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Abstract: (1) Background: The fascinating properties of currently synthesized aerogels associated
with the flexible approach of sol-gel chemistry play an important role in the emergence of special
biomedical applications. Although it is increasingly known and mentioned, the potential of aerogels
in the medical field is not sufficiently explored. Interest in aerogels has increased greatly in recent
decades due to their special properties, such as high surface area, excellent thermal and acoustic
properties, low density and thermal conductivity, high porosity, flame resistance and humidity, and
low refractive index and dielectric constant. On the other hand, high manufacturing costs and
poor mechanical strength limit the growth of the market. (2) Results: In this paper, we analyze
more than 180 articles from recent literature studies focused on the dynamics of aerogels research to
summarize the technologies used in manufacturing and the properties of materials based on natural
polymers from renewable sources. Biomedical applications of these bio-based materials are also
introduced. (3) Conclusions: Due to their complementary functionalities (bioactivity, biocompatibility,
biodegradability, and unique chemistry), bio-based materials provide a vast capability for utilization
in the field of interdisciplinary and multidisciplinary scientific research.
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1. Introduction

The interest in aerogels has been dating for a long time, but products based on such compounds
have increased greatly in the last few decades due to their special properties. Aerogels as solid
materials present a porous network-like nanostructure, which exhibits special characteristics, such
as low density and thermal conductivity, high surface area and degree of porosity, excellent impact
damping properties, flame and moisture resistance, low optical index of refraction, and low dielectric
constant. The aforementioned properties recommend them for various applications in medical,
pharmaceutical, and cosmetics fields, the construction sector, wastewater treatment, environmental
pollution, catalysis, and the food industry [1–12]. On the other hand, high manufacturing costs and
poor mechanical strength are restraining the market growth, with the major challenge in this market
being dust contamination in critical end-user industries, such as aerospace or pharmaceuticals. Even
so, studies on aerogel market mention a growth at a compound annual growth rate (CAGR) between
30.8% and 31% over the forecast period 2017–2023, while the aerogels for the personal care market, for
example, will register a 26.8% CAGR in terms of revenue, whereas the publisher expects the market
value to reach a CAGR of around 9% during 2019–2024 [13,14].

Aerogels are materials obtained by replacing the solvent in the meshes of a gel network with
air. This replacement is carried out during the drying process, which can be done by supercritical
drying, but ambient pressure drying was also attempted. Aerogels are made up of about 95% air or
gas by volume and are therefore very light in weight and have high porosity presented in mixtures of
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mesopores, micropores (<2 nm), and macropores (>50 nm), with an exceptional internal surface area,
depending on the reaction conditions [15,16].

Aerogels were first reported by Kistler in 1931 [17]. Although it has been made clear since
then that these materials open up new opportunities, the complexity of the obtaining process has
restricted their development. The researchers returned to them only after a few decades, when the
evolution of the sol-gel method was combined with the supercritical extraction technology. Despite
these limitations, a research effort in the development of aerogels was recently registered due to their
special characteristics (Figure 1) [18–22]. It should also be emphasized that these defining features have
prompted NASA to use silicone-based aerogels for space missions. Moreover, polyamide aerogels
and ultra-light cross-linked aerogels (X-Aerogels) have also been researched by NASA because of
their distinct properties: These materials have very good mechanical properties, high porosity, and,
although they have a very low density, are 100 times stronger [16,23].
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Aerogels can be divided into two broad categories, namely inorganic and organic, each category
being further divided according to the nature of the materials used in the design of the gel structure.
(Figure 2) [25]. Of these, biodegradable and biobased polymers are of increasing pursuit, as the use of
these compounds can be an alternative for reducing the impact on the environment [26]. The interest
towards these materials is generally presented interdependently and connected with the synthesis
routes of the biopolymer aerogels. Their possibilities of functionalization with defined strategies
provide them with specific properties in interdependence with their future applications [3]. Thus,
polysaccharide-based aerogels have been classified in relation to their applications in environmental
engineering, buildings, medical practice, packaging, and electrochemistry, as well as subsequent
approaches [11].
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Usually, bio-based aerogels are produced from renewable resources, such as sugar cane, proteins,
starches, and plant oils. Moreover, biopolymers (such as chitosan, alginate, pectin, lignin, cellulose,
protein, etc.) have already been successfully used for the preparation of aerogels, with specific
characteristics suitable for biomedical applications, such as tissue engineering, regenerative medicine,
and drug delivery systems [27]. As an alternative to the conventional organic solvents used as templates
for porous materials, ionic liquids (ILS), also known as “green solvents”, are frequently used in the
manufacturing of aerogels based on polysaccharides. ILS are organic salts that are liquids at room
temperature, with high thermostability and electric conductivity, and are environmentally-friendly,
exhibiting easy recyclability [28]. As the dissolution of some polysaccharides in organic solvent or water
is the major disadvantage that can hinder their utilization in obtaining aerogels for medical applications,
ILS can provide the most needed processing platforms of these biopolymers as high added-value
materials. Moreover, the combination of green solvents, such as ILS, used in the dissolution of
polysaccharides, together with the utilization of an environmentally-friendly manufacturing technique,
such as supercritical fluid (SCF) technology, which can easily be adapted to extract the ILS, has enabled
the development of various porous bio-based aerogels. Thus, polysaccharides, such as chitin [28],
cellulose [29–31], starch [32], or lignin [33], have been used to obtain aerogels with different degrees of
porosity using ILS. Moreover, ILS, such as 1-allyl-3-methylimidazolium chloride (AMIMCl), contribute
to the gelation of cellulose, leading to the formation of nanoporous materials with a uniform structure
and high degree of flexibility [31]. On the other hand, one of the physical properties of ILS that can
influence the surface area of the materials is the melting point. Lopes et al. have highlighted in their
study the influence of such a property on preparing porous cellulose-based aerogels. They observed
that when ILS with lower melting points, such as 1-ethyl-3-methylimidzolium acetate (EmimAc)
or 1-ethyl-3-methylimidazolium diethyl phosphate (EmimDEP), were utilized, aerogels with higher
surface areas were formed [34].

Although a lot of reviews have been recently published on the topic of obtaining and applicability
of aerogels, this type of literature is beneficial, given the multitude of articles on this subject that appear
at an extremely intense rhythm, but also due to the innovative aspects that underlie the obtaining of
these materials.

In this paper, about 190 articles from recent literature and studies on the dynamics of aerogel
research were reviewed to summarize the technologies used in the manufacture and properties of the
materials based on natural polymers from renewable sources. Additionally, the applications in the
biomedical field of these bio-based materials were also introduced.
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2. Methods of Preparation:

Generally, methods for obtaining bio-based aerogels are based on the mixing of precursors,
followed by a gelling process and, the most important step, the elimination of the pore filling solvents
from the wet gels, without substantial reduction of the volume or compaction of the network. This is
usually accomplished by converting the pore filling solvent into a supercritical fluid that is slowly
released as a gas. This process allows aerogels to retain the structural form of their wet gel precursors
(Figure 3).
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In the context of multiple possibilities of aerogel applicability, the need to tailor the aerogel
properties to meet application-driven requirements has arisen, for example modulation of the pore
structure, surface modification, various coating, and post-treatments, including finding alternative
sources for raw materials and precursors [6].

Another direction of investigation was dedicated to the formation of the organic–inorganic hybrid
networks in order to improve the mechanical resistance and flexibility of the aerogels. This method
was successfully applied to siloxane materials [2,35–38]

3. Drying Procedures for Obtaining Aerogels

An essential step in the process of obtaining an aerogel is the drying procedure, the
morphology, porosity, and structural integrity of the final structures, depending entirely on this
phase. When conventional drying methods are used, capillary pressure can induce the collapse
and cracking of the gel pore structure. For this reason, other drying methods were utilized, such
as supercritical drying (using alcohol, acetone, or CO2), ambient pressure drying, freezing drying,
microwave drying, and vacuum drying [12].

3.1. Supercritical Conditions

Supercritical (sc) drying consists of heating the wet gel in a closed container until the temperature
and pressure exceed the critical temperature and pressure of the liquid trapped in the pores inside the
gel. As a result, the liquid and vapor phase became indistinguishable and no capillary forces appeared.
After the release of the gas, followed by the cooling of the material, the aerogel was removed from
the autoclave. In sc conditions, the liquid/gas surface tension was 0, because there were no longer
liquid/gas interfaces. Drying by scCO2 can protect the gel structure and produce materials with a low
shrinkage rate, a smaller pore size, and a higher specific surface area [39]. By using this method, the
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nanometer-scale features and pores were preserved, in some cases leading to thermal conductivities
lower than those of air.

A major disadvantage of sc drying is the time-consuming procedure [12]. Moreover, significant
quantities of solvents and relatively expensive supercritical gas processing are required, which add costs
and a possible environmental impact during the manufacturing stage [40]. Supercritical drying requires
specific conditions that differ depending on the solvent used. Thus, for example, when the solvent is
water, the required critical temperature (Tc) is about 374 ◦C and the required critical pressure (Pc) is
about 22 Pa. In contrast, ethanol requires a Pc of about 6.3 Pa and a Tc of about 243 ◦C [41]. Supercritical
drying of carrageenan, chitin, alginate, chitosan, cellulose, and agar gels is described, which combine
renewable feedstocks with “green” carbon dioxide processing. Berglund used sublimation instead
sc by producing an aqueous dispersion of cellulose, and the solvent exchanged was further with
tert-butanol, the product being then supercritically dried [40]. Compressive moduli of 35–2800 kPa
were obtained for flexible aerogels of 0.015–0.105 g/cm3 (specific moduli of 2–27 MPa·cm3/g) [42,43].

Carbon dioxide under pressure (5 MPa) was also used for ionic cross-linking of amidated pectin [4].
The obtained aerogels were ultra-porous with a low density (up to 0.02 g/cm3), had a high specific
surface area (350–500 m2/g), and had a high volume of pores (3–7 cm3/g for pores less than 150 nm).

In the context of using biopolymers for aerogel formation, which includes exploitation of their
entire potential, a lot of studies were performed concerning the production times and costs reduction
to facilitate the scale-up of aerogel making [44].

At the same time, to reduce the price of aerogels, several strategies for simplifying the
manufacturing processes were proposed. In this context, supercritical drying was replaced
by freeze-drying or ambient pressure drying as cheaper and more environmentally-friendly
strategies [16,45–50].

3.2. Ambient Pressure Drying

One of the methods implemented for industrial purposes is ambient pressure drying as it is a
simple technique that allows energy saving. Thus, organic aerogels were obtained using a sol-gel
process followed by solvent exchange with typical solvent (such us acetone or ethanol) and then dried
under an ambient pressure condition. However, evaporation of the liquid from the hydrogels under
ambient conditions can cause major shrinkage or form solid films without porosity [12].

3.3. Freeze-Drying (Lyophilization)

Freeze-drying is a procedure of sublimation of the solid, usually frozen, water from the pores
of a wet precursor. In this method, the liquid from the wet gel is first frozen and then eliminated by
sublimation at low pressures. The resulting gels, called cryogels, are generally higher in density and
lower in surface area as compared to aerogels (porosity of up to 80% and only half of the inner surface of
an aerogel). This is mainly due to the development of large ice crystals during the formation of the gel
network during the freezing process, which leads to a proliferation of the number of macropores and
volume shrinkage. In contrast, compared to the aerogels synthesized by hot-drying or vacuum-drying,
cryogels show smaller shrinkage and narrower pore size distribution.

The benefits of the freeze-drying process, which is a simple, more economical and
environmentally-friendly process, are derived from the use of water as solvent and the simplicity of
the drying process, as well as the possibility of being used for bio-based polymers, such as casein,
pectin, alginate, gelatin, hyaluronic acid, and cellulose. The disadvantages of this method are the long
processing time, the change in volume when the water is frozen, which can sometimes produce the
collapse of aerogels, and high energetical consumption. The networks obtained show the thickness
and spacing at the micrometric scale, with better thermal and mechanical properties than those of
traditional polymeric foams [39].



Pharmaceutics 2020, 12, 449 6 of 31

3.4. Other Methods

(a) Other methods, such as microwave drying, have also been used to obtain aerogels with high
surface area and suitable porosity. Aerogels obtained by this procedure show comparable structures,
but with more small-sized interconnected macropores, to those prepared by freeze-drying. Moreover,
this is a faster technique with promising results [12].

(b) Another method is to cut the jet for the production of spherical biopolymer particles.
This method was developed by Preibisch’s group [51]. The researchers used solutions of amidated
pectin, sodium alginate, and chitosan of 1–3 wt. % as precursors for particle production by jet cutting.
The obtained gel particles were subjected to solvent exchange in ethanol, followed by supercritical
drying. Particles of aerogel with a large surface area of 500 m2/g were obtained, with good adsorption
stability and capacity.

4. Bio-Based Aerogels

In the 21st century, a new generation of aerogels based on biomass was developed. These materials
have been called bio-aerogels and are generally prepared by (i) dissolving biopolymers (such as
polysaccharides or proteins) and (ii) gelling the solution (in some cases this step is omitted), followed
by (iii) scCO2 drying. Since, in most cases, the polymer solvent is not miscible with CO2, a solvent
exchange step is required. This stage usually leads to the coagulation of the polysaccharides; however,
due to the rigidity of the chains, the polymer does not collapse and results in a tridimensional (3D)
network [52].

Polysaccharides are considered to be key elements in the construction of biomaterials for life
sciences (for example, food, cosmetics, medicines, and pharmaceuticals). The biocompatibility and
biodegradability of these biopolymers, as well as the variety of chemical functionality they possess,
makes them promising carriers for drug delivery systems. Polysaccharides are known for their ability
to self-assemble or self-order into certain physical structures or forms. In this regard, these biopolymers
form gel-like structures in aqueous solutions of certain concentrations. This ability was successfully
explored in the formation of aerogels, cryogels, or xerogels. Polysaccharide aerogels (Table 1) are very
porous (the porosity varies between 90 and 99%) and lightweight, with a large surface area capable of
providing improved drug bioavailability and drug loading capacity [12].

Table 1. Biobased aerogels.

Biobased Aerogels References

Cellulose-based aerogels [12,23,25,27,39,53–61]
Lignin-based aerogels [62–68]
Pectin-based aerogels [4,26,68–71]

Alginate-based aerogels [3,13,72–84]
Starch-based aerogels [85–91]

Chitosan-based aerogels [12,92–103]
Protein-based aerogels [7,26,104–118]

In the context of using polysaccharides for aerogel preparation owing to their special properties
(which include biodegradability, biocompatibility, bioactivity, non-toxicity, environmental friendliness,
low processing costs, and the presence of multiple functional groups, such as hydroxyl, amino,
and carboxylic acid groups on their backbones capable of functionalization), complex aerogels
(ChiNC/TCNF/CGG aerogels) were prepared from nano-polysaccharides, namely chitin nanocrystals
(ChiNC), 2,2,6,6-tetramethylpiperidinyloxy (TEMPO)-oxidized cellulose nanofibers (TCNF), and
cationic guar gum (CGG), by following a facile freeze-drying method and using glutaraldehyde
(GA) as a cross-linker [49]. The complex was further modified with methyltrichlorosilane (MTCS)
for obtaining a compound with superhydrophobicity/superoleophilicity to be used for oil–water
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separation. The modified complex aerogel was tested for continuously separate oil from water with
the assistance of a vacuum setup, and it maintained its high absorption capacity for 10 cycles.

4.1. Cellulose-Based Aerogels

The production of aerogels based on low-cost biomass precursors has recently gained interest
both academically and commercially, due to the range of economic and chemical advantages. A variety
of raw materials can be used for the manufacture of aerogels. The “oldest” organic aerogels were made
of cellulose, along with silica-based aerogels [12]. Although cellulose is the most abundant natural
polymer and is already widely used in the industry for various applications, the initial attempts to
prepare cellulose aerogels have not been very successful.

At the same time, aerogels prepared using cellulose as a natural renewable and biodegradable
polymer have the advantage of being biocompatible, with a large porosity and specific surface area.

These properties allow the use of cellulose aerogels in various fields, such as adsorption and
oil/water separation, thermal insulation, and biomedical applications.

Type of Cellulose

Lin-Yu Long et al.’s review article mentions the three types of cellulose aerogels: natural cellulose
aerogels (nanocell aerogels and bacterial cellulose aerogels), regenerated cellulose aerogels, and
cellulose-derived aerogels, along with their potential applicability. Additionally, they evidenced
the problems that must be addressed to increase the potential of cellulose aerogels as (i) finding
efficient, inexpensive, environmentally-friendly, and non-toxic cellulose solvent systems to improve
the dissolution efficiency of cellulose, (ii) the improvement of the cellulose aerogels stability by their
physical mixing or chemical modifications, and (iii) the shortening of the production cycle by the
sol-gel and solvent exchange processes, as well as improving the gel drying methods [39]. They also
mention the advantages when using cellulose and derivatives as precursors for aerogels preparation:
(i) it can have beneficial effects on the mechanical properties and an increased affinity to moisture;
(ii) the stockpile of cellulose raw material is inexhaustible and can be renewed; (iii) cellulose chains
are rich in hydroxyl groups, which helps in intramolecular and intermolecular cross-linking through
hydrogen bonds, thus making the aerogels preparation process very simple; and (iv) the improvement
of the mechanical strength and structural characteristics of cellulose can be relatively easy to achieve
due to its high chemical reactivity, resulting in a large number of derivatives with various functions.

At present, cellulose aerogels are mainly prepared by dissolving and regenerating cellulose in an
aqueous or organic solvent, without considerable losses of specific surface area [53–55]. The advantages
brought by the aerogels obtained from cellulose were mentioned by other authors too, especially their
very high impact resistance [25] and their high capacity to be crosslinked [48], which gives the products
special properties, such as apparent absorption selectivity toward organic solvent rather than water,
for example.

In the last decade, polymer nanofiber-derived aerogels based on, for example, nano-cellulose
derivatives, nanochitin, were developed. Nanofibers serve as building blocks to form chemically
crosslinked and/or physically entangled 3D networks. The new compounds become promising
candidates in many fields of applications due to their excellent elasticity, high specific surface area,
ultralow density, and tunable chemical composition. The nano-cellulose derivatives, named in relation
to the processing methods as nanofibrillated cellulose, nanocrystalline cellulose, and bacterial cellulose,
were used as building blocks for producing robust aerogels, despite the crosslinker absence [56,57].

Studies have shown that by using cellulose nanofibrils (CNFs), the contraction of the aerogel
can be significantly reduced, thereby improving the performance of the material [23,58]. Due to their
biodegradability, low density, high absorption capacity, and high specific surface area, aerogels based on
CNFs are of great interest. Such aerogels have been designed by Mulyadi and collaborators to provide
materials with excellent water-absorbing tendency [59] (see Figure 4). The prepared hydrophobic
gels exhibited low density (23.2 mg/cm3), high porosity (98.5%), good flexibility, and solvent-induced
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recovery properties. More importantly, CNFs offer environmental and economic advantages, as they
are the most abundant renewable resources and their manufacture as aerogels requires neither solvent
involvement nor complex processes. More than that, it has been well documented and proved that
cellulose aerogels are capable of absorbing a variety of organic solvents.
Pharmaceutics 2020, 12, 449 8 of 31 
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molecular diffusion (3b) and forced flow impregnation (3c,d). Reprinted with permission from [60]. 
Copyright (2015) Elsevier. 
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Figure 4. (1) TEMPO-oxidized and mechanically blended cellulose nanofibrils (CNFs): photograph
of a 0.2 CNF aerogel on top of a dandelion (1a) and SEM images of 0.2 CNF aerogel pore structures
(1b). Reprinted with permission from [56]. Copyright (2014) Royal Society of Chemistry. (2)
Photograph of floating hydrophobic CNF aerogel on water surface (2a) and Field Emission Scanning
Electron Microscopy (FE-SEM) images of CNF aerogels (2b). Reprinted with permission from [59].
Copyright (2016). (3) Schematic illustration of the preparation route of cellulose-silica composite
aerogels, with a photograph of a composite aerogel sample (3a), SEM images of composite aerogels
from 3% cellulose-1-ethyl-3-methylimidzolium acetate- (EmimAc) DMSO solution, manufactured with
molecular diffusion (3b) and forced flow impregnation (3c,d). Reprinted with permission from [60].
Copyright (2015) Elsevier.

Regenerated cellulose or cellulose II is obtained by dissolving cellulose I in concentrated alkaline
solutions, resulting in cellulose with a silky texture, which makes it widely applicable in the textile
industry. The difference between cellulose I and II is based on the crystalline structure, which is mainly
changed by the way the hydrogen bonds are organized between the cellulose chains. Cellulose II
aerogels are very lightweight with a high specific surface area. The gelation is often omitted because
cellulose can form 3D structures during the solvent exchange. Changing the processing conditions and
the type of cellulose can turn the morphology and properties of cellulose-based aerogels. [27].

In another investigation, aerogels based on interpenetrated cellulose-silica networks were prepared
using molecular diffusion and forced flow induced by pressure differences for the impregnation of
the wet coagulated cellulose onto the silica phase (polyethoxydisiloxane) [60]. The method for
impregnation based on the forced flow induced by pressure difference determined a decrease in the
impregnation times by three orders of magnitude in the case of samples with the same geometry, and
the nanostructured silica gel formed in situ inside cellulose matrix revealed a threefold increase in
the specific surface area of pores for the nitrogen adsorption, compared with the cellulose aerogel
alone. Additionally, the composite aerogels presented lower thermal conductivity than that of cellulose
aerogel. This behavior was attributed to the formation of superinsulating mesoporous silica inside
cellulose pores, while the composite aerogels were stiffer than each of the reference aerogels.

Seantier’s group prepared bio-composite aerogels based on bleached cellulose fibers (BCFs)
and cellulose nanoparticles with various morphological and physicochemical characteristics by a
freeze-drying technique [61]. The composite aerogels were characterized and compared with the BCF
aerogel, and drastic changes were put in evidence by the morphological investigation, specifically
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SEM and Atomic Force Microscopy (AFM) techniques, and attributed to the variation of the cellulose
nanoparticle properties, namely the aspect ratio, the crystalline index, and the surface charge density.
The investigation confirmed the appearance of a new organization structure with pores of nanometric
sizes, which determined a decrease of the thermal conductivities from 28 mW·m−1

·K−1 for BCF aerogel
to 23 mW·m−1

·K−1 in case of bio-composite aerogel. The increase of the insulation properties for the
bio-composite was more pronounced for aerogels with cellulose nanoparticles with a low crystalline
index and high surface charge (nanofibrillated cellulose (NFC)-2h). Additionally, a significant
improvement of the mechanical properties under compression was registered for bio-composite
aerogels generated after self-organization in the network.

4.2. Lignin-Based Aerogels

Lignin, the second most abundant biopolymer after cellulose, is an interesting choice for aerogels
preparation, because it has a rigid, hyperbranched macromolecular structure, is composed of three
different types of phenylpropane units, and has numerous functional groups, such as hydroxyl, ether,
methoxy aldehyde, and ester. Lignin is an unused resource, with only 2% of the lignin produced
worldwide used to obtain materials. Therefore, finding alternative uses of lignin would be commercially
beneficial given the abundance of this biopolymer as a raw material.

Recent studies have shown that lignin is a promising phenolic polymer for aerogel
manufacturing [62–65]. Thus, lignin-based aerogels, which have both high porosity and compressibility,
have promising bio-industrial uses for adsorption and sound damping materials. Chen et al. used
lignin as a substitute for resorcinol and phenol in the production of aerogels [16,66]. Wang et al.
reported the preparation of an aerogel with strong mechanical performance based on lignin and
cellulose as a green adhesion agent [67]. Their approach, the direct dissolution in ionic liquids and
regeneration in deionized water, determined the micro and nanometric assembly between cellulose
and lignin molecules. Room temperature ionic liquids (RTILs), a new class of high solubility solvents
for cellulose and lignin, were used for simultaneous or separate dissolution of lignin and cellulose.
For example, the researchers used 1-butyl-3-methylimidazolium chloride (BMIMCI), a common RTIL
compound. After solvent exchange and freeze-drying, aerogels with improved mechanical properties
(the Young module up to 25.1 MPa), high-efficiency adsorption, and excellent thermal insulation were
obtained [68].

For the first time, Grishechko et al. synthesized and characterized highly porous organic
aerogels based on tannin and lignin. The influence of the ratio between tannin/lignin and (tannin +

lignin)/formaldehyde was studied by plotting the phase diagram illustrating the range of compositions
in which hydrogels can be obtained. The porosity of the resulting aerogels, dried with scCO2, was
examined in terms of surface, macro- (pore width >50 nm), meso- (2–50 nm), and microporosity (<2
nm). The influence of the composition on the porosity characteristics has been carefully discussed and
supported by electron microscopy studies. It has been shown that the gradual replacement of tannin
with lignin changed the pore size distribution [64].

4.3. Pectin-Based Aerogels

Major structural polysaccharides include pectins, amorphous, white complex carbohydrates,
which are found in ripe fruits and some vegetables and are available as a by-product of fruit juices,
sunflower oil, and sugar production. Due to their ability to reduce cholesterol levels in the blood,
capture toxic cations (lead and mercury), and eliminate them from the gastrointestinal tract and
respiratory organs, pectins have multiple applications in the biomedical field [68]. The ability to
form gels naturally, to thicken, and to stabilize easily makes pectin a very interesting carrier in the
pharmaceutical and biotechnology industry.

Pectins are anionic polysaccharides made up of linear regions of 1,4-α-d-galacturonosil units, and
their methyl esters are interrupted by 1,2-α-rhamnopyranosyl units. The presence of carboxyl units
along the backbone allows the formation of hydrogel networks when cations are added. Different cations
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(Ca2+, Sr2+, Ba2+, Ni2+, Cd2+, Mg2+, and Pb2+) were used, of which Ca2+ was studied for the food
industry. The gels obtained have fragile structures, their resistance depending on the concentration of
pectin and the pH range, but also the concentration of calcium ions [4]. The utility of pectin-based
aerogels derives from the ability to have tunable physical and mechanical properties by incorporating
polyvalent cations (replacing sodium and ammonium ions) that ionically bind to the structures. Thus,
aerogels produced from 5% pectin solutions can present compression modules up to 70 kPa, which can
be reduced to 2 MPa by the simple addition of Ca2+ ions. These mechanical properties can be increased
dozens of times by doubling or tripling the concentration of the pectin solution [4].

In recent years, special attention has been paid to formulations containing magnetic nanoparticles
suitable for biomedical uses. The synergistic combination of an aerogel and magnetic fillers will provide
versatility to the resulting product. A pectin-based aerogel as a biodegradable matrix containing
maghemite nanoparticles was developed by García-González et al. [69]. The gels were prepared with
two different morphologies (monoliths and cylindrical microspheres) and prepared by a combination of
sol-gel and supercritical drying methods. For aerogel microspheres, the sol-gel method was substituted
by the gel-emulsion process. The obtained aerogel-based materials were evaluated for their physical,
stability, and magnetic properties. The magnetic properties of maghemite have been retained in the
final material after processing, which gives a high degree of applicability in the medical field as a
drug-targeted carrier.

Veronovski’s group obtained aerogels based on pectin synthesized from citrus fruits or apples for
potential pharmaceutical applications. Ionic crosslinking was used to obtain the compounds [70]. Thus,
spherical and multi-membrane gels were first formed by the diffusion method using a 0.2 M CaCl2
solution as an ionic crosslinker. A very high specific surface area was obtained for this type of aerogel
(593 m2/g). Pectin gels were subsequently transformed into aerogel by supercritical drying using
CO2. As the specific surface area is one of the key parameters in drug delivery control, pectin-based
multi-membranous aerogels have been further used as drug delivery vehicles.

In another study, the biodegradability of pectin-based aerogels was examined by detecting CO2

release for 4 weeks from compost media [26]. The results showed that pectin aerogels have higher
biodegradation rates than wheat starch, which is often used as a standard for efficient biodegradation.
The addition of multivalent cations or clay surprisingly improved the biodegradation rates.

A method for pectin aerogels preparation was adopted via dissolution-solvent exchange-drying
with supercritical CO2 [71]. The method allows for correlating the thermal conductivity with aerogel
morphology and properties investigation, which led to understanding the connection between thermal
superinsulating material and its lowest possible conductivity. To adjust the mechanism of pectin
gelling, the concentration of the polymer, the pH of the solution, and the presence of bivalent ions were
varied. The study showed the need for a trade-off between density and pore size in order to obtain
aerogels with low conductivity values.

4.4. Alginate-Based Aerogels

Alginate, a polysaccharide that was discovered by Standford more than a century ago [72], is an
organic material extracted from seaweed that contains alpha-l-guluronic acid and β-d-mannonic acid
residues, which are linearly linked by a 1,4-glycosidic bond. Alginate has been extensively used in the
pharmaceutical, food, textile, and paper processing industries for many years [73–78].

The literature mentions different methods of obtaining aerogels based on alginate, and, considering
the importance of using these materials in biomedical applications, comparative studies have also
been carried out. The solvents used, as well as the drying method of the gel, are key parameters that
influence the final characteristics of alginate aerogels. Thus, Rosalía Rodríguez Dorado [78] investigated
xerogel, cryogel, or aerogel gel beads obtained from alginates of different weights and molecular
concentrations and used different gelation conditions and drying methods (e.g., supercritical drying,
frozen drying, and oven drying). The study highlights the stability of the physicochemical properties
of alginate aerogels in interdependence with the obtaining and storage conditions. Aerogels based
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on alginate biopolymer are characterized by unique properties, such as large surface, open porosity,
good compatibility, and biodegradability [79]. In addition, they have a very low thermal conductivity,
a high potential for insulation applications, and a good flexibility and are classified as viscoplastic
materials [3]. By adding Ca2+ or Al3+ ions, aerogels based on alginate with mechanical properties
better than those made of pectin can be obtained.

To produce aerogel micro-particles in a larger amount, a continuous emulsion-gelation process
was proposed, which was able to produce gel micro-particles in sizeable quantities; a method that
demonstrated the industrial relevance [80]. For this approach, the alginate-paraffin oil-Span80 system
was taken as a model gelling system and two gelation mechanisms were demonstrated. The method
has in view pumping together of an alginate solution and oil through a progressive cavity pump,
which were further fed to a colloid mill to produce alginate in oil emulsion in one pass. The emulsion
was further gelled by in situ crosslinking with a gelation trigger (acetic acid or calcium chloride), and
the obtained gel microparticles were separated by sedimentation or centrifugation and partitioning into
an ethanol solution. After solvent exchange to ethanol and supercritical drying with CO2, the obtained
aerogel microparticles presented a large specific surface area and dimensions in interdependence with
the size of the emulsion droplets.

Ahmad et al. studied the possibility of the formation of a non-woven composite based on an alginate
aerogel with increased thermal behavior [81]. The researchers soaked a needle punched polyester
(PET) nonwoven with an alginate solution system, further immersed in an aqueous CaCl2 solution
when resulted in a gel inside the PET nonwoven. Alginate-based materials have high hydrophilicity
and insufficient mechanical properties. To improve the mechanical properties and extend the range
of applications, some approaches have been developed through additional crosslinking [13] or by
incorporating reinforcement components. Recently, Martins et al. presented a study on obtaining
hybrid aerogels based on alginate and lignin. The new compounds were not cytotoxic and had good cell
adhesion [82]. At the same time, they explored the development of hybrid aerogels based on alginate
and starch as a second component and evaluated these materials as 3D constructs for bio-applications.

The control of the proanthocyanidins release, including generating antioxidant character, to an
alginate aerogel, and even the increase of its mechanical properties, was realized by improving the
aerogel composition with pectin and crosslinking with divalent cation (Ca2+) and sol-gel method,
followed by the freeze-drying process [83]. The new aerogel system presented a good controlled release
described by first order and Korsmeyer–Peppas models, while the radical scavenging activity indicated
stronger antioxidant activity for the encapsulated aerogel microspheres with higher pectin content.

In order to evaluate the mechanical properties of alginate aerogels, a novel mesoscale modelling
approach was recently proposed [84]. In this model, the porous structure of the aerogels was represented
at the mesoscale level as a set of solid particles connected by solid bonds. Thus, an elastic-plastic
functional model was developed to describe the rheological behavior of alginate aerogels with varying
degrees of cross-linking, namely calcium content.

The development of aerogels based on alginates as carriers of plant active substances was
presented by Mustapa’s group as one of the innovative techniques in the pharmaceutical industry for
improving the solubility and bioavailability of plants [79]. In their study, medicinal herbal extracts
were impregnated in alginate aerogels by liquid and supercritical mediums during the supercritical
drying process. The alginate aerogels were prepared using CaCO3 as the cross-linking compound.
The hydrogels were then transferred into molds and stored in the refrigerator (4 ◦C) until they were
completely gelled. Prior to supercritical drying, the hydrogel underwent a successive exchange of
solvents (30%, 50%, 70%, and 90% v/v in 24 h for each concentration and finished by washing twice with
pure ethanol) to remove water and impurities. Alginate alcohol gels were then dried to obtain aerogels.
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4.5. Starch-Based Aerogels

Starch is a promising source for aerogel formation, due to its low costs and biodegradability. Among
starch sources, wheat starch has the greatest potential to form hydrogels with a three-dimensional
network, providing many opportunities for pharmaceutical applications as a bioactive carrier [85,86].

In 1995, Glenn and Irving prepared the first starch-based aerogels, referred to as “microcellular
foam” [119]. Starch obtained from mixtures of wheat and corn with high amylose content obtained
from solutions of 8% by weight was used to obtain aerogels with a low thermal conductivity of
0.024 W/mK. Glenn’s group and Te Wierik et al. independently demonstrated that the low surface area
of native starch could be expanded to generate xerogel materials with a specific surface between 25
and 145 m2/g−1, depending on the method of preparation [12,119–121].

A few years later, starch-based aerogels were obtained by the dissolution-retrogradation-solvent
exchange method and their use as a matrix for drug administration applications was suggested [87].
Thus, increasing the starch concentration from 5% to 15% led to an increase in density, for example
from 0.12 to 0.23 g/cm3 for pea starch aerogels [88] and from 0.04 to 0.015 g/cm3 for wheat starch
aerogels, respectively [89]. A detailed study on the influence of the processing parameters on the
properties of starch aerogel was presented by Budtova et al. [90], also emphasizing the importance
of processing time for decreasing the specific surface and for increasing the mechanical properties
and thermal conductivity. Starch mixtures were prepared by dissolution in water (thermo-mechanical
treatment), retrogradation, solvent exchange, and scCO2 drying. Amylose starch content ranged from
0% to 100%. Specific surface area, aerogel density, morphology, thermal conductivity, and mechanical
properties under pressure were investigated. Finally, a comparison of the thermal conductivity of the
starch aerogel with that of other bio-aerogels was made [86].

The group of Ciftci also reported the preparation of starch-based aerogels by using scCO2

drying [87]. They investigated the conditions for optimizing the formation of aerogel (the largest
surface area and the smallest pore size) by using different processing parameters.

A robust gel with improved mechanical properties based on sodium montmorillonite starch
(Na-MMT) was developed by using the freeze-drying method. Glutaraldehyde (GA) was used as a
crosslinker in the presence of irradiation [88]. It was found that the microstructure and mechanical
properties of chemically cross-linked starch aerogels changed with GA concentration. Na-MMT clay
played the reinforcement role. Moreover, the addition of clay created more porous structures and
therefore reduced the thermal conductivity of the aerogels. At the same time, high biodegradability of
starch/clay aerogels was demonstrated.

Recently, Kenar and collaborators reported the obtaining and properties of some inclusion
complexes prepared by mixing starch with sodium palmitate [89]. These complexes possessed
polyelectrolytic properties due to the anionic loading of sodium palmitate. When acid was added
to lower the pH, these stable dispersions turned into hydrogels. Depending on the chosen drying
process, the corresponding xerogels, cryogels, and aerogel were obtained. Solvent exchange with
ethanol and scCO2 drying of these gels maintained their structure and generated materials with a
macroporous internal structure. Starch aerogels with densities between 0.120 and 0.185 g/cm3 and BET
(Brunauer–Emmett–Teller) surfaces ranging from 313 to 362 m2g−1 were obtained. The corresponding
xerogels and cryogels had weaker properties. This technique provides an alternative way of preparing
starch aerogels and eliminates the numerous difficulties associated with starch gelatinization and
retrogradation procedures that are currently used to prepare starch gels [90].

In another study, sterile maize starch aerogels with a macroporosity of 1–2 µm, but also with a
complex nano-architecture, were prepared through a new methodology that consisted of the addition
of zein as a biocompatible porogen [91]. Starch-based aerogels showed good biocompatibility with
increased cell viability (>80%).
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4.6. Chitosan-Based Aerogels

Chitosan is one of the most abundant polysaccharides, along with cellulose, and can be extracted
from shells of crustaceans and mollusks, such as shrimps, crabs, and squids. This biopolymer allows
various modifications on the backbone, including the deacetylation process, for the further numerous
applications in the production of biomaterials, drug administration systems, and as a support for cells
and enzymes, etc. [92–96].

Chitosan hydrogels can be formed either by chemical or physical crosslinking. The choice of
crosslinking is related to the requirements in applications, namely the stability of the aerogel and
the required porosity and homogeneity. After the exchange of solvents with alcohol, chitosan-based
hydrogels are supercritically dried to obtain aerogels with high porosity, high surface area, and low
density; characteristics that depend on the concentration of chitin and the used alcoholic solvent.
In general, larger-area aerogels are synthesized from chitosan obtained by deacetylation of the chitin
from crab shell [12].

Rinki et al. prepared chitosan-based aerogels using scCO2 and investigated their biological
properties [97]. The use of supercritical liquids offers solvent-free, natural, and safe products for
biomedical applications. The prepared aerogels showed a large surface area, the nature of the solvent
affecting the porous structure of the material. Moreover, the proven antibacterial activity of the
prepared materials may be valuable in medicine.

Natural compounds have attracted attention due to their unique properties, but the significant
contraction of the aerogel from biomass and from the wet gel to aerogel remains a challenge. For this
reason, realizing hybrid aerogels by the introduction of synthetic polymers, such as linear polyvinyl
alcohol chains (PVA), in aerogel synthesis has been proposed to form a strong architecture for the gel
network. Thus, using supramolecular interaction and covalent crosslinking, an aerogel with good
thermal insulation and compressible properties based on chitosan and PVA was obtained. It has also
been shown that the addition of PVA can cause the desired orientation shrinkage and linear elasticity
at low pressure, with respect to the chitosan aerogel [98–100].

Aerogels that combine the characteristics of the nanostructured porous materials, i.e., the extended
specific surface and porosity at the nanoscale, with the remarkable functional properties of chitosan,
were obtained from solutions of the biopolymer in ionic liquids [100]. The effect of the solvent was
studied by using 1-butyl-3-methylimidazolium acetate and 1-ethyl-3-methylimidazolium acetate.
The process of obtaining aerogels had three stages: (1) the formation of physical gels by diffusion
of anti-solvent vapour and (2) liquid phase exchange, followed by (3) scCO2 drying. The structural
characteristics of the resulted chitosan aerogels were distinctive and could be related to the initial
solvation dynamics. The obtained aerogels have increased potential for use in the pharmaceutical
industry as materials for encapsulation, retention, and transport of drug molecules with chitosan affinity.

A new organometallic compound was obtained by complexing Au (III) to chitosan aerogels in the
presence of an Au (III) chelating agent (dimercaprole) [101]. A material with good catalytic activity
was obtained in the oxidation reaction of aliphatic alcohols, benzyl alcohol, and ethylbenzene.

New pH-sensitive biodegradable aerogels based on chitosan and polypropylene glycol with
applicability in the biomedical field were developed [102]. Microwave irradiation using organic acids
and propylene glycol as crosslinkers, followed by their transformation into porous biomaterials through
the lyophilization process, was used as the method of preparation. Biodegradability, bioactivity, and pH
response were analyzed. An anticancer drug release profile was investigated showing promising
results for applicability.

Investigations were made for improving the mechanical properties of chitosan aerogels.
Extracted graphene oxide was introduced as fillers into chitosan aerogels [103]. The porosity of
the new composite aerogels was realized by an environmentally-friendly freeze-drying process with
various content of graphene oxide (0, 0.5, 1.0, and 1.5, wt. %). It was concluded that the microstructure
of the fillers was developed in the network structure. The porosity of the new aerogels was as high as
87.6%, and the tensile strength of the films increased from 6.60 to 10.56 MPa with the recombination
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of graphene oxide. Additionally, the crystallinity of the composite aerogels increased from 27% to
81%, most likely due to the chemical crosslinking of chitosan by graphene oxide, thus improving the
mechanical properties.

4.7. Protein-Based Aerogels

Natural protein-based aerogels open up new opportunities in the biomedical field due to their
biodegradability and biocompatibility. These types of biomaterials have already been found useful in
controlled drug delivery [104].

Recently, Mallepally’s group [105] manufactured protein-based gels from silk fibrous sources, with
the potential to be applied as scaffolds in the field of tissue engineering. These gels were subsequently
processed into aerogels with improved mechanical and textural properties (high specific area, high
porosity, and interconnected porous network) and showed good cytocompatibility and cell adhesion.

Aerogels composed of soy proteins and nano-fibrillar cellulose were also obtained (about 70%
soybean load) [106]. The resultant aerogel composites had a high compressive strength of up to 4 MPa
and were less prone to structural damage upon contact with a polar/non-polar solvent [7].

In order to predict and control the properties of protein-based aerogels, it is important to identify
the relevant parameters that influence the precursor protein hydrogel and to correlate them with
the resulting aerogel characteristics. Hence, extensive research has focused on the conditions used
during egg white gel formation under temperature [107]. The pH and ionic strength were identified as
decisive factors in manipulating the hydrogel structure made of egg proteins. The purpose was to
characterize different protein-based hydrogels in terms of their rheological and textural properties and
to correlate these properties with the final properties of the resulting aerogel. It was examined whether
explicit properties of aerogel can be obtained, depending on the type of protein and the mechanism of
hydrogel formation.

The idea was that the differences that appear in the properties of the hydrogels translate into
different characteristics of the aerogel, especially in terms of adsorption capacity and loading capacity.
Whey and egg white proteins and sodium caseinate were chosen as protein sources for gel formation
due to their unique ability to form hydrogels. They were characterized in relation to the hydrogel
properties and compared to the resulting aerogels [108].

4.7.1. Albumin-Based Aerogels

Another protein used more often in the preparation of aerogels is albumin due to its use in
biomedical applications and its ability to self-assemble in the presence of other polymers, forming
networks [109–112]. Li et al. used mixtures of albumin, camphor, and formaldehyde to develop an
aerogel structure [113]. In another study, aimed at replacing camphor with other additives, such
as tetra-amines and several tannins, complex materials were designed using different preparation
protocols (variations in concentration, pH, curing process, type of additives, and the nature of
tannins) [114]. Low density porous, flexible foams were obtained [115].

4.7.2. Casein-Based Aerogels

Casein is a phosphoprotein that can be separated into different electrophoretic fractions, such as
α-casein, κ-casein, β-casein, and γ-casein, wherein each component differs in the primary, secondary,
and tertiary structure, the amino acid composition, and molecular weight. Casein also includes amino
groups, ketones, and hydrazine groups [116]. Casein is a milk protein, which is an interesting example
in the sense that it can be cross-linked enzymatically or chemically to form aerogels but remains
highly biodegradable. A recent approach uses bivalent and trivalent cations as crosslinkers for a
renewable pectin and sodium montmorillonite clay system, which caused the supramolecular chains
to bind and led to the modification of the mechanical properties [26]. This kind of benign crosslinking
method is more economical and durable than the use of glycoaldehyde, diisocyanates, and other highly
reactive and toxic chemicals. Another non-polluting process is the preparation of casein/clay (sodium
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montmorillonite) dried by lyophilization. Very low densities (0.07–0.12 g/cm3) and good compressive
properties (90–5600 kPa) were registered for the newly prepared aerogels.

4.7.3. Gelatin-Based Aerogels

Gelatin is a widespread biobased protein that is obtained from collagen, mainly extracted from bones,
tendons, and skin. Due to its biodegradability, biocompatibility, and non-immunogenicity, it is widely used
in the pharmaceutical industry. The hydroxyl, carboxyl, and amine groups on the gelatin chains make
them easy to dissolve in water and subsequently form a heat-reversible physical gel at a relatively low
temperature, in which the macromolecular chains recover the triple-helix structure of collagen [117].

Gelatin aerogels were successfully obtained by crosslinking with formaldehyde and coating the
surface of siloxane aerogels by thermal chemical vapor deposition (CVD) of methyltrichlorosilane. The
resulting materials had a low density (5–8 kg/m3) and high porosity (>95%) with uniform pore size [118].

5. Application in the Biomedical Field

The use of aerogels in the field of biomaterials is relatively recent. In the last decade, aerogels
have attracted interest in the biomaterials community due to their special properties (large porosity,
high internal surfaces, controlled pore diameter, and 3D interconnected structure). Biobased aerogels
additionally provide superior cytocompatibility, biocompatibility, and biodegradability and can be
used successfully in biomedical applications, such as tissue engineering [81,122–127], reservoir drug
delivery systems [128], biomedical implantable devices (pacemakers, stents, and artificial heart valves),
disease diagnosis [129,130], and antibacterial materials [131,132] etc. [133–140] (Figure 5, Table 2).
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Aerogel materials prompted a growing interest in pharmaceutical sciences for drug delivery
applications owing to their high surface areas, high porosity, open-pore structures, increased
bioavailability for low solubility drugs, improved stability, and release kinetics [133].

These properties can also be tuned and controlled by manipulating the synthesis conditions,
with nanostructured aerogels representing a promising class of materials for the delivery of various
drugs, as well as enzymes and proteins, as already presented in the specific literature and specialty
reviews [141–143].

Table 2. Applications in the biomedical field.

Fields of Applications of Aerogels References

Aerogel in drug delivery [7,74,144–147]
chitosan [98,100,102,148]
alginate [75,133,149]
celulose [150,151]
gelatin [152]
pectine [68,153,154]
protein [104,143,155]

Aerogel for tissue engineering [121,156,157]
collagen/alginate [158]

chitin-hydroxyapatite composites [159]
alginate-lignin [160]
nanocellulose [161]

silica [162,163]
chitosan [148]

Aerogel for biomolecules immobilization [158,164,165]

Aerogel for wound care [166–170]
cellulose [171–173]

nanocellulose [174–177]
chitosan [178,179]
alginate [180]
collagen [181,182]

5.1. Aerogel in Drug Delivery

In the last few years, we have witnessed an increase in the number of studies on obtaining new
systems that can be used for controlled drug delivery through different routes of administration.
One of the major challenges imposed by these applications was to obtain formulations with precise
spatio-temporal control of drug delivery, but which also has a protective role regarding the degrading
effects of the physiological environment on the drug before reaching the target site. Another challenge
was to improve the bioavailability of drugs with low solubility through the use of aerogels that allow
the drug to disperse into the porous substrate [98,100,133].

Drugs can be incorporated into aerogels by two methods. In the first case, which is considered
the simplest, allowing us to effectively incorporate a wide range of therapeutics with specific criteria
(solubility and dispersion in the soil phase and chemical stability at variations of pH and temperature,
etc.), the drug is added in situ during the gelling process or the aging process. The second modality
consists of the addition of the drug, ex situ, by absorption or precipitation in the dry aerogel. By this
method, the drug in a liquid or gaseous phase [150] is incorporated into the aerogel matrix. But this
method has some restrictions, more specifically the slow diffusion capacity of the drug through the
pores of the matrix. Thus, the interactions between the drug and the aerogel will be influenced by the
ion charges and molecular size of the drug, as well as by the chemical functionality and biodegradation
capacity of the aerogel, and which will consequently affect the rate of drug release from the matrix.
Additionally, depending on the nature of the aerogel, as well as the design manner of the aerogels (as a
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multi-membrane reservoir, hybrid, magnetic aerogel, etc.) and the drug used, the release profile can be
modulated [143–146,150,152].

Over the years, a large variety of aerogels from different sources, such as proteins, polysaccharides,
or hybrids (for example chitosan or gelatin combined with silica), were used [7,68,147,148,151,153,155]
in the administration of drugs with various biomedical applications. Moreover, the utilization of
different polysaccharides (alginates, chitosan, pectin, etc.) in the preparation of aerogels have sparked
a lot of interest as they have demonstrated the capacity to modulate not only the mechanical properties
but also the degree of swelling and the adhesion properties. Therefore, polysaccharide-based aerogels
with wound dressings applicability can be obtained, which can rapidly absorb the exudate from the
wound level with the simultaneous release of the drug previously incorporated in the matrix.

Due to their improved stability, availability, low toxicity, and cost, Mehling et al. [74] produced
aerogels by using different polysaccharide precursors (specifically potato and modified starch alginate),
which were then loaded with ibuprofen and paracetamol. They showed that the properties of the
matrix and its structural characteristics have a major influence upon the drug loading and release
kinetics. Thus, the study results indicated that the amount of drug loaded in this type of system is
gradually increasing with the rise of the specific surface area, the latter being related to the average
pore size.

Therefore, in the case of aerogels, the high porosity and the capillary forces enable a significantly
large loading capability of the drug inside the matrix. In contrast, the rate of drug delivery is influenced
mainly by the strength of the aerogel matrix in water and the crystallinity of the drug. Synthesis of
aerogels based on silk fiber proteins and with applications in drug administration was described by
Marin et al. [155]. Ibuprofen loaded in the aerogel matrices was in an amorphous form, probably due
to interactions with fibroin. The in vitro release of ibuprofen was performed in two different stages:
a rapid phase in which over 75% of the weight of ibuprofen was released in the first 100 min and a
slower stage lasting from 100 to 360 min, in which about 15% of ibuprofen was released. The further
10% was roughly connected to the aerogel matrix and could only be released after its degradation.

Biodegradable and pH-sensitive chitosan aerogels for biomedical applications were prepared
by an eco-friendly method that involved the dissolution of chitosan flakes in acetic acid solution,
heating, and cross-linking. The drug was incorporated after the dissolution process was completed.
Following the obtaining of a homogeneous solution, the samples were irradiated using 400 W for
20 min and freeze-dried, resulting in a very porous material. Bio-tolerant acids and propylene glycol
were used as cross-linking agents. Through this innovative approach of simultaneously utilizing two
different cross-linkers to obtain 3D structures, very light materials with higher porosity, and pores
with different dimensions, shapes and distributions were synthesized. The applicability of these
chitosan-based biomaterials as controlled drug delivery systems for anti-cancer drugs was investigated,
and their stimuli-responsive behavior was also analyzed in response to the changes produced in the
physiological environment (pH and polarity) [102].

Among the various polysaccharide-based aerogels (such as starch, alginate, and pectin) that
have been evaluated as drug carriers in different pharmaceutical formulations, using ketoprofen and
benzoic acid as model drugs, whey protein-based systems have demonstrated increased capacity
for anti-inflammatory drug loading. After incorporation of ketoprofen, the release mechanism was
investigated in different media, simulating gastrointestinal conditions (gastric: pH = 1.2 and intestinal:
pH = 6.8 fluid), and the aerogels showed a sustained behavior [104].

Surfaces and interfaces outlined an edge between a material and its nearby environment and they
were conductive media for chemical and biological processes. Thus, in the case of the drug loading
process, the specific surface chemistry that mediated drug-aerogel matrix interactions had a great
impact on the embedding capacity of the materials. For example, the release of benzoic acid from
aerogel microspheres was more rapidly compared with ketoprofen, due to the size difference between
the two drugs. Because benzoic acid is smaller, it diffuses more easily through the polymer-based
network [149].
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García-González and Smirnova [147] prepared new nanoporous aerogels based on starch with
potential biomedical applications. The aerogels synthesized by them exhibited large areas (ranging
from 100 to 240 m2/g), low density (0.1–0.25 g/cm3), and high porosity (85–90%). These aerogels loaded
with ketoprofen were tested as drug carriers. The therapeutic release mechanism followed a two-step
process with a rapid dissolution of 56% by weight of the total amount in the first step. Ketoprofen
strongly interacted with the aerogel matrix and therefore could not be diffused until degradation of the
matrix (erosion) occurred [147].

Additionally, multi-membrane aerogels based on pectin incorporating theophylline and nicotinic
acid were successfully prepared and used as drug delivery reservoirs. Following the drug release
study, the pectin-based aerogels have shown a controlled release rate with a high release rate (very
close to 100%) [75].

In another study, pectin-based aerogels were loaded with nicotinic acid as a bioactive compound,
a stage that represented the first step in the sol-gel process, utilized for aerogel synthesis. The obtained
pectin systems in the shape of microspheres were coated with several layers, and the release mechanism
of nicotinic acid embedded in the matrix revealed a strong dependence on the number of layers
deposited on the surface of the aerogel microspheres. It was found that the triple membrane aerogel
could not control the release. Moreover, a supplementation of the number of deposited layers (at 5)
resulted in a controlled delivery of the drug [154,183]

Recently, Zhao et al. [151] obtained an aerogel utilizing polyethyleneimine, grafted with cellulose
nanofibers by the freeze-drying technique, and evaluated their potential applicability as versatile drug
delivery vehicles. The morphology and the structure of the materials characterized by SEM, FTIR, and
XPS, together with the drug delivery studies, revealed that the aerogels can incorporate and release in
a controller manner sodium salicylate, a therapeutic agent used in diseases such as diabetes, arthritis,
and cancer treatment.

5.2. Aerogel for Tissue Engineering

Over the last few decades, the lack of donors, the negative immune response, and infection are the
principal limitations that have hindered the utilization of tissues transplanted from both humans and
animals for tissue engineering applications. In order to avoid such situations, this research domain has
focused on finding alternative approaches for regeneration, reconstruction, or replacement of affected
tissues through biobased materials [156,158–160].

Thus, as any biomaterial used as a tissue engineering scaffold, the aerogels require particular
characteristics, such as suitable microstructures with interconnected pores with dimensions that allow
the integration and vascularization of tissues and biocompatibility. Materials must also have adequate
surface chemistry to allow cells to attach, proliferate, differentiate, and finally create a new extracellular
matrix, as well as a controlled degradation rate and tailored mechanical strength with the ability to be
processed in a variety of shapes and dimensions [161].

Due to its architecture characteristics (high open porosity-mesoporosity comparable to the native
extracellular matrix, open structure, large specific surface area, and large pore volume), aerogels have
recently been proposed for tissue engineering applications and as therapeutic/regenerative platforms
for the delivery of specific drugs (the latter was previously discussed in a distinct section above).
Nevertheless, the absence of macroporosity in these structures restrict their use for tissue engineering
purposes and prompts research on finding some approaches to better stimulate the cell migration in
the matrix network [162,163].

Therefore, Silva et al. synthesized chitin-based aerogels as macroporous scaffolds for tissue
engineering applications [159], chitin being modified to obtain a bioactive material. In addition, the
aerogel preparation technique was improved to increase the porosity in the matrices. Aerogels based
on chitosan with applications in tissue engineering were also obtained and characterized [121].

In another study, a new approach to obtain hybrid aerogels was proposed by Quraishi et al.,
starting from algae and lignin and using CO2-induced gelation by solvent exchange, followed by
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supercritical drying [160]. The aerogels were tested in vitro and in vivo, showing a lack of toxicity and
good cell adhesion, properties that are encouraging for their use in tissue engineering [160].

Another aerogel was obtained by Lu et al. [161] by crosslinking a mixture of nanocellulose
and collagen with a dialdehyde derivative. A biocompatible composite, stable in the physiological
environment, with good physical and microstructural properties, was obtained. Aerogel formation has
been shown to occur by embedding collagen in the matrix produced by cellulose dialdehyde fibers.
In addition, the composite aerogel had good biocompatibility and was non-cytotoxic, highlighting the
great potential of such a system to be used as a tissue engineering scaffold [162].

Engineering of the bone tissue is another area where aerogels have found promising utility due
to their special properties [163]. However, aerogels do not have suitable mechanical properties to
withstand the strength required for bone tissue engineering applications.

In this regard, efforts have been made to obtain composite aerogels with improved mechanical
properties by reinforcing with different mixtures, such as biopolymers or inorganic fillers [163]. The use
of mixtures, such as lignin, confers enhanced mechanical properties, increasing the osteoconductivity
or cell adhesion [7,163].

Another proposed material for bone scaffolding was based on silica gel and poly-ε-caprolactone.
Starting from the premise that poly-ε-caprolactone (PLC) is a biocompatible material, a polyester
frequently used in biomedical applications, Ge et al. [163] designed a bone substitute that allows
seeding of bone cells. The authors evaluated the influence of embedding silica gel on the applicability
of the final product. The biocompatibility evaluation of this compound indicated that the presence of
the silica in the macroporous matrix prevented any cytotoxic effects induced by the PLC membrane
during extended periods of tissue culture and, consequently, improved cell survival.

Cardiovascular diseases are the leading cause of death in the world, which generates a high demand
for biomaterials with proper biological characteristics for cardiovascular implantable devices. However,
one of the biggest failures of implantable biomaterial is the initiation of thrombosis formation when
the materials come in contact with blood. Therefore, for an aerogel to be applied as a cardiovascular
implantable device (e.g., valves), besides the specific biomechanical properties, it needs to fulfill a series
of requirements, including low inertia, biocompatibility, and hemocompatibility to avoid deposition
or adsorption of plasma proteins onto the surface, which may trigger acute immune response [148].
These characteristics are important in maintaining the durability of the valve. Yin et al. studied the use
in cardiovascular applications of a macroporous aerogel based on polyurea-nanoencapsulated with
silica gel, and the materials demonstrated good hemocompatibility [157]. Additionally, no changes in
normal platelet function were found and no acute immune response was observed in blood plasma after
exposure, which makes them promising engineering approaches for heart valve replacement [184].

5.3. Aerogel for Biomolecules Immobilization

The fact that aerogels possess unique physicochemical characteristics, biocompatibility,
and mechanical robustness has led to the encapsulation and immobilization of various biomolecules
into aerogels matrix, thus obtaining a new type of bioactive scaffold, which has found applicability in
medicine [164,165]. The biomolecules can be encapsulated either in situ or after supercritical drying,
or they can be encapsulated in the wet gel during the sol-gel reaction, followed by the supercritical
drying process. An intensely studied biomolecule, as an enzyme catalyst that can be incorporated
into the nanostructure of an aerogel, is lipase. It has been found that incorporation of lipase into
the structure of an aerogel maintains its enzymatic activity, and, in some cases, it has even been
improved [158].

But unfortunately, this still remains a subject that needs more research as the immobilization
of proteins in aerogels by using the harsh conditions of the supercritical fluid (SCF) technique can
lead to the incapacity of most biomolecules to keep their structure undamaged within the gels during
the processing.
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5.4. Aerogel for Wound Care

The last important biomedical field where aerogels have been applied is wound healing; it is a
complex and dynamic process that lasts various days and weeks and, which, through several stages,
enables skin restoration after being injured. Moreover, it involves a cumulative and controlled activity
of inflammatory, vascular, connective tissue and epithelial cells from the moment when the injury is
inflected until the wounds are healed.

Given these issues, an ideal wound dressing should maintain a moist environment at the
wound interface, act as a barrier to microorganisms, allow gas exchange, and remove excess exudates.
In addition, as any material that comes into contact with the body, they must be non-toxic, biodegradable,
biocompatible, non-adherent, and easy to remove after use [166–168,170]. It is also desirable for the
synthesized material to bring several additional beneficial properties, such as antimicrobial properties,
to be loaded with substances that induce wound healing (providing growth factors, cells, and different
types of drugs) [169]. The use of aerogels for wound healing allows the formation of a wet gel at the
interface between the wound and the material without destroying the proper hemodynamic balance
and thus avoiding the traumatic removal of the dressing from the injured skin normally induced by
conventional products.

Between the materials successfully used in wound healing, those based on polysaccharides occupy
a special place because they are biocompatible, largely biodegradable, and often have a high-water
absorption capacity [171,174].

Among them, chitin and chitosan-based aerogels occupy a special place due to their special
properties (antifungal and bactericidal character, high permeability to oxygen, stimulating fibroblast
proliferation). In order to treat chronic wounds and prevent the subsequent contamination with
pathogen agents, vancomycin, an antimicrobial drug, was loaded into chitosan aerogel beads
manufactured through the scCO2 technique. The high porosity (>96%) and the large surface area
(>200 m2/g) promoted a fast release of the drug, highly necessary at the wound site in order to prevent
the spreading of microbes shortly after debridement. In addition, the in vitro cytocompatibility on
fibroblasts evidenced no harmful effect on cells, highlighting the potential of these chitosan-based
aerogels as dressings in the management of chronic wounds [178].

Another polysaccharide successfully used as a wound dressing is nanocellulose that is non-toxic,
non-allergic, and biocompatible. Moreover, nanocellulose can endow the dressings with the capacity to
absorb and retain moisture at the wound site, while having many advantageous effects in the wound
healing process, such as minimizing inflammatory response and stimulating fibroblast proliferation [175,
176]. Although nanocellulose-based aerogels possess many unique features, such as nontoxicity
nature, high porosity, and excellent mechanical properties, they lack antimicrobial properties and
stimuli-sensitive character, which limit their utilization in the wound care field. Through the embedment
in their 3D network of inorganic nanoparticles or conductive agents, those properties were improved.
In this regard, Hosseini et al. synthesized ternary nanocomposite aerogels based on bacterial cellulose,
embedding not only silver nanoparticles (AgNP) as antimicrobial agents, but also polyaniline (PANI)
particles with rose-like morphology formed in situ within am aerogel network for tailored porosity. All
aerogels had higher porosity (>80%) and great elastic properties suitable for a wound dressing. As can
be seen in Figure 6, although the cell attachment was not promoted onto nanocomposite aerogels, cell
proliferation recorded an on-going increase throughout the incubation period [172]. Another versatile
composite aerogel based on nanofibrillated cellulose with copper-containing mesoporous bioactive
glass (Cu-MBG) inclusions was successfully obtained by Wang et al. [177]. The reinforcement of the
nanocellulose matrix with Cu-MBG particles enhanced the aerogel’s capacity of water absorption and
created hexagonally packed mesopores, resulting in high surface area and porosity. In addition, after
establishing a suitable Cu2+ biological concentration that did not affect the survival and growth of
fibroblasts, the authors demonstrated that the nanocellulose/Cu-MBG aerogels had an angiogenic
effect and significantly up-regulated the angiogenic-related gene expression (Vegf, Fgf2, and Pdgf) of



Pharmaceutics 2020, 12, 449 21 of 31

3T3 fibroblasts. Furthermore, the Cu2+ released from the Cu-containing composites also inhibited the
growth of Escherichia coli.
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Figure 6. In vitro biological test results for several cellulose-based aerogels: (1) Representative
confocal images of the expression of cytoskeleton marker actin (in green) and nucleus marker
4′,6-diamidino-2-phenylindole (DAPI) (in blue) for composite aerogels of NFC and mesoporous
bioactive glass (MBG) incubated with 3T3 fibroblast cells (1a), and cell proliferation profiles measured
after 2 days and 6 days of incubation, * p < 0.1; ** p < 0.01; *** p < 0.001 (1b). Reprinted with permission
from [33]. Copyright (2016) Elsevier. (2) FE-SEM images of cells seeded on pristine bacterial cellulose
(2a,2b) and bacterial cellulose/AgNPs/polyaniline (PANI): bacterial cellulose/PANI aerogel in 0.25 M
HCl (BP-0.25) (2c,2d), bacterial cellulose/AgNPs aerogel (BA3) (2e, 2f), bacterial cellulose/AgNPs/PANI
aerogels in 0.01 M HCl (BPA3-0.01) (2g,2h), and in 0.25 M HCl (BPA3-0.25) (2i,2j), respectively, after 1
day (2a,2c,2e,2g,2i) and 7 days (2b,2d,2f,2h,2j); antibacterial activities of composite aerogels against
Staphylococcus aureus (S. aureus) (2l) and against Escherichia coli (E. coli) (2k), respectively. Reprinted
with permission from [172] Copyright (2020) Elsevier.

During chronic wound healing, one of the major factors that can hinder the re-epithelization
process and the closure of the wound is the prolonged inflammation [179]. It is characterized by a
remarkably high proteolytic activity, which has a great impact on cell proliferation as, during this stage,
the growth factors and extracellular matrix tissue are degraded. Therefore, the development of materials
that can detect the presence of high proteolytic activity at the wound site while promoting wound
healing is in great search. In this regard, smart nanocellulose-based aerogels endowed with a short
fluorescent peptide sequence were evaluated as transducer surfaces for biosensors and confirmed to
have potential as sequestering biocompatible dressings, demonstrating high selectivity and sensitivity
for protease in chronic wound fluid [173].

Lu et al. presented the preparation of an aerogel based on dialdehyde nanocellulose and
collagen [161]. Due to the porosity and good biocompatibility, these materials are promising to be used
in wound care applications [161,171,174].

Alginate, which is a polysaccharide that has been already applied in various biomedical
applications, was utilized by Franco et al. [180] in synthesizing an innovative aerogel to promote
wound closure. They obtained the matrix by supercritical impregnation of mesoglycan (MSG) onto
calcium alginate aerogel. The newly obtained aerogel stimulated the re-epithelialization process and
also acted as a barrier against wound infections.
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Collagen, a protein with a major role in the wound healing process, has been also utilized in
developing biocompatible aerogels as dressings. Curcumin cross-linked collagen aerogels with
controlled anti-proteolytic activity and pro-angiogenic gene expression were synthesized [181].
Curcumin not only increases collagen stability, but it also imparts its intrinsic therapeutic properties
such as antioxidant, anti-fungal, anti-viral, and anti-inflammatory properties, to the collagen matrix.
The obtained curcumin/collagen-based aerogels presented a porous 3D network with uniform
distributed pores, which closely mimicked the in vivo extracellular matrix (ECM) characteristic,
making them suitable for wound care applications.

Another nutraceutical-reinforced collagen aerogel was developed by Govindarajan et al. through
the embedment of wheat grass into a collagen matrix [182]. The inclusion of bioactive wheat grass not
only enhanced the physicochemical and biomechanical properties of the aerogels, but also endowed
the collagen-based aerogel with valuable therapeutic properties through its contained components,
such as chlorophyll, vitamin E, and vitamin C and anti-anemic factors, such as vitamin B12, iron, folic
acid, pyridoxine, amino acids, and enzymes.

6. Conclusions and Outlook

The unusual properties of aerogels, as well as their unique processing strategy, make them the
most exciting materials with applicability in nanotechnology, even after incorporating a variety of
nanomaterials into the aerogel matrix [185].

Various strategies were developed for the inclusion of high-performing nanomaterials and the
improvement of aerogel-based composite systems. The new aerogels with incorporated nanomaterials
present improved mechanical stability and strength and offer unique functionalities as high electrical
conductivities, thermal stability, and reactivity.

In the context of vast domains of applicability of the aerogels as nanostructured materials presented
in the reviews, the full potential of these materials is still to be assessed for various technology sectors.
Thus, García-González’s review mentions that the use of aerogels in emerging applications, such as
biotechnological applications related to environmental sciences and biomedical applications, should
be further explored [186].

The present review aims to provide an overview of the obtaining and applicability of biobased
aerogels. Due to their unique structures (porous 3D networks with high specificity, low density,
low dielectric constant, and good mechanical properties), biobased aerogels have been extensively
studied in the last few years. In addition, these aerogels offer a wider range of applicability and often
improved performance than precursor renewable materials. As Kistler pointed out in 1931, aerogels
can be obtained practically from a variety of raw materials, which explains the emergence of new
aerogels with different applications every year. The flexibility of the obtaining conditions (variation
of the parameters of the synthesis, composition, etc.) allows the controlled design of a versatile
aerogel network that can be adapted to specific applications. Regarding, the methods of preparing
biobased aerogels, they have been described in the review. As for the other aerogels, the drying
stage is of major importance, being responsible for both maintaining porosity and maintaining
integrity. Among the different drying methods, the supercritical drying technique is the most efficient
method of attaining well-defined structures, while the freeze-drying is much easier, cheaper, and more
environmentally-friendly. Renewable materials are the materials of the moment because they are
cheap, non-toxic, and abundant, lowering the manufacturing costs of aerogels. At the end of the review,
recent biomedical applications of biobased aerogels are presented, including drug administration,
tissue engineering, and wound healing. Due to their adjustable chemical composition, special porosity,
and good mechanical properties, the aerogels satisfy the requirements for use as a scaffold in tissue
engineering. They also have found their applicability in the design of implantable cardiovascular
devices. Moreover, due to their high porosity and large specific surface area, aerogels can be used
as matrices for various biomolecules for detection applications. They are also successfully used as
platforms for adsorption and controlled release of various bioactive compounds. Although it is known
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and increasingly mentioned, the potential of aerogels in the medical field is not sufficiently explored.
For example, the use of aerogels in tissue engineering and wound care is not satisfactorily exploited,
although it is evident that their properties make them indispensable in regenerative medicine.

Although it is clear that, by adapting the conditions of manufacturing and processing (especially
drying), biobased versatile aerogels with multiple applications can be obtained, there is still a lot of
research work to be undertaken and many directions to be followed to obtain biomaterials that can be
marketed. Even though new types of aerogels have emerged lately, there is still a need to create new
species of single-component or hybrid aerogels. Single component aerogels, although valuable, are
restricted in applications by their uniqueness. For this reason, the development of hybrid aerogels that
have intelligent, multiple functions is more useful in practice. In this category, aerogels can be formed
from a renewable polymer and an inorganic material (e.g., carbon nanofibrils), but also by a natural
polymer combined with a synthetic polymer.
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