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Abstract
Shewanella oneidensisMR-1 is an electroactive bacterium, capable of reducing extracellu-

lar insoluble electron acceptors, making it important for both nutrient cycling in nature and

microbial electrochemical technologies, such as microbial fuel cells and microbial electro-

synthesis. When allowed to anaerobically colonize an Ag/AgCl solid interface, S. oneidensis
has precipitated silver nanoparticles (AgNp), thus providing the means for a surface

enhanced confocal Raman microscopy (SECRaM) investigation of its biofilm. The result is

the in-situ chemical mapping of the biofilm as it developed over time, where the distribution

of cytochromes, reduced and oxidized flavins, polysaccharides and phosphate in the undis-

turbed biofilm is monitored. Utilizing AgNp bio-produced by the bacteria colonizing the Ag/

AgCl interface, we could perform SECRaM while avoiding the use of a patterned or rough-

ened support or the introduction of noble metal salts and reducing agents. This new method

will allow a spatially and temporally resolved chemical investigation not only of Shewanella
biofilms at an insoluble electron acceptor, but also of other noble metal nanoparticle-precipi-

tating bacteria in laboratory cultures or in complex microbial communities in their natural

habitats.

Introduction
Shewanella species are gram-negative facultative anaerobes, members of the class of electroac-
tive bacteria, also known as exoelectrogens [1]. Electroactive bacteria can reduce extracellular
insoluble electron acceptors (IEA), such as insoluble metal oxides and positively poised elec-
trodes, as part of their respiratory chain [1–7]. They are therefore very important for metal
cycling in nature, as they transform insoluble minerals, such as Fe2O3, into bioavailable ones,
such as Fe(II) [4,5,7–12]. Recent fascination with electroactive bacteria has, however, stemmed
from their emerging use as living catalysts in microbial electrochemical technologies (METs),
such as microbial fuel cells (MFC) and microbial electrosynthesis (MES). In primary METs an
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electroactive biofilm is formed on an electrode, to be utilized for electricity production, waste-
water purification, water desalination or the synthesis of chemicals such as alcohols, organic
acids and fuels [1,13–16].

In oxygen-depleted environments Shewanella oneidensisMR-1, a frequently investigated
Shewanella strain, can not only respire soluble electron acceptors, such as nitrate, Dimethyl
sulfoxide (DMSO), fumarate and soluble metal ions [17], but also transfer its terminal respira-
tory electrons outside its outer membrane [6,9,11]. To do so, it employs three mechanisms:
multi-heme cytochromes, nanowires and self-secreted electron transfer mediators (flavins) [18–
23]. Of particular interest for this work are multi-heme cytochromes, which transfer respiratory
electrons from the metabolic chain to adjacent bacteria, biofilm elements or the solid interface
[23–27]. Lately it has emerged that these electron transfer cascades are flexible and that many
of the involved components can play the role of a terminal electron donor [17,23,28]. Unlike
other electroactive species, Shewanella spp. also produce and secrete flavins [23,27,29,30],
which serve for electron cycling between the bacteria and the IEA. Reduced flavins are secreted,
transported to the IEA and become oxidized. Oxidized flavins can then be transported back to
the bacterium and accept more respiratory electrons [30,31]. Flavins are also cofactors of cer-
tain multi-heme cytochromes [23,32–34] and of other biomolecules [35,36]. They have also
been reported to help solubilize IEA [37,38] and to serve as chemotaxis agents for Shewanella
[39]. Therefore, flavins are expected to be particularly pertinent components for the Shewanella
biofilm. As any other bacterial biofilm, Shewanella biofilms are also composed not only of cells,
but to a great extent of extracellular polymeric substance (EPS), the main structural compo-
nents of which are polysaccharides [40,41]. Alginate has been shown to be a common polysac-
charide in EPS of wastewater bacterial communities [42], such as the gram-negative
Pseudomonas aeruginosa [43]. It has been used before as a model EPS constituent for Shewa-
nella cultivation [44]. Apart from polysaccharides, EPS in general and Shewanella EPS in par-
ticular have also been shown to contain cytochromes, flavins and nucleic acids [40,45].

One of the noteworthy properties of electroactive bacteria in general, and of Shewanella spp.
in particular, is that they can precipitate silver nanoparticles (AgNp) when supplied with solu-
ble silver salts in their growth medium [46,47], while still growing in spite of AgNp toxicity
[47,48]. Noble metal nanoparticles, such as AgNp, can be used for Surface enhanced Raman
spectroscopy (SERS), enhancing the Raman signal by up to six orders of magnitude in their
immediate vicinity [49,50]. According to the SERS surface selection rules, only vibrational
modes perpendicular to the particle surface become enhanced [49,50]. The enhancement is
effective up to ca. 2 nm distance from the metal particle surface [49,50]. Silver or gold nanopar-
ticles (AuNp) and roughened surfaces have become increasingly popular for use in SERS of
biological samples, including both macromolecules [51–55] and whole cells [46,55–60].
Roughened Ag electrodes and AgNp/AuNp patterned microscope slides have been used as sup-
port for protein immobilization, cell deposition and biofilm growth [51–53,56,61,62]. Using a
roughened or patterned support provides great surface selectivity, but results in the loss of
accessibility to other areas in the vertical sample axis. An alternative approach for the investiga-
tion of bacteria and biofilms is to add soluble Ag(I) ions (e.g. in the form of AgNO3) to the
growth medium, followed by a reducing agent, such as borohydride or citrate [57,59,60]. Thus
AgNp are formed in the solution, in the biofilm, inside bacteria and on their outer membranes,
providing Raman enhancement in different regions of the sample according to AgNp distribu-
tion [42,57]. It has been shown before that in some cases certain biomolecules, notably flavins,
dominate the resulting signal [57,60,63], due to either adsorption of such molecules onto
AgNp, or the location of AgNp precipitation, depending on the procedure employed. In order
to clarify which biofilm components have contributed to the resulting spectra, some workers
have acquired SERS spectra of the expected pure components under the same experimental
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conditions used for analyzing biological samples, and later compared the pure component
spectrum to the biological sample spectrum [55,57], an approach that we shall also employ
here.

In Confocal Raman microscopy (CRM), as in other types of confocal microscopy (see e.g.
[64,65]), light reflected or scattered by the sample has to pass through a pinhole to be detected,
thus providing spatially accurate detection, eliminating noise from positions outside the focal
plane and improving lateral resolution beyond the light diffraction limit [66,67]. CRM com-
bines confocal microscopy with Raman spectroscopy, resulting in an image where each pixel
consists of a Raman spectrum. Summing over certain frequencies in the Raman spectra, one
can preferentially detect specific vibrational transitions of interest in the image. Like SERS,
CRM has also been gaining interest in recent years as a method of investigation for bacteria
and bacterial biofilms [68–74]. By choosing an appropriate excitation wavelength, confocal res-
onance Raman microscopy can also be obtained [71–73].

In this work we present a new method combining SERS and CRM for the investigation of S.
oneidensisMR-1 biofilms in-situ by surface enhanced confocal Raman microscopy (SECRaM),
using bio-precipitated AgNp, formed by the bacteria as part of their anaerobic respiration pro-
cess. We utilize this capability of Shewanella without resorting to the addition of Ag(I) salts, by
simply allowing the bacteria to colonize a patch of biocompatible cured Ag/AgCl ink [75]. This
way, we can follow the development of the undisturbed biofilm and its laterally resolved chemi-
cal composition over time under continuous anaerobiosis, while avoiding having to open the
setup to add soluble Ag(I) salts or abrasive reducing agents. This approach stands in contrast
also with Mass Spectrometry techniques, recently used for chemical analysis of biofilms and tis-
sues [76–78], where the sample compartment must be opened or at least punctured, and where
the sample is ablated for sampling. In this paper we report not only the temporal and spatial
distribution of cytochromes in the biofilm, but also that of three other major biofilm compo-
nents: flavins, polysaccharides and phosphate.

Materials and Methods

Cultivation
Shewanella oneidensisMR-1 (Zentrum für Angewandte Geowissenschaften, Universitaet Tue-
bingen) was used for all experiments. All growth media were prepared with autoclaved deion-
ized water. All other aqueous solutions were prepared with Milli-Q water (Resistivity> 18
MO�cm). Pure cultures were stored at -80°C in glycerol stock. Liquid pre-cultures were pre-
pared in 100 mL of Luria-Bertani broth (Roth, Karlsruhe, Germany), incubated aerobically 8
hours at 30°C with 150 rpm shaking and harvested during late exponential growth (OD600 =
1.5). Then 500 μL of the pre-culture was transferred into 100 mL of minimal medium [79] with
20 mM sodium lactate (Roth, Karlsruhe, Germany) as the substrate and no additional electron
acceptor unless otherwise stated, and incubated aerobically for 15 h overnight at 30°C with 150
rpm shaking.

Experimental setup
Microscope slide preparation for the different experiments. Standard microscope slides

(Thermo Scientific, Braunschweig, Germany, for SECRaM) or coverslips (TH Geyer, Rennin-
gen, Germany, for SEM-EDX) were used as the sample support in all experiments, as follows:
Ag/AgCl ink EXP 2642–15 (Creative Materials, Ayer, MA, USA) was used to paint a roughly
elliptical patch (ca. 2x5 mm2) onto the substrate. The patch was then pre-cured at 100°C for 30
min and cured at 200°C for one hour. For the non-reducible ink control experiment (see
below), a dielectric polymer ink 113–48 (Creative Materials, Ayer, MA, USA) was used for the
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patch instead of the Ag/AgCl ink, and was cured for one minute using UV light with post-cur-
ing at 160°C for one hour. All ink curing was performed under ambient atmosphere.

Bacterial deposition, setup sealing and its control. S. oneidensisMR-1 bacteria cultivated
in minimal medium in mid-late exponential growth phase (OD600 = 0.6) were diluted to 50%
with fresh minimal medium and deposited by pipette on the cured ink patch and its surround-
ings. A 25x25 mm2 coverslip was prepared by painting a 3 mm thick rim on one of its sides using
a high precision synthetic brush dabbed in high-vacuum silicone grease (Dow Corning, Midland,
MI, USA), as to create a spacer. Then the coverslip was fixed, with the greased side down, to the
support glass, and pressed down to create a thin sealed chamber around the ink patch, containing
a 25–40 μm thick layer of the bacterial suspension. Excess fluids were soaked with lint-free tissue
paper (Kimberly, Koblenz, Germany) and a thick layer of high vacuum grease was used to cover
the cants where the top coverslip met the support glass, to improve the seal and prevent the
inflow of oxygen into the chamber. Six replicates were prepared: three on a microscope slide and
three on a cover slip. To test the seal, the chamber was observed under an optical microscope at
dark field configuration and 10× magnification. If a drift of bacteria and debris could be
observed, this would be indicative of an air leak, and the sample would be discarded.

Control experiments
(i) Abiotic control: to test whether Ag precipitate or light refracting structures would be formed
in the chamber without the presence of bacteria, the chamber was sealed after depositing sterile
minimal medium on the Ag/AgCl patch. (ii) Non-reducible ink control: to test whether the
bacteria would create a biofilm on a patch not containing Ag/AgCl, a patch was prepared using
dielectric polymer ink instead of Ag/AgCl ink, bacteria were deposited on it and the setup was
sealed. (iii) Soluble electron acceptor control: to test whether the bacteria would create a biofilm
on a Ag/AgCl patch in the presence of an alternative electron acceptor, 20 mM disodium fuma-
rate was added to the bacterial culture before depositing the bacteria on the patch. Each control
experiment was performed in duplicates.

Visible microscopy and photography
An Olympus BH-2 optical microscope (Olympus, Hamburg, Germany) with a 10× air objective
and an Olympus XC30 RGB video camera were used to optically follow biofilm growth in all
samples. Images and videos were acquired at the dark field mode, where the bacteria appear as
bright dots over a dark background.

Confocal Raman Microscopy
Surface Enhanced Confocal Raman Microscopy (SECRaM) was performed on a WITec
alpha300 confocal Raman microscope, using a 50 μm pinhole and a Zeiss LD plan-NEO-
FLUAR 20×/0.4 corr air objective with coverslip correction. 20× magnification was used in
order to keep as many bacteria as possible in the focal plane while still resolving individual bac-
teria. The excitation wavelength was 532 nm, with laser power of 3 mW at the focal plane. The
Raman detector was a newton EMCCD camera cooled to -60°C with a 600 g/mm grating. Inte-
gration time was 1 second and lateral resolution 2 pixel/μm. For a typical biofilm sample a time
series was performed, and it was analyzed 1, 3, 6, 9 and 35 days after the samples were sealed.

In order to identify the individual SERS spectra of pertinent components of the S. oneidensis
biofilm, we first performed SECRaM analysis on several component proxies mixed with colloi-
dal silver (Sigma Aldrich, Hamburg, Germany). The proxy component-colloidal silver mixture
was analyzed under the same working conditions as the ones applied for biofilm analysis. The
same excitation wavelength, laser intensity and setup were used, however without a Ag/AgCl
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patch. This was done, separately, for the following expected component proxies: horse heart
cytochrome c (hhcytc) (Sigma Aldrich, Hamburg, Germany) in Phosphate buffer solution
(PBS) (Roth, Karlsruhe, Germany); riboflavin phosphate (Sigma Aldrich, Hamburg, Germany)
in PBS; hhcytc in PBS with excess sodium dithionite (Merck, Darmstadt, Germany); hhcytc in
PBS with excess potassium hexacyanoferrate (III) (Sigma Aldrich, Hamburg, Germany); ribo-
flavin phosphate in PBS with excess sodium dithionite; riboflavin phosphate in PBS with excess
potassium hexacyanoferrate; an aqueous solution of sodium alginate (Sigma Aldrich, Ham-
burg, Germany); pure PBS; PBS with sodium dithionite; and PBS with potassium hexacyano-
ferrate. Sodium dithionite and potassium hexacyanoferrate, respectively, were used to obtain
the reduced and oxidized hhcytc and riboflavin phosphate. Riboflavin phosphate, hhcytc and
sodium alginate have been used as standard proxies for flavins, cytochromes and polysaccha-
rides present in the biofilm, respectively. In the resulting proxy component SECRaM images,
each pixel contained only some of all the Raman bands of the analyzed molecule, since in SERS
the signal intensity is strongly dependent on the distance from the metallic surface and on
molecular orientation, as only modes parallel to surface normal become enhanced [49,53,80].
This is true even for pure compounds if they are non-uniformly oriented, and especially for
macromolecules such as hhcytc and alginate. To overcome this problem, we have averaged
over all signal-containing pixels in each scan, to obtain the proxy component spectra shown in
Fig 1. The peak at 1086 cm-1 in both the riboflavin phosphate and the hhcytc spectra is attrib-
uted to phosphate [81–84]. In Fig 1c two different spectra of sodium alginate appear, averaged
on different signal-containing pixels of the same scan, because when averaging these two spec-
tra, not all peaks are resolved. As seen in Fig 1d, all main expected components have coinciding
peaks. Therefore a special approach had to be employed to analyze the SECRaM data in biofilm
samples, as detailed below.

SECRaM Data analysis
As seen from the individual component spectra (Fig 1), there are many coinciding or semi-
coinciding peaks shared by cytochromes, flavins and polysaccharides. As explained above, in
SERS peak intensity greatly depends on the distance from the surface and on the vibrational
mode orientation [49,50], rendering data analysis algorithms that depend on peak intensity
ratio, such as cluster analysis, not applicable to this type of heterogeneous sample, where the
AgNp size and shape is non-uniform, and the components are anisotropically distributed in
the sample. We therefore had to develop a different method for differentiating between the
four following components analyzed in our sample: oxidized flavins, reduced flavins, polysac-
charides and reduced+oxidized cytochromes. As seen in Fig 1a, reduced and oxidized cyto-
chromes have very few peaks that can be resolved in order to differentiate between the two
redox states, most notably the reduced cytochrome peak at 775 cm-1, absent from the oxidized
spectrum. However, most other reduced and oxidized peaks coincide either with each other or
with peaks of other components expected to be found in the biofilm. For example, the oxidized
hhcytc peak at 1499 cm-1 coincides with a shoulder in the reduced hhcytc spectrum and with a
peak in the alginate spectrum. The reduced hhcytc peak at 1432 cm-1 coincides with an alginate
peak. The oxidized hhcytc peak at 1331 cm-1 coincides with both a shoulder in the reduced
hhcytc spectrum and the alginate peak at 1337 cm-1 as well as its shoulder at 1328 cm-1. And
while reduced hhcytc coincides with its oxidized counterpart only at 926 but not at 903 or 914
cm-1, the alginate peak at 909 cm-1 interferes with the latter two peaks. Therefore we have
treated reduced and oxidized cytochromes together.

To differentiate between the four analyzed components (polysaccharides, cytochromes,
reduced flavins and oxidized flavins), whose Raman peaks coincide in many cases (Fig 1d) the
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following approach was employed: Two types of Raman image were first generated from the
biofilm SECRaM scan acquired on day 6. Type I, unique peaks: the sum of all sum filters for
the peaks of each proxy component, which were removed from any other peaks or shoulders
by at least 4 cm-1; Type II, coinciding peaks of two components: the sum of all sum filters for
the coinciding peaks of each two proxy components i.e. the ones separated by less than 4 cm-1.
These two types of Raman images were then individually binarized by taking the most intense
10% pixels of each image. This thresholding provided optimized chemical maps for all compo-
nents, avoiding over-saturation and excessive coincidence of component-specific pixels. Aver-
age spectra were calculated from these binarized Raman images: one of each type for each
analyzed biofilm component. For each of the four analyzed biofilm components (excluding
phosphate, see below), the average spectra for unique peaks (Type I) were compared with those
for coinciding peaks (Type II). This was performed as follows: (i) The sum of: Type I average
spectrum for component A (e.g. cytochromes) + Type I average spectrum for component B
(e.g. polysaccharides), was compared to the Type II average spectrum for the coinciding peaks
of A and B. (ii) The sum of Type II average spectrum for the coinciding peaks of A and B
+ Type II average spectrum for the coinciding peaks of B and C (e.g. reduced flavins) was com-
pared to the Type I average spectrum of component B. This was done for all component com-
binations. Any peak appearing in the two compared spectra in both (i) and (ii) was assigned to
the respective analyzed biofilm component if it also appeared in the pure proxy component
spectrum. In this way, seven to nine component-specific peaks were assigned to each analyzed
biofilm component. These peaks are clearly marked in Fig 1. For a partial peak assignment list,

Fig 1. SERS spectra of expected biofilm component proxies. Each component was dissolved either in water (Sodium Alginate) or in phosphate buffer
(hhcytc and riboflavin phosphate) and mixed with colloidal silver for Raman surface enhancement. a) reduced (red) and oxidized (blue) hhcytc; b) reduced
(black) and oxidized (olive) riboflavin phosphate; c) two different SERS spectra of sodium alginate; d) spectra of reduced hhcytc, reduced riboflavin
phosphate and sodium alginate overlaid, for comparison.

doi:10.1371/journal.pone.0145871.g001
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see S1 Table. For phosphate, the typical peak at 1086 cm-1 appearing in the riboflavin phos-
phate and the hhcytc spectra was assigned [81–84].

Sum Raman images, consisting of the sum of all sum filters for the final analyzed compo-
nent peaks, were produced for each scan. The top 10% most intense pixels in the resulting sum
images were selected for the binarized chemical map images. 10% has been chosen, as it pro-
vided the clearest images. Lower thresholding has produced over-saturated chemical maps.
The binarized images also served for creating an average spectrum for each individual compo-
nent in the biofilm. SECRaM images summed over 1400–1600 cm-1 were obtained to show the
Raman surface enhancement evolution in the biofilm.

Sample fixation and drying for SEM-EDX
For SEM-EDX, samples on glass coverslip support (0.17 mm thick) were used. To both open
the sample setup and reduce sample size to fit the SEM-EDX sample holder, a circle of ca. 7
mm diameter was drawn using a diamond scribe (TH.Geyer, Renningen, Germany) around
the Ag/AgCl ink patch. Then the glass around the circle was removed and discarded, and the
top coverslip was separated from the support coverslip and positioned face up. The biofilm on
both the top and support coverslips was immediately fixed with 4% glutaraldehyde in cacocly-
date buffer (Electron Microscopy Sciences, PA, USA) and was incubated overnight at 4°C. The
next day, the fixing agent was rinsed off with Milli-Q water and subsequently stepwise solvent-
exchanged with a graded series of acetone/water solutions (30%, 50%, 80%, 90%, 95%, 100%,
each for 20 min). The sample was then critical point dried (Leica EM CPD300) and sputtered
with a 15 nm Cr layer (Leica EM SCD500), following the procedure used by Ray et al [85]. Of
the three replicates prepared for SEM-EDX analysis, 2 were fixed and analyzed seven days after
sealing. One sample analyzed 14 days after sealing originates from an identical experiment pre-
pared from the same strain a few months earlier.

Electron-microscopy and Energy-Dispersive X-Ray Spectroscopy (SEM
and EDX)
The morphology and structure of the samples were investigated by scanning electron-micros-
copy (SEM). A Zeiss Merlin VP field-emission SEM was used. In order to achieve high surface-
sensitivity, the energy of the electron beam was set to 1.5 kV, unless otherwise specified, and
the secondary electron (SE) detector was used. Working distance and beam current in imaging
mode were approximately 1.5 mm and 14pA, respectively. The spatial resolution for imaging
under these conditions was ca. 5 nm.

The SEM is equipped with a Bruker High-speed high-solid-angle XFlash1 FQ5060 QUAD
SDD Detector (BRUKER Nano, Berlin, Germany), enabling a spatially-resolved elemental
composition analysis of samples using energy-dispersive X-ray spectroscopy (EDX). In these
experiments, X-rays are emitted during electronic transitions in atoms, in which tightly-bound
electrons in core shells are expelled by the primary electron beam of the SEM. Owing to the X-
ray energies characteristic to different atoms, EDX added elemental information to electron
microscopy as follows: First, a full X-ray energy spectrum was recorded at each pixel of the
image. Then the three-dimensional EDX data was reduced to a set of images which represented
the spatial distribution of particular elements, at ca. 40 nm spatial resolution. This has been
achieved by plotting the intensities of the X-ray energies of interest on two-dimensional false-
color maps using the Bruker Esprit software library. In this study, electron beam acceleration
of 5 kV was chosen for the EDX experiments in order to conveniently detect silver in the sam-
ples, using the L-alpha line at 2.98 keV. SEMmeasurements were also performed at 5 kV for
comparison. The working distance and beam current in EDX mode were approximately 11

Surface Enhanced CRM of AgNp Producing Shewanella Biofilm

PLOS ONE | DOI:10.1371/journal.pone.0145871 December 28, 2015 7 / 23



mm and 18 pA, respectively. Coinciding SEM and EDX images were superimposed using
ImageJ.

To acquire SEM-EDX images of the bare Ag/AgCl patch, it was subjected to the same fixa-
tion, solvent exchange, critical point drying and sputtering procedures described above. To
compare the SEM-EDX images of the biofilm to those of freshly deposited bacteria, a S. onei-
densis culture in minimal medium (OD600 = 1.0) diluted to 50% in fresh medium was pipette
deposited on the Ag/AgCl patch. However, the chamber was not sealed. Instead, after two min-
utes the patch with the freshly deposited bacteria was subjected to the same fixation, solvent
exchange, critical point drying and sputtering procedures described above.

Results and Discussion

Shewanella oneidensisMR-1 produced AgNp-containing biofilm at an
Ag/AgCl solid interface
The development of S. oneidensisMR-1 biofilms at a Ag/AgCl solid interface has been moni-
tored in time by digital photography, light microscopy, SEM-EDX and SECRaM. The biofilms
have already been visible to the naked eye after three days, and had a brownish hue with a sil-
very luster when tilted in the light (S1 Fig). In Fig 2, a part of the Ag/AgCl patch is shown,
seven days after the setup was closed. In this dark field light microscopy image, the patch is
seen as a dark area, while the microbial cells appear as bright dots. The biofilm can be observed
as a brownish-orange light refracting substance at the patch. The color can be attributed to one
or a combination of the following components, which absorb in the green: AgNp, cytochromes,
and polysaccharides. To confirm that the feature seen in Fig 2b is indeed the result of bacterial
colonization of the Ag/AgCl patch while using it as an electron acceptor, control experiments
were performed (S2 Fig). In the abiotic control no such observations were made, and the Ag/
AgCl patch remained unchanged. In the non-reducible ink control, the bacteria did not survive
and only their debris could be seen, with no visible changes near the polymer patch.

In the soluble electron acceptor control, performed by adding disodium fumarate to the bac-
terial suspension, the bacteria survived and seem to have also precipitated AgNp and agglomer-
ated around the Ag/AgCl patch; however, no light-refractive substance was observed (S2 Fig),
indicating that a biofilm might not have been formed or was not as rich in polysaccharides.
This observation may either indicate differences in biomass production rates due to a different
energetic gain for bacterial growth with fumarate and Ag(I) compared to Ag(I) alone as the ter-
minal electron acceptor; or that the bacteria might have chosen, while still respiring Ag(I) from
the Ag/AgCl patch, not to build structures on it that would constrain fumarate diffusion to the
cells. It has been previously shown that different multi-heme cytochromes in Shewanella are
responsible for electron transfer to a variety of terminal electron acceptors (TEA), including
fumarate, nitrate, Fe(III) and Mn(III/IV) oxides and their complexes, flavins and electrodes
([23,28] and references therein), however they all receive respiratory electrons from one pro-
tein, CymA, and many of them are expressed immediately upon the onset of anoxic conditions.
This is apparently related to the crp gene expression [17]. Their function seems to be dependent
on the small tetraheme cytochrome and/or fumarate reductase, either of which can mediate
electron transfer to all of the abovementioned TEAs [28]. It is therefore clear that Shewanella
can use different terminal electron acceptors in parallel, as observed here. Furthermore, it has
been shown that diffusion within a Shewanella biofilm is restricted, especially near the surface
[86].

To obtain more information about the biofilm, SEM-EDX measurements have been per-
formed on samples opened and chemically fixed 7 and 14 days after sealing the setup. For com-
parison, identical measurements have been performed on cured Ag/AgCl ink patches without
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bacteria and on Ag/AgCl patches with freshly deposited and immediately fixed S. oneidensis in
minimal medium. In the SEM images we could observe the typical topographies of the bare
Ag/AgCl patch and the expected morphology of planktonic cells (Fig 3b and 3c). After imaging
by SEM, the elemental composition of the sample was recorded by SEM-EDX (Fig 3d, 3e and
3f). As seen in Fig 3, sulfur (S) and phosphorus (P) are abundant in the Ag/AgCl ink polymer
matrix, while oxygen (O) and silicon (Si) are abundant in the glass support. Nitrogen could not
be significantly detected in these EDX images, and therefore in the following figures carbon (C)
is used as a marker for bacterial cells. For EDX peak assignment, see S3 Fig.

Using SEM-EDX analysis of the samples from days 7 and 14 we could observe the formation
of an AgNp-containing biofilm at the Ag/AgCl patch (Fig 4). In Fig 4a and 4c, acquired with
1.5 kV electron beam acceleration, the EPS is observed covering the surface and obscuring the
typical Ag/AgCl patch topography. This topography is revealed in the image acquired at 18 kV,
where the electron beam can penetrate deeper, under the EPS contour (Fig 4b). In Fig 4a–4e,
AgNp are seen in their previously documented shapes [87], as also previously reported for
other AgNp-precipitating bacterial species, such as Pseudomonas stutzeri [88] andMorganella
psychrotolerans [89]. In the samples reported here, the most abundant are circular AgNp of
110–190 nm diameter, triangular nanoprisms with a perpendicular bisector of 200–240 nm,
and snipped nanoprisms (oblate unequal hexagons) of 250–400 nm. Prism thickness is ca. 20
nm, corresponding to a 1:10 to 1:20 aspect ratio. At this size-range, plasmon resonance for
both triangular and snipped nanoprisms would be at>700 nm [90,91]. However, as edges
become rounder, plasmon resonance becomes blue-shifted [87] until reaching a maximum
near the excitation wavelength used in our study, 532 nm, as previously observed for semi-
round particles of ca 125 nm [92], or as can be expected of larger but rounder particles, as the
ones reported here. The way different AgNp shapes and sizes correspond to Raman surface
enhancement at different exciting wavelength frequencies has been previously reported [93–
95].

In Fig 4c, acquired at 1.5 kV, the outer membranes of the bacteria, as well as the EPS cover-
ing the Ag/AgCl patch (right bottom corner) are clearly seen, whereas in Fig 4d, the stronger 5
kV electron beam penetrates deeper, revealing the Ag/AgCl patch topography under the EPS,
as well as AgNp found under the outer membrane of the bacteria, possibly in the periplasmic
space. Triangular Ag nanoprisms are particularly easy to spot under the outer membrane of
some bacteria. Similar findings have been reported for other species [88,96]. Some bacteria also
touch AgNp externally. However, most of the AgNp precipitate seen in Fig 4a–4d is located on

Fig 2. Dark field microscopy (x10) of S. oneidensisMR-1 at the Ag/AgCl solid interface. Bacteria appear
as bright dots, and the Ag/AgCl patch is the dark area at bottom right corner. a) 30 min after sealing the setup,
b) 7 days after sealing the setup: a brownish-orange light refracting substance has accumulated at the Ag/
AgCl patch. Scale bar 50 μm.

doi:10.1371/journal.pone.0145871.g002
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the EPS, suggesting that most of the SERS signal will likely originate from EPS components.
This may also indicate that the bacterial Ag(I) reducing activity, i.e. electron transfer to extra-
cellular IEA, is mediated by the EPS and its redox active components, namely cytochromes and
flavins. It has been shown before that current production by Shewanella at an anode depends
on EPS production [97].

After 14 days, both the EPS and many bacteria become completely covered with spherical
AgNp of 60–100 nm diameter as well as rougher aggregates ranging between 140–220 nm,
with surfaces featuring smaller spherical particles of 15–40 nm, spaced 4–6 nm (Fig 4f and 4g,
and S4 Fig). This type of surface roughness has been shown to create considerable Raman
enhancement at 514 nm [98].

AgNp precipitated by S. oneidensis produce Raman enhancement for
SECRaM
A time series of the development of Raman signal summed over 1400–1600 cm-1 in a typical
sample is shown in Fig 5. The entire data series has been acquired under the same measure-
ment conditions. On the left, the Ag/AgCl patch is visible as an area of high intensity due to
Raman enhancement by the silver particles found in the Ag/AgCl patch itself. After 9 days the
Raman intensity on the patch is decreased, and after five weeks a very poor signal is obtained
in this region, possibly due to an excessive accumulation of light refracting molecules, such as
flavins and EPS, hindering detection. On days 1 and 3 no Raman signal is detected outside the
Ag/AgCl patch. However, on day 6 Raman signal hotspots appear where bio-deposited AgNp

Fig 3. SEM-EDX analysis of a Ag/AgCl patch with (b, c, e, f) and without (a and d) freshly deposited S.
oneidensis cells. Left column: SEM images, right column: overlay SEM-EDX images. Color code: Red: Ag,
Cyan: C, Green: O, Magenta: P, Yellow: S, Blue: Si. Yellow bar is 1 μm and applies to all images but d.
Images a and b were obtained at 1.5 kV and c to f at 5 kV, compare with Fig 4. kV stands for kilovolts and
represents the acceleration voltage of the electron beam.

doi:10.1371/journal.pone.0145871.g003
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have reached the adequate size and shape for detecting the surface enhanced Raman signal
when using a 532 nm excitation wavelength. The hotspot pattern changes as the biofilm devel-
ops, as can be seen on days 6, 9 and 35. Please note that an artifact is seen in the images, where
the optical trapping effect exerted by the laser beam results in the dragging of solid or semi-
solid objects, such as AgNp or perhaps even entire bacteria [68,99], in the wet biofilm for a few
pixels, resulting in the appearance of horizontal lines that can clearly be seen in the SECRaM
image.

In Fig 6, larger SECRaM images are shown overlaid on bright field optical-microscopy
images, where Ag-precipitating bacteria and bacterial aggregates are seen as dark spots (com-
pare S1 and S2 Videos, where S. oneidensis bacteria are not seen in bright-field microscopy
until they precipitate Ag). While on days 6 and 9 the Raman intensity hotspots do not coincide
with the locations of such bacteria, on day 35 the most intense Raman signal is localized to bac-
terial aggregates. As seen above (Fig 4), this is explained by the observation that in samples
fixed on day 7 for SEM-EDX, most AgNp were found on the EPS and not on bacterial outer
membranes. In the sample fixed on day 14 the bacteria themselves show dense AgNp precipi-
tates on their outer membranes. This also means that the biofilm chemical composition
obtained by SECRaM will correspond on days 6 and 9 to the EPS and on day 35 to the vicinity

Fig 4. SEM-EDX images of 7 days (a-e) and 14 days (f-g) old biofilms. Scale bar 2 μm applicable for
panels a, b and c (see bar at a) d, and e (see bar at e). For panels f and g scale bar is 3 μm (see bar at g).
Panels a, c and f were acquired at 1.5 kV; d, e and g at 5 kV and b at 18 kV. In EDX images red is silver (Ag)
and cyan is carbon (C). Image e is a superposition of the EDX color maps for Ag and C and a contour image
produced from panel d using ImageJ plugin FeatureJ Edges. From panels a-e it is evident that AgNp in
various shapes and sizes can be found both on the EPS and under the outer membrane of some bacteria
(see text for more details). In panels f and g both the EPS and the outer membrane of some bacteria are
completely covered with roughly spherical AgNp or agglomerations thereof. For a higher resolution segment
of image f, see S4 Fig.

doi:10.1371/journal.pone.0145871.g004
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Fig 5. SECRaM time series of the S. oneidensis biofilm at the Ag/AgCl patch (patch seen on the left): 1, 3, 6, 9 and 35 days after sealing the setup.
The Raman signal is summed over 1400–1600 cm-1. The 20 μm scale bar applies to all images. Intensity scale bar on left. All images normalized to 1000 a.
u., without background subtraction. With time, Raman intensity hotspots develop where Raman-active biofilm components directly touch bio-produced AgNp.
Raman hotspot intensity and distribution change with biofilm development, for discussion see text and Fig 6.

doi:10.1371/journal.pone.0145871.g005

Fig 6. Time series of the S. oneidensis biofilm at the Ag/AgCl patch—surface enhanced Raman signal
overlaid on light microscopy. 6, 9 and 35 days after sealing the setup. Ag/AgCl patch seen as dark area on
the left. Grayscale: light microscopy, bright field, 20×. Black features are bacteria or bacterial aggregates,
which have already precipitated Ag. Before precipitating Ag the bacteria are not visible in bright field, see also
S1–S4 videos. Overlay: SECRaM image summed over 1400–1600 cm-1, intensity scale bar on left, all
images normalized to 1000 a.u., without background subtraction. Yellow scale bar: 20 μm.

doi:10.1371/journal.pone.0145871.g006
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of bacterial aggregates. However, since SERS signal is limited to ca. 2 nm from the AgNp sur-
face [49,50], it is difficult to say whether the signal on day 35 stems from the bacterial outer
membranes or from external components touching the precipitated AgNp.

All through the time series, more Raman intensity is detected near the Ag/AgCl patch,
apparently because the probability of AgNp precipitation outside the patch depends on Ag(I)
diffusion from AgCl particles in the patch to the rest of the biofilm. Since AgCl is very poorly
soluble in water (Molar solubility 1.33×10−5 M [100]), it is also possible that flavins assist in its
dissolution by chelation, as they do in the case of insoluble iron oxides [37,38]. Either way,
since Ag(I) is being constantly consumed by bacterial respiration, the dissolution reaction for
AgCl never reaches equilibrium, and Ag(I) is continuously released into the aqueous phase.

Chemical mapping of MR-1 biofilm using SECRaM
After baseline subtraction of the SECRaM images and assignment of the different components
(see Materials and Methods), intensity maps for each component have been obtained. For visu-
alization and spectral averaging, the most intense 10% pixels in each intensity map have been
chosen, and are shown in Fig 7 as single and superimposed component distribution maps. An
in-situ time evolution of biofilm chemical composition has been obtained. Please note that pix-
els not belonging to the most intense 10% have been omitted, so that component coincidence is
in reality more extensive than shown. Spectra averaged over the 10% most intense pixels for
each component (i.e. the pixels seen in color in Fig 7) are shown in S5 Fig, overlaid with the
spectrum of each pure proxy component (seen also in Fig 1). In the averaged biofilm spectra,
peaks stemming from the pure components appear alongside peaks originating from other bio-
film components coinciding within the same pixel.

Distribution profiles for the different components in the sample are seen in Fig 8. On day 6,
all components but phosphate are detected more intensely closer to the Ag/AgCl interface. On
day 9, only cytochromes are detected more abundantly at the Ag/AgCl interface. On day 35,
only flavins and cytochromes are detected more abundantly at the Ag/AgCl interface. Cyto-
chromes and flavins follow the SERS hotspot distribution the most closely of all four compo-
nents. For cytochromes, this is probably caused by a resonance of the Q-band region (green
light absorption) with the excitation wavelength, which, multiplied with the surface enhance-
ment for both the incident and the scattered light, results in a disproportionately higher
enhancement of its signal [61,80]. Flavins, which absorb at ca. 370 nm and 450 nm [101], are
not in resonance with the excitation wavelength used here, and the larger dependence of their
detection on the SERS hotspot distribution, compared to phosphate and polysaccharides, may
indicate that they tend to attach to AgNp in a favorable distance and/or orientation for detec-
tion using SERS. This observation is also supported by the exceptionally good S/N obtained for
pure riboflavin phosphate mixed with colloidal silver (Fig 1). Flavins and cytochromes are
therefore more abundantly detected near the Ag/AgCl solid interface, however this does not
necessarily indicate that they are actually present there in higher concentrations. On day 35 fla-
vins are detected more intensely than cytochromes, possibly indicating an accumulation of fla-
vins in the biofilm. Cytochromes, being proteins, depend on a living cell to produce them and
prevent them from denaturing, and therefore their concentration in the biofilm is limited by
the number of living cells supported by the biofilm. Flavins, on the other hand, being much
smaller and therefore more stable molecules, once discharged by the living bacterium can out-
live it and be accumulated in the biofilm. Another possible explanation is that with time the fla-
vins accumulate preferentially at the AgNp, thus preventing the enhancement of the
cytochrome signal. Phosphate, a ubiquitous functionality of various biomolecules in both cells
and the EPS [102], has been detected more or less uniformly across the biofilm at all stages (Fig
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8). In contrast, polysaccharides have been first detected more abundantly next to the Ag/AgCl
patch, then spread across the image to the right, and eventually their last distribution peak has
moved out of the chemical map frame, possibly indicating a continued growth of the biofilm,
with further accumulation of EPS in that direction. The oscillations visible in Fig 8, especially
in the profile of the cytochromes, is an indication of the dynamical spatial organization of the
biomass [103,104]. For day 6 the well resolved peaks point to a spatial clustering of the cells
and EPS. As time advances, the biofilm population grows, first in proximity of the Ag/AgCl
patch as can be seen from the enhanced cytochrome signal on day 9, and then the population
becomes more homogeneous by day 35. Similar results have been observed in previously ana-
lyzed samples, produced in identical experiments prepared from the same strain at another
date (an example is shown in S6 Fig).

As explained in the Materials and Methods section, it has not been possible to resolve
reduced from oxidized cytochromes with the method used here. Thus, they were treated as one
single component. However, since the ν15 pyrol breathing peak at 775 cm

-1, typical of reduced
cytochromes [72,105], is missing from the biofilm cytochrome averaged spectrum (S5 Fig,

Fig 7. Chemical maps of a typical AgNp-precipitating S. oneidensis biofilm, produced by SECRaM. Top row: 6 days, middle row: 9 days, bottom row:
35 days after sealing the setup. Mapped biofilm components: Red: cytochromes, yellow: oxidized flavins, magenta: reduced flavins (white: reduced and
oxidized flavins coinciding), cyan: polysaccharides, green: phosphate. Extreme right column is a superposition of all components. Scale bar: 20 μm.

doi:10.1371/journal.pone.0145871.g007

Fig 8. Component profiles, extracted using ImageJ from the chemical maps in Fig 7 and smoothed
using Origin. Teal: polysaccharides; Maroon: cytochromes; Black: reduced flavins; Olive: oxidized flavins;
Green: phosphates; Grey: SERS hotspots, normalized to fit the scale of the other components.

doi:10.1371/journal.pone.0145871.g008
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maroon), one may deduce that most of the Raman signal arising from cytochromes is accounted
for by oxidized cytochromes. This is true for days 6, 9 and 35, and it may indicate that the cyto-
chromes throughout the biofilm were maintained oxidized for the duration of the measure-
ments by electron transfer to Ag(I). However, the dominance of the averaged spectra by
oxidized, rather than reduced, cytochromesmay also have two other explanations: (i) It may
reflect the sensitivity of the UV/vis absorption spectrum of cytochrome to external conditions,
such as pH, ionic strength and surface tension, especially in the vicinity of the excitation wave-
length used here [106]. 532 nm is a wavelength on the cytochrome UV/Vis spectrum that is par-
ticularly sensitive to such conditions, meaning that under the as yet unknown
microenvironmental conditions prevailing in the biofilm at different biofilm development
stages and distances from the solid interface, oxidized cytochromesmay be at a stronger reso-
nance with the exciting wavelength than reduced cytochromes, resulting in a disproportionate
enhancement of the oxidized cytochrome signal in our measurements, which may not indicate
a higher concentration; (ii) Another possibility is that detection of ν15 pyrol breathing mode at
775 cm-1, belonging to the B1g symmetry group, which is thus preferentially enhanced when
the heme plane is oriented perpendicular to the AgNp surface [52,80], is suppressed under the
experimental conditions described here, due to a possible preferential heme-parallel orienta-
tion of AgNp precipitated in the vicinity of cytochromes. Such preferential orientation may be
deduced, for example, from recent X-ray diffraction data of undecaheme cytochrome crystal-
ized in the presence of soluble Fe(III) chelates [23,26].

For flavins it is easier to discern reduced from oxidized, based on vibrational frequencies
(Fig 1), enabling us to report the distribution of reduced vs. oxidized flavins in space and time
(Fig 6). As seen, on day 6 more oxidized flavins were detected, but with time reduced flavins
became more abundant, possibly indicating an increasing difficulty of the bacteria to find an
adequate electron acceptor. This may arise from an increase in biofilm density next to the solid
interface with time [86,107], brought about by the accumulation of cells, cell debris and EPS
during the experiment. Such an accumulation of biofilm components at the Ag/AgCl patch
may inhibit either or both flavin diffusion towards the poorly soluble Ag(I) salt, or Ag(I) diffu-
sion away from the original patch to other parts of the biofilm. In both cases, this would result
in less flavin (re)oxidation and an accumulation of reduced flavins.

Conclusion and Outlook
We have shown that the development and chemical composition of a S. oneidensisMR-1 bio-
film formed at a Ag/AgCl solid interface can be followed in situ using surface enhanced confo-
cal Raman microscopy, without the need to open the system and add soluble Ag(I) salts and/or
abrasive reduction agents, as had been done before to investigate bacteria using SERS. This has
provided the first chance, to our knowledge, to perform a spatially resolved in situ SERS time
series of an undisturbed electroactive biofilm, repeatedly revisiting the same location of the
intact biofilm at a solid interface under permanent anaerobiosis. Furthermore, the use of a
Raman enhancing support, such as roughened electrode or patterned glass slides, has been
avoided, allowing the SERS analysis of positions other than the bottom of the biofilm. This is
also the first time, to our knowledge, that a concomitant chemical analysis of four pertinent
Shewanella biofilm components with both spatial and temporal resolution is performed. In the
future, such measurements can be performed in 3D and with a higher temporal resolution,
supplying a wealth of information about these greatly important but still to be understood bio-
films. Moreover, the application of SECRaM using bio-precipitated noble metal particles can
be extended from Shewanella biofilms to AgNp and AuNp precipitation in bioremediation
[108] and nanoparticle biosynthesis applications, including the removal of Ag(I) from mining
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environments [109] and photographic waste [110], precipitation of AuNp from Au(III) con-
taminated water by Pseudomonas aeruginosa biofilms [111], removal of various metal species
from waste electronic scrap leachate by Desulfovibrio desulfuricans [112], and production of
AgNp by Aspergillus flavus [113],Morganella sp. [89,114], Lactobacillus [96], various cyano-
bacteria [115] and Pseudomonas stutzeri [88]. The method presented here will open new ways
of analysis by chemical mapping over time in 3D and in situ, without disturbing the involved
microorganisms, for a wide range of applications.

Supporting Information
S1 Fig. Digital images of S. oneidensis MR-1 biofilm at the cured Ag/AgCl ink patch.
Images recorded using an LG G3mobile phone back digital camera. Left: the experimental setup
consisting of a cured Ag/AgCl ink patch on a standard microscope slide, where S. oneidensis bac-
teria in defined medium were deposited and then covered with a standard cover slip. Silicone
vacuum grease is used as both spacer and sealant to keep the setup air-tight. Middle and right
columns: biofilm development as seen by the naked eye. On day 1 the Ag/AgCl patch is light
beige in color. With time, it becomes darker, and a brownish biofilm visibly grows around it.
When tilted in the light, the brownish biofilm exhibits a silvery luster, indicating the precipitation
of Ag particles inside it. Sample was photographed 1, 3, 6, and 35 days after sealing the setup.
(PDF)

S2 Fig. Dark field microscopy images (x10) of control experiments. Top: Abiotic control,
performed in the absence of bacteria (setup contains Ag/AgCl patch and minimal medium, but
no bacteria). No changes to the Ag/AgCl patch observed (compare Fig 1). Middle: non-reduc-
ible ink control with dielectric polymer instead of Ag/AgCl ink (setup contains cured dielectric
polymer patch and S. oneidensis in minimal medium, without Ag/AgCl or any supplementary
electron acceptors). The bacteria did not survive and did not settle at the dielectric polymer.
Bottom: Soluble electron acceptor control, where 20 mM fumarate were added to the original
setup. The bacteria survived and aggregated around the Ag/AgCl patch, but no brownish light-
refracting material was deposited (compare Fig 1).
(PDF)

S3 Fig. EDX peak assignment, performed by the Bruker Esprit software supplied with the
Bruker Quantax detector, based on its spectral library. Left: averaged over a 2x2 (μm)2 area
of original Ag/AgCl patch covered with EPS such as seen on the right bottom of Fig 3c–3e.
Right: averaged over a 0.8x0.8 (μm)2 area of a Shewanella bacterium lying directly on the glass
support. Both acquired on a sample fixed 7 days after sealing the setup.
(PDF)

S4 Fig. Higher resolution image of a detail from Fig 3f.
(PDF)

S5 Fig. Raman spectra for pure proxy components vs. biofilm spectral averages. Red, olive,
gray, blue&teal: SERS spectra of pure proxy components with colloidal Ag for hhcytc (reduced+-
oxidized), oxidized and reduced riboflavin phosphate and sodium alginate, respectively, as seen
in Fig 6. Maroon, yellow, black, cyan: the corresponding average spectra for each component in
the biofilm, from day 6, averaged over the 10%most intense pixels where the respective individual
component has been detected. The 10%most intense pixels are seen in the chemical maps at the
top row of Fig 7. In the averaged biofilm spectra, peaks of the corresponding individual compo-
nent can be seen alongside other peaks from other components enhanced within the same pixel.
(PDF)
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S6 Fig. Figures analogous to Figs 6, 7 and 8, for a replicate experiment. Bacteria of the same
strain, prepared and analyzed at another point in time, in the same way described in the article.
The results are very similar to the ones discussed in the text.
(PDF)

S1 Table. Raman peak assignment. Unassigned peaks were detected in pure component anal-
ysis (see Fig 1) but lack assignment in literature. If reduced (red) and oxidized (ox) species can
be differentiated, it is mentioned in the table. For molecular schemes, please see references.
(PDF)

S1 Video. Bright field (20×) videos of the system, 1 day after sealing. The bacteria are not
visible in bright field microscopy.
(AVI)

S2 Video. Bright field (20×) videos of the system, 6 days after sealing.When the bacteria
started to precipitate AgNp they became visible in bright field microscopy. Twitching activity
is seen.
(AVI)

S3 Video. Bright field (20×) videos of the system, 9 days after sealing.When the bacteria
started to precipitate AgNp they became visible in bright field microscopy. Twitching activity
is seen.
(AVI)

S4 Video. Bright field (20×) videos of the system, 35 days after sealing.With time, the bacte-
ria organize in aggregates.
(AVI)
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