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Preparation of near-infrared (NIR) emissive fluorophore for imaging-guided PDT
(photodynamic therapy) has attracted enormous attention. Hence, NIR photosensitizers
of two-photon (TP) fluorescent imaging and photodynamic therapy are highly desirable. In
this contribution, a novel D-π-A structured NIR photosensitizer (TTRE) is synthesized. TTRE
demonstrates near-infrared (NIR) emission, good biocompatibility, and superior
photostability, which can act as TP fluorescent agent for clear visualization of cells and
vascular in tissue with deep-tissue penetration. The PDT efficacy of TTRE as photosensitizer
is exploited in vitro and in vivo. All these results confirm that TTRE would serve as potential
platform for TP fluorescence imaging and imaging-guided photodynamic therapy.

Keywords: NIR emission, NIR photosensiziter, D-π-A structure, imaging-guided photodynamic therapy, two-photon
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INTRODUCTION

Recently, photodynamic therapy (PDT) as a noninvasive treatment procedure has attracted enormous
attention due to its selective destroy of local lesions (Dai et al., 2019; Li et al., 2016; Kwiatkowski et al., 2018).
As an important element of PDT, photosensitizers transfer light energy to oxygen and generate reactive
oxygen species (ROS), which destruct themorphology and function of cells, and ultimately result in cancer
cell damage and apoptosis (Dai et al., 2020; Li et al., 2018; Zhou et al., 2016). Hence, the development of
efficient photosensitizers has become the focus of attention, and various kinds of photosensitizers have
been produced (Wang et al., 2018a; Xiao et al., 2020; Huo et al., 2020; Lindem and Vazquez, 2020).

As a noninvasive biological imaging modality, NIR fluorescence imaging techniques supplies
powerful tool to visualize cell biological events from molecules levels, subtle cellular structures to
complete organisms with high spatiotemporal resolution (Kim et al., 2017; Kobayashi et al., 2010; Li
et al., 2018; Hu et al., 2020). However, fluorescent imaging has some limitations including high
photodamage, low penetration, and high photobleaching. Compare to conventional fluorescence
imaging technology, two-photon (TP) fluorescence imaging exhibits various merits such as low
photodamage, deep penetration, high spatial resolution, and has attracted much attention for use in
intravital imaging of vasculature and tissues (Kim and Cho, 2015; Kuo et al., 2020; Qin et al., 2020).

Hence, in terms of photosensitizers, the coupling of ROS production with NIR emission has been
utilized for imaging-guided PDT, which has acted as a promising alternative for cancer treatment (Shen
et al., 2011; Wang et al., 2017; Zhu et al., 2017; Dudek et al., 2020; Yan et al., 2021). An ideal
photosensitizer for imaging-guided PDT should possess properties, such as negligible dark toxicity,
bright NIR emission, good photostability, ROS generation capacity, and biocompatibility (Li et al.,
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2018; Sarcan et al., 2018). In recent years, various NIR
photosensitizers have been prepared for imaging-guided PDT of
tumor, including porphyrin, chlorin, phthalocyanine, and
BODIPY derivatives (Liu et al., 2016; Pan et al., 2019; Szurko
et al., 2020; Zheng et al., 2020a). However, these NIR
photosensitizers suffer from several intrinsic drawbacks, such as
small Stokes’ shift, poor photostability, and unsatisfied
biocompatibility. Thereby, it is meaningful to develop new NIR
photosensitizers for photodynamic therapy of tumor.

NIR fluorophores containing D-π-A structure have been proven
to be an excellent candidate for imaging-guided photodynamic
therapy owing to the NIR emission and high ROS generation
efficient (Leitl et al., 2014; Liu et al., 2018; Yuan et al., 2020).
Besides, photosensitizers with D-π-A structure have strong
intramolecular charge transfer (ICT), which reduce electronic
bandgaps, extend absorption and emission wavelengths, enhance
the two-photon absorption properties of fluorophore, and facilitate
ROS generation (Pawlicki et al., 2009; Wu et al., 2017; Niu et al.,
2019a; Niu et al., 2019b; Lu et al., 2020; Wan et al., 2020). In recent
times, efforts have been made to increase intramolecular charge
transfer effect of D-π-A structured photosensitizers (Deraka et al.,
2017; Chai et al., 2019; Samanta et al., 2019). To this effect, various
electron-deficient units have been widely explored, such as pyduium
(Shi et al., 2020; Zheng et al., 2020b), benzo [c] (Li et al., 2016; Li
et al., 2018; Dai et al., 2019), thiadiazole (Guo et al., 2017; Zhou et al.,
2020), rhodamine (Tang et al., 2018; Lv et al., 2019), indaceno (Wang
et al., 2016), and tricyanofuran (Wu et al., 2019). Among them,
rhodanic, an electron-deficient core, can serve as block to build NIR
fluorophore (Wan et al., 2017; Wang et al., 2018b; Xia et al., 2018).
However, rhodanic molecules face some challenges, such as low
absorption in the NIR region and limited ROS generation efficiency.
Hence, it is highly desirable to design new photosensitizers
containing rhodanic with high PDT performance.

In this contribution, we develop a D-π-A structured NIR
photosensitizer (TTRE), which was rationally designed as
electron-donating triphenylamine as electron-donating group,
rhodanic as electron-withdrawing units, and thiophenyl as π
bridge. TTRE exhibited NIR emission (around 680 nm), ROS
generation ability, and two-photon fluorescent imaging capacity.
Both in vitro and in vivo studies confirmed that TTRE has
effective anticancer potential and is amenable to imaging-
guided photodynamic therapy of tumor.

MATERIAL AND METHODS

Materials
All the solvents and reagents utilized in this contribution were of
analytical grade. 5-(4-(Diphenylamino) phenyl) thiophene-2-
carbaldehyde, 2-ethylhexyl 2-cyanoacetate, 4-
isothiocyanatobenzonitrile, DBU, and ethyl bromoacetate were
purchased from 3A Chemical Co. Ltd. The biological chemical
reagents containing ROS indicators of 9,10-anthracenediyl-
bis(methylene)-dimalonic acid (ABDA) and 2′,7′-
dichlorodihydrofluorescein diacetate (DCFDA) were offered from
aladdin Co., Ltd. DAPI and Annexin V-FITC apoptosis detection kit
were purchased from Beyotime biotechnology Co., Ltd.

Instruments
NMR spectra were measured via Bruker 400 MHz NMR with
CDCl3 and DMSO-d6. UV absorption spectra were recorded on
Thermofisher Evolution 300 spectropolarimeter. Fluorescent
spectra were obtained using Thermofisher Lumina
spectrofluorometer. Infrared (IR) spectroscopy was performed
with Shimadzu FTIR-8100 spectrophotometer. High resolution
mass spectra were obtained on Bruker Autoflex instrument.
Confocal laser scanning microscope (CLSM) images were
performed on Olympus FV1000-IX81 confocal laser scanning
microscope. Two photon fluorescence imaging was obtained
using upright multiphoton microscope (FVMPE-RS, Olympus,
Japan). Small animals’ fluorescence imaging was carried out by
Bruker FX Pro living imaging system.

Synthesis of Rhodanic
DBU (3.04 g, 20 mmol), 2-Ethylhexyl 2-cyanoacetate (3.94g,
20 mmol), and 4-isothiocyanatobenzonitrile (3.52 g, 22 mmol)
were added to CH3CN (50 ml) at room temperature. After stirred
for 30 min, ethyl bromoacetate (5.65 g, 34 mmol) was added to
the mixture. The mixture was refluxed for 8 h. The CH3CN was
evaporated. The solid was acidified with 1 M HCl (60 ml) and
extracted with dichloromethane. The organic layer was
concentrated, then recrystallized in CH3CN to produce pale
yellow solid (6.43 g, 81%). 1H NMR (500 MHz, DMSO-d6)
δ(ppm) 8.05∼8.07(d,2H), 7.67∼7.69 (d, 2H), 4.24∼4.25(t, 2H),
4.00∼4.02(t, 2H), 1.28∼1.44(t, 2H), 1.21∼1.26(m, 2H),
1.28∼1.44(m, 1H), 1.21∼1.26(m, 8H), 0.81∼0.86(m, 6H). 13C
NMR (100 MHz, DMSO-d6) δ (ppm) 173.60, 172.24, 165.22,
139.40, 133.86, 131.29, 118.56, 113.65, 112.72, 88.92, 76.47, 67.38,
38.57, 32.72, 30.06, 28.64, 23.56, 22.75, 14.25, 11.21.

Synthesis of TTRE
5-(4-(Diphenylamino) phenyl) thiophene-2-carbaldehyde (1.77 g,
5mmol), Rhodanic (1.985 g, 5mmol), and CH3COONa (500mg)
were added to acetic acid (30ml). The mixture was refluxed at 160 °C
for 12 h. After cooling to room temperature, the solid was filtered and
washed with cold MeOH. The solid was recrystallized from CH2Cl2/
ethanol (1:10, v/v) to give TTRE as red solid. Yield: 2.97 g (81%). 1H
NMR (500MHz, CDCl3) δ(ppm) 8.05(s, 1H), 7.89∼7.91(d, 2H),
7.56∼7.58(d, 2H), 7.51∼7.53(d, 2H), 7.32∼7.35(m, 8H),
7.09∼7.19(m, 6H), 4.19∼4.22(m, 2H), 1.58(s, 1H), 1.28∼1.40(m,
8H), 0.86∼0.93(m, 6H). 13C NMR (100MHz, CDCl3) δ(ppm)
178.00, 167.34, 163.97, 146.90, 142.47, 138.78, 136.86, 134.51,
133.62, 130.11, 129.45, 129.18, 128.72, 128.50, 127.43, 126.40,
125.84, 125.13, 123.90, 122.35, 117.81, 108.68, 103.12, 66.65, 39.10,
29.65, 29.27, 23.61, 22.84, 14.08, 10.94. IR(KBr) v (cm-1), 3422, 2963,
2925, 1719, 1578, 1527, 1491, 1437, 1367, 1325, 1293, 1154.

RESULT AND DISCUSSION

Synthesis and Properties of TTRE
The D-π-A structure could reduce electronic band gaps and
extend absorption/emission wavelengths of fluorophore. In
addition, D-π-A structure fluorophore exhibit the two-photon
absorption and ROS production. Herein, rhodanic and
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triphenylamine were attached to thiophenel group to build NIR
photosensitizer TTRE (Figure 1A). The NMR, and IR spectra are
listed in Supplementary Figure S1–S5 (Supporting
Information).

TTRE’s optical properties was analyzed using UV-vis and
fluorescent spectroscopy. As shown in Figure 1B, the absorption
is centered around 505 nm in water containing 0.1% DMSO,
while the emissionmaximum of TTRE is located in 680 nmwhich
belongs to the near-infrared region. More importantly, TTRE
emits NIR fluorescence with a large Stokes shift of 175 nm which
enable it to give great advantage for bioimaging applications.
Analysis of TTRE’s optical properties in various solvents using
UV-vis and fluorescent spectroscopy was carried out. As shown
in Supplementary Figure S6, the absorption maximum of TTRE
varied from 475 to 525 nm in the different solvent. On the other
hand, the emission maximum shifted from 600 to 680 nm. All
these results confirmed that the optical properties of TTRE are
strongly dependent on the solvent polarity. We also measured the
fluorescent properties of TTRE in DMSO/toluene mixtures at
various toluene concentrations (Supplementary Figure S7).
TTRE exhibited weak emission in DMSO and fluorescence
increased with gradual addition of toluene. Fluorescent
intensity rose 12-fold at pure toluene relative to pure DMSO.
These data show that TTRE is AIE active.

Photostability is critical for fluorescence imaging and
photodynamic therapy. Here, the photostability of TTRE was
examined (Figures 1C,D). After white light irradiation for
approximate 10 min (300 mW/cm2), TTRE’s fluorescence
reduced modestly, to 83% of the initial value, while its
absorption spectrum still keeps 92% of original value,
indicating TTRE has superior photostability.

ROS Generation
To investigate the cytotoxicity of TTRE in dark or upon light
irradiation, CCK-8 analysis was carried out. As shown in
Supplementary Figure S8, the cytotoxicity of 4T1 cells is little
in the absence of light. However, cell viability reduced to 15%

after incubation with TTRE (10 µM) and white light irradiation
(8 min, 60 mW/cm2), suggesting TTRE may be amenable to
photo triggered therapy.

TTRE’s capacity of ROS productionwas initially evaluated under
white light irradiation (60 mW/cm2) with ABDA as ROS indicator
(Figures 2A,B). Under light irradiation, the absorbance in 378 nm
of ABDA solution rapidly fell in the presence of TTRE, suggesting
highly efficient ROS production. To detect in cellular ROS
generation, DCFDA was utilized as indictor (Figure 2C). Green
emission was observed from the cells treated with DCFDA and
TTRE, while no obvious fluorescence was detected in the absence of
TTRE. It seems that TTRE efficiently products ROS in 4T1 cells.
Double staining with Annexin V-fluorescein isothiocyanate (FITC)
and DAPI was carried out to investigate the extents of apoptosis or
necrosis after PDT with TTRE. The apoptosis ratio induced by
TTRE and irradiation was up to ∼87.3%, which was significantly
higher than in Blank group (Figure 2D). All these results confirm
that TTRE could be a potential photosensitizer.

NIR and Two-Photon Fluorescent Imaging
NIR fluorescent imaging behaviors of TTRE in living cells was
first investigated. As described in Figure 3A, NIR fluorescence
within 4T1 cells can be detected, confirming the endocytosis of
TTRE in 4T1 cells. To confirm the lysosomal specificity of TTRE,
the colocalization experiment was carried out by incubating 4T1
cells with TTRE and Lyso-Tracker Green, which is commercial
probe for lysosomal imaging. The red fluorescence of TTRE was
overlapped with the green fluorescence of Lyso-Tracker Green.
These data confirmed that TTRE permeates the cell membrane
and accumulates in the lysosome.

Moreover, in vivo fluorescent imaging on tumor-bearing mice
was carried out. As shown in Figure 3B, bright NIR fluorescent
was detected at the tumor site after intratumorally injection of
TTRE. Interestingly, NIR signal could be still examined after 48 h,
confirming extended tumor retention. These data suggest that
TTRE was suitable for fluorescent imaging-guided photodynamic
therapy.

FIGURE 1 | (A) The synthetic routine of TTRE. (B) The Normalized absorption and fluorescent spectra of TTRE in Water. (C) Fluorescent spectra of TTRE after
irradiation (300mW/cm2). (D) UV spectra of TTRE after irradiation (300mW/cm2).
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Given the TTRE enhances deep penetration and high contrast
imaging, the performance of TTRE was measured using TP
fluorescent imaging in vitro. Results shown in Figure 4A
reveal the two-photon fluorescent imaging of TTRE even
penetration 21 μm in cells. Therefore, TTRE was utilized to
achieve deeper blood vascular imaging in mouse liver.
Figure 4B show representative vascular images of the mouse
liver at penetration depths from 1 to 240 μm. The fluorescent
signal of TTRE can be detected at depths of up to 240 μm. The
high-resolution 3D image in vivo provided clear spatial map of
the major vascular networks and the details of tiny capillaries. All
these results demonstrated that TTRE is promising two-photon
fluorescent imaging platform.

Inhibition of Subcutaneous 4T1 Tumors
For the investigation of the PDT property of TTRE in vivo, the
4T1 tumor-bearing mouse models were constructed, which
were randomly divided into four groups and given different
treatments (PBS, PBS with light, TTRE and TTRE with light).
After being subjected to different treatments, the tumor
volumes and tumor weights were monitored. A shown in
Figures 5A–C, slight tumor growth inhibition was observed
in the groups of PBS, PBS with light and TTRE, while TTRE
with light group exhibited inhibitory effect on tumors,
indicating that TTRE has good therapeutic effect under
light irradiation. Importantly, during the treatment, all
mice showed no significant abnormal changes in body

FIGURE 2 | (A) UV-vis spectra change of ABDA and TTRE with different irradiation time of white light (60 mW/cm2). (B) Plots of A/A0 at 378 nm of ABDA vs.
different irradiation times. A0 is the absorption of ABDA without irradiation, and A is the absorption with various irradiation time. (C) Intracellular ROS detection using
DCFDA in 4T1 cells incubated with TTRE after white light irradiation. (D) Representative FCM profiles of 4T1 cells with different treatment.
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FIGURE 3 | (A) Fluorescent imaging of 4T1 cells coculture with TTRE. (B) The fluorescent imaging of 4T1 tumor-bearing mice after intratumorally injection of TTRE
in vivo.

FIGURE 4 | (A) TP fluorescent imaging of TTRE in living cells (B) TP fluorescent imaging of vascular in liver.
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weight (Figure 5D), and no significant damage in all major
organs including the heart, liver, spleen, lung, kidney, and
tumor (Figure 5E), thereby confirming the high
biocompatibility and safety of TTRE for biomedical
applications.

CONCLUSION

In summary, a D-π-A structured NIR photosensitizer, TTRE, has
been developed to realize photodynamic therapy. TTRE exhibited
good biocompatibility, high photostability, and NIR emission
property. TTRE was utilized as an efficient and effective
photosensitizer for imaging-guided PDT with TP fluorescent
imaging property. The excellent PDT performance of TTRE
was further examined in vivo. This work provides insight into
developing NIR photosensitizer for imaging-guided
photodynamic therapy of cancer.
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