive area and c) the P-Stat3 positive areas for the ruptured
and mid areas of the ligament for each phase. The box represents the median and interquartile range, the whiskers the 10th and 90th percentiles and ° the out-
liers (*, significant difference (p < 0.01) compared with phases I and II; **, significant difference compared with phases I, II and IV).
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Fig. 2b
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and the number of Stat3-activated cells was elevated in
phase III in not only the synovial layer but also in the mid-
substance of the remnant ACL. It is possible that these cells
triggered by IL-6 expression may produce differences in
healing potential to other extra-articular ligaments. 

Primary repair by suture has been extensively used in
the past but is currently regarded as unsatisfactory.
Strand et al31 observed a 50% percentage of instability
after long-term follow-up of primary ACL repair and the
biological factors are still unknown. Loss of mechanical
signal results in an increase in MMP-13 and α-SMA expres-
sion in the experimental model.18 These data, when com-
bined with the results of the current study, support the
theory that stress deprivation may bring matrix degener-
ation and contraction. However, suture alone or besides
platelet-rich plasma, was not satisfactory in mechanical

properties compared with intact ACL.6 It is possible that
change of fibroblast’s characteristics induced by cyto-
kines might be also responsible for poor healing capacity
of the ACL, especially synovial fibroblast-like cells acti-
vated by IL-6. Short-term regulation of these cells might
reduce MMPs activity and be beneficial if ligament aug-
mentation or primary repair were a treatment option.

One limitation of this study was that a normal control
was lacking. We were unable to obtain intact ACLs from
young people. Second, we examined gene expression
only, and protein levels were not examined in this study.
Therefore, it remains unclear whether Stat3-activated
fibroblast-like cells yielded the variation of the natural
course of ACL after injury. A third limitation was that we
were unable to distinguish Stat3-activated myofibroblast-
like cells from Stat3-activated synovial fibroblast-like cells
immunohistochemically. An in depth study of the origin
and characteristics of each cell type may produce further
understanding of the poor healing potential of the ACL. 

In conclusion, our study revealed that there is a time-
dependent alteration of matrix gene expression after ACL
injury. Expressions of COL1 and 3 were seen mainly in the
subacute phase, and the expressions of MMP-1 and MMP-2
followed by decorin and α-SMA were seen in the chronic
phase. Furthermore, Stat3-activated fibroblast-like cells
also existed in injured ACL mainly in the chronic phase. 
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