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Dysregulated neutrophil activation contributes to the pathogenesis of autoimmune

diseases including rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE).

Neutrophil-derived reactive oxygen species (ROS) and granule proteases are implicated

in damage to and destruction of host tissues in both conditions (cartilage in RA,

vascular tissue in SLE) and also in the pathogenic post-translational modification of

DNA and proteins. Neutrophil-derived cytokines and chemokines regulate both the

innate and adaptive immune responses in RA and SLE, and neutrophil extracellular

traps (NETs) expose nuclear neoepitopes (citrullinated proteins in RA, double-stranded

DNA and nuclear proteins in SLE) to the immune system, initiating the production

of auto-antibodies (ACPA in RA, anti-dsDNA and anti-acetylated/methylated histones

in SLE). Neutrophil apoptosis is dysregulated in both conditions: in RA, delayed

apoptosis within synovial joints contributes to chronic inflammation, immune cell

recruitment and prolonged release of proteolytic enzymes, whereas in SLE enhanced

apoptosis leads to increased apoptotic burden associated with development of anti-

nuclear auto-antibodies. An unbalanced energy metabolism in SLE and RA neutrophils

contributes to the pathology of both diseases; increased hypoxia and glycolysis in RA

drives neutrophil activation and NET production, whereas decreased redox capacity

increases ROS-mediated damage in SLE. Neutrophil low-density granulocytes (LDGs),

present in high numbers in the blood of both RA and SLE patients, have opposing

phenotypes contributing to clinical manifestations of each disease. In this review we

will describe the complex and contrasting phenotype of neutrophils and LDGs in RA

and SLE and discuss their discrete roles in the pathogenesis of each condition. We will

also review our current understanding of transcriptomic and metabolomic regulation of

neutrophil phenotype in RA and SLE and discuss opportunities for therapeutic targeting

of neutrophil activation in inflammatory auto-immune disease.
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INTRODUCTION

Systemic Lupus Erythematosus (SLE) is the archetypal
autoimmune connective tissue disease, characterized by the
production of multiple auto-antibodies [anti-nuclear antibodies
(ANA), anti-double stranded DNA (dsDNA), anti-Sm/RNP,

anti-Ro/La] and the consumption of complement (1, 2). It has

the capacity to involve almost any organ system of the body
resulting in protean and sometimes catastrophic consequences
for patients. SLE disproportionately affects young women and
is a condition with a broad spectrum of severity, ranging from
mild joint involvement to life-threatening organ failure (3).

Typical manifestations include systemic complaints, such as
overwhelming and intrusive fatigue, brain fog, fever, swollen
lymph nodes, mouth ulcers, chilblains, and weight loss (4).

Rashes are common in SLE and may be transient or disfiguring;
rashes are often triggered by sunlight and may be associated
with hair loss and scarring. The characteristic malar flush of
redness over the cheeks gives the name lupus (from wolf) and
is likened to the appearance of a butterfly. Inflammation of
joints, tendons, and muscle may cause arthritis, nodules, or
contractures and give rise to disability and pain. Kidney disease
including inflammation and immune complex deposition may
occur which, if untreated, can lead to kidney failure and the
need for dialysis and transplant (5, 6). Inflammation can develop

in the pleural lining of the lungs, around the heart and may
even affect the heart muscle and valves. SLE may also affect
any part of the nervous system from brain and spinal cord
to the peripheral nerves resulting in neurological problems,
such as strokes, neuropathy, headache, visual loss, migraine,
confusion, and acute psychosis (7). The disease may cause
a fall in blood counts involving specific cell lines or indeed
pancytopenia and may be associated with serious abnormalities
of both clotting and bleeding. Repeated inflammatory insults,
abnormal blood clotting and the consequence of treatment
with high dose steroids and immunosuppression can also lead
to chronic illness through damage accrual and increase the
likelihood of infection, osteoporosis, premature ovarian failure,
cardiovascular events such as atherosclerosis, stroke or heart
attack, and malignancy. SLE is incurable and with modern
treatment is still associated with an increased risk of mortality,
and shortened life expectancy (3).

Rheumatoid arthritis (RA) is a chronic, autoimmune, systemic
inflammatory condition associated typically with antibodies to
rheumatoid factor (RF) and cyclic citrullinated peptides (anti-
CCP or ACPA) (8). It is the commonest form of inflammatory
arthritis and is characterized by inflammation of the tendon
sheaths (tenosynovitis) and joint lining (synovitis) leading to
growth of an inflammatory pannus which quickly erodes the
joint cartilage and bone, causing recognizable deformities that
were once commonplace in rheumatology clinics (9). Untreated
or resistant to therapy, RA results in a symmetrical, deforming
polyarthropathy. This leads to physical disability, progressive
loss of function and as well as stiffness and pain. Extra-
articular complications of the disease include interstitial lung
disease, vasculitis, nodules, eye disease and an increased risk
of cardiovascular disease, malignancy and osteoporosis (10, 11).

Modern management is focused on a prompt diagnosis and early
use of immunosuppressive treatments, including traditional and
biologic disease-modifying anti-rheumatic drugs (DMARDs),
with the aim of targeting disease remission. This has led to
a reduction in the need for orthopedic surgery for patients
with this form of arthritis, a move to out-patient based care as
opposed to long hospitalizations, and a reduction in the systemic
complications that can occur. However, RA still remains an
incurable disease with treatments that rely on the long-term
suppression of the immune system resulting in side effects and
complications, including an increased risk of infection (9, 12).

Both RA and SLE are caused by a dysregulation of the
innate and adaptive immune systems, including clonal expansion
of auto-reactive lymphocytes, production of auto-antibodies
and elevated production of multiple cytokines and other
inflammatory mediators. Research into the underlying cause of
both diseases focusses heavily on dysregulated T- and B-cell
responses (9, 12, 13). However, it is inappropriately activated
neutrophils that have the greatest potential to cause damage
to local tissues, both due to their presence in high numbers
at sites of inflammation and through release of their cytotoxic
contents directly onto host tissues. Neutrophils are specialist cells
of the innate immune system that normally play a major role
in host defense against microorganisms through phagocytosis
and generation of reactive oxygen species (ROS). Production of
ROS within the phagosome occurs via the action of NADPH
oxidase (NOX2) and myeloperoxidase (MPO) which, together
with release of proteases from granules and vesicles into the
phagosome, provide a defensive arsenal against a broad spectrum
of microscopic pathogens. During infection, ROS and proteases
may be released extracellularly causing local tissue damage at
the site of infection (14). This damage is normally resolved by
resident macrophages, which remove apoptotic neutrophils and
damaged tissue as part of the normal process of inflammation
resolution (15). Neutrophils are the most abundant leukocyte in
humans, being produced by the bone marrow in huge numbers
daily (estimated to be in the region of 5–10 × 1010 per day)
(16, 17). Whilst the majority of neutrophils circulate in the
blood (both free-flowing andmarginated to the endothelial vessel
walls), several populations of tissue neutrophils exist within
healthy homeostasis, including within the lung, spleen and liver
(18). These tissue neutrophils play a major role in surveillance
and host defense, B-cell Ig-class switching, and phagocytosis
of circulating bacteria, respectively. The liver is also a major
site for efferocytosis and removal of neutrophils that have been
involved in bacterial killing (18). Neutrophil release from the
bone marrow, and subsequent homing back to bone marrow for
efferocytosis at the end of their normal life span, is regulated by
circadian expression of CXCR2 (receptor for CXCL2), the central
clock gene BMAL1 and CXCR4 (receptor for CXCL12) (19), with
granule content and the ability to produce NETs being the highest
in the morning, decreasing throughout the day to reach the
lowest levels by mid-afternoon in human neutrophils (20).

Neutrophils contribute to inflammation and tissue damage
in inflammatory disease, when they become inappropriately
activated by cytokines, chemokines and auto-antibodies (14).
Auto-immune neutrophils function in a multitude of ways to
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direct the inflammatory response, including release of proteases
which damage host tissue and activate soluble proteins (21),
secretion of cytokines and chemokines which direct both
the innate and adaptive immune responses (22), shedding of
receptors, such as the interleukin-6 receptor to initiate trans-
signaling (23, 24), release of neutrophil extracellular traps
(NETs) providing a source of auto-antigens (25), and production
of ROS (8, 26). This review will discuss the dysregulation
of neutrophil activation in RA and SLE, two auto-immune
diseases characterized by aberrant neutrophil activation. We will
highlight how uncontrolled neutrophil activation contributes to
the development of auto-immunity and disease progression, and
summarize how inappropriate neutrophil activation might be
targeted with therapeutics.

APOPTOSIS

Neutrophils are terminally differentiated cells which, in the
absence of inflammation, circulate in the blood for around
24–48 h before returning to the bone marrow and undergoing
apoptosis (27). Constitutive neutrophil apoptosis is regulated
by Bcl-2 family proteins: anti-apoptotic MCL1 and A1/BFL1,
and pro-apoptotic BAX, BAK, and BID. Loss of MCL1 and
BFL1 causes BAX:BAK pore formation in the mitochondrial
membrane, releasing cytochrome c which along with APAF1
forms the apoptosome, leading to cleavage of caspases initiating
apoptosis (14, 27–29). Neutrophil apoptosis may be delayed
during inflammation by cytokines (e.g., GM-CSF, TNFα),
bacterial lipopolysaccharide (LPS) and leukotrienes (e.g.,
leukotriene B4), which extend the life-span of neutrophils
through stabilization or up-regulation of MCL1 and/or BFL1
(30–35). Aging neutrophils can be identified in circulation by
decreased expression of L-selectin (CD62L) and CXCR2, and
increased expression of CXCR4, the receptor for CXCL12; it
is the increased signaling via CXCL12:CXCR4 which enables
aged neutrophils to home back to the bone marrow to undergo
apoptosis and clearance (19). Neutrophil apoptosis may
be induced through activation of death-receptor signaling
pathways, such as FASL, TRAIL, and TNFα which directly
activate caspase-8 and caspase-3, and induce degradation of
BID and BAX leading to mitochondrial release of cytochrome
c (28, 36). Intriguingly, TNFα may be pro- or anti-apoptotic
in vitro depending upon the concentration in media, with low
concentrations delaying apoptosis and higher concentrations
promoting apoptosis (37). Whilst not completely understood,
this effect is believed to be mediated via the two TNF receptors
(TNFR1 and TNFR2), with TNFR1 signaling anti-apoptotic
activation of NF-κB, and TNFR2 activating death receptor
signaling (38, 39).

In SLE, neutrophil apoptosis is enhanced (40–42) leading
to increased apoptotic burden associated with development of
anti-nuclear auto-antibodies (25, 43). A dysregulation between
pro-apoptotic caspases and inhibitors of apoptosis (IAP1, IAP2,
XIAP) may explain the enhanced apoptosis seen in SLE
neutrophils in vitro (Figure 1) (41, 42, 44). Levels of pro-
apoptotic TRAIL and FASL are also significantly higher in SLE

serum, which can induce apoptosis in healthy neutrophils (41).
Levels of GM-CSF are lower in SLE serum, and supplementation
of SLE serum with physiological levels of GM-CSF can rescue the
pro-apoptotic effect of SLE serum on healthy neutrophils (42).
Incubation of apoptotic neutrophils with SLE PBMCs induces
expression of interferon-alpha (IFNα) via a toll-like receptor
(TLR)-dependent mechanism (45). SLE neutrophils also express
nuclear antigens (dsDNA) at the plasma membrane, and this
effect can be induced in healthy neutrophils incubated with SLE
serum (46). As well as an increase in neutrophil apoptosis, defects
in clearance of apoptotic cells bymacrophages can also contribute
to the accumulation of apoptotic debris in SLE (47).

Apoptosis is delayed in both blood and synovial fluid
neutrophils from patients with RA (48, 49). The likely cause
of this is inflammatory cytokines, such as GM-CSF, TNFα,
IL1β, and interferons, elevated in both blood and synovial
fluid (50), which have been demonstrated to delay neutrophil
apoptosis in in vitro experiments (32–34, 37, 51–55). RA blood
neutrophils express higher levels of MCL1, higher levels of
phosphorylated NF-κB and lower levels of active caspase-9
compared to healthy controls (48). Delayed apoptosis in synovial
fluid has also been attributed to other factors including lactoferrin
and adenosine (56, 57). The hypoxic environment in RA synovial
joints also plays a key role in delaying neutrophil apoptosis,
via increased expression of MCL1 (Figure 1) (58). Hypoxia can
also delay apoptosis via stabilization of hypoxia-inducible factor
1-alpha (HIF1-α) and activation of NF-κB (59), and regulates
neutrophil retention at sites of inflammation, prolonging
inflammation (60).

Microparticles (MPs) are small (0.2–2µM) extracellular
vesicles containing cargos of protein, lipids and nucleotides
(e.g., RNA, miRNA) which are released from activated cells
via budding and shedding of the cell membrane (61). MPs
are distinct from other extracellular vesicles, i.e., exosomes
and apoptotic bodies, by virtue of their size, cargo, membrane
content, and mode of formation (61). MPs are taken up by
neighboring cells through endocytosis, and their protein and
RNA cargo can alter the recipient cell phenotype once released
into the cytoplasm. They represent a novel form of paracellular
communication and differ in composition depending upon the
functional state of the originating cell. In SLE, MPs are annexin
V+ and contain cell markers indicating both endothelial cell
and neutrophil origins (62). SLE MPs activate plasmacytoid
dendritic cells to produce a range of cytokines, including IFNα

(62), and stimulate ROS production in autologous and healthy
neutrophils (63). Acetylated histones within chromatin in MPs
suggests theMPs are derived from apoptotic cells (62) andmay be
central to the stimulation of NOX2-independent NETs (64). The
population of annexin V+/acetylated histone+ MPs appear to be
specific to SLE and are not present in sera of healthy controls or
individuals with RA (62). MPs released from RA neutrophils may
have anti-inflammatory properties, activated through the pro-
resolving protein Annexin-A1 (65, 66). Annexin-A1 is released
from neutrophil granules following extravasation and is found in
RA synovial fluid. This protein exerts its pro-resolving effect by
promoting apoptosis and decreasing neutrophil:endothelial cell
adhesion and extravasation (66, 67).
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FIGURE 1 | Dysregulation of neutrophil apoptosis in RA and SLE. In RA, anti-apoptotic factors, such as cytokines and hypoxia activate NF-κB and prevent

mitochondrial cytochrome c (CytC) driven apoptosis through activation of BFL1, and stabilization of MCL1. This prevents BAX:BAK pore formation, CytC leakage and

formation of the apoptosome. In SLE, activation of death receptors (e.g., TRAIL, FAS receptors) lowers levels of cellular inhibitors of apoptosis (IAP) and activates

caspase-8 (CASP). BAX:BAK pore formation in the mitochondrial membrane releases CytC leading to apoptosome formation and activation of CASP-9 and CASP-3

leading to apoptosis. Nuclear antigens, including DNA, are also expressed at the plasma membrane.

ROS MEDIATED TISSUE DAMAGE

Neutrophils produce ROS via activation of the NADPH oxidase
(NOX2) (68). NOX2 is a multi-component enzyme, which is
assembled at the phagosomal and plasma membrane following
cytokine priming (69, 70). Priming induces phosphorylation
and mobilization of granular and cytosolic NOX2 components
[p22phox and gp91phox which together comprise cytochrome
b558, p40phox, p47phox, p67phox, and Rac (Rac-1 or Rac-2)]
to the phagosomal and plasma membranes in readiness for
phagosomal killing (70–73). Assembly of NOX2 at the plasma
membrane leads to the release of ROS into the extracellular
environment and is a major cause of damage to host tissue in
RA and SLE. ROS production via NOX2 in primed neutrophils is
triggered by activation of cell receptors [e.g., FcγR, complement
receptors, f-Met-Leu-Phe (fMLP) receptor]. Activated NOX2
catalyses the reduction of oxygen to superoxide (O2

−), an
unstable oxygen radical which rapidly forms hydrogen peroxide
(H2O2), the hydroxyl free radical (HO•) and/or peroxynitrite

(NO−

3 ) depending on cellular conditions (68, 74). Hydrogen

peroxide is the major substrate of myeloperoxidase (MPO),
a neutrophil azurophilic granule enzyme implicated in the
production of highly-reactive, secondary oxidants, such as
hypochlorous, hypobromous, and hypothiocyanous acids which
are potent anti-microbial agents that damage proteins, lipids and
DNA (68, 75).

SLE neutrophils exhibit aberrant ROS production, with O2
−,

H2O2, and HO• being produced more rapidly and in higher
levels than healthy individuals (76, 77). DNA, protein and
lipid markers of intracellular oxidative stress are increased
in SLE neutrophils (76), including 8-hydroxyguanosine, an
oxidized self-DNA which may function as a damage-associated
molecular pattern (DAMP) (78) and which is present in
NETs (79). Neutrophils from SLE patients with circulating
immune complexes or cytotoxic antibodies produce the highest
O2

− response to FcγR/complement receptor stimulation (80),
and unstimulated ex vivo neutrophils from lupus nephritis
patients have the highest levels of ROS production (77). SLE
serum induces O2

− generation in healthy neutrophils, with
O2

− production correlating positively with the presence of
immune complexes and negatively with the concentration of
complement (81). Many patients with SLE experience both
flares and periods of inactive or quiet disease. Neutrophils
from SLE patients in active flare often produce lower levels of
ROS in vitro than those with inactive disease, possibly due to
exhaustion of the neutrophils in vivo (76), or lower expression
of Fcγ and complement receptors (82). As yet unidentified
factors within SLE serum induce production of cytokines
by human renal glomerular endothelial cells which promote
neutrophil chemotaxis and adhesion (83). In patients with lupus
nephritis, immune complexes become deposited within tissues
in the kidney (6). This may arise through the binding of
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anti-nucleosomes and anti-C1q auto-antibodies to nucleosomes
and C1q captured on the surface of glomerular endothelial
cells by heparan sulfate (84). Neutrophils expressing FcγR2A
adhere to immune complex deposits on the surface of glomerular
capillaries, activating ROS production and release directly onto
host tissue (85). This release of ROS is directly responsible
for damage to glomeruli, including oxidation of DNA, lipids
and proteins, and induction of apoptosis (86). Oxidized high-
density lipoprotein (HDL), commonly found in SLE patients,
is pro-inflammatory, driving production of IL-6 and TNF by
macrophages, and lacking its normal, cardioprotective properties
(87). A polymorphism in the gene for neutrophil cytosolic
factor 1 (NCF1, rs201802880) in a sub-set of SLE patients is
associated with lower ROS production by neutrophils (88). This
polymorphism also increases expression of type 1 interferon-
regulated genes (89), the importance of which will be discussed
later in this review. Interestingly, the NCF1 (m1J) mutatedmouse
model of SLE has demonstrated a link between ROS deficiency
and interferon-driven autoimmunity downstream of a deficient
NOX2 complex (90).

In RA, both blood and synovial fluid neutrophils have an
increased capacity to produce ROS (91, 92). ROS production
within RA blood leads to modifications of immunoglobulin
G (IgG) which are associated with increased immunogenicity
and production of rheumatoid factor immune complexes (93).
Within the RA joint IgG complexes, both soluble and embedded
within synovial tissue, activate further ROS production by
neutrophils via activation of FcγR2a and FcγR3b (Figure 2) (94,
95), and trigger degranulation of proteolytic enzymes including
elastase and cathepsin G (8, 26, 56, 96–98). When this occurs
at the articular surface a microenvironment of concentrated
ROS, proteases and cytotoxic factors is formed, damaging the
underlying structures (8). As well as damaging collagen fibers
within cartilage, neutrophil granule proteases cause proteolytic
cleavage and activation of proteins (matrix metalloproteinases,
pro-cytokines/chemokines) and cleavage of soluble receptors to
initiate trans-signaling (such as the IL-6 receptor) (8, 21, 23, 99–
102). Additionally, ROS production within the joint disrupts
oxidative homeostasis and drives adaptive immune responses to
the synovial environment (68). ROS-induced MAPK and NF-
κB activation in synovial fibroblasts activates production of pro-
inflammatory prostaglandins by cyclooxygenase (COX)-2 (103).
ROS also exert profound effects on the local T cell population,
regulating differentiation, apoptosis and cytokine production
(104, 105).

NEUTROPHIL EXTRACELLULAR TRAPS

Neutrophil extracellular traps (NETs) are mesh like DNA
structures decorated with histones, MPO and other antimicrobial
proteins expelled from neutrophils in response to infectious
or inflammatory stimuli (106). They are an alternative defense
mechanism by which neutrophils trap and possibly kill
microbes (106, 107). Whilst the early events that signal NET
production rather than phagocytosis are unclear, at least two
methods of chromatin decondensation leading to NET formation

(NETosis) have been described: NOX2-dependent and NOX2-
independent (108). NOX2-dependent NETosis, also termed
suicidal NETosis, occurs via activation of NOX2 and production
of intra-phagosomal ROS. This causes increased intracellular
membrane permeability, movement of elastase to the nucleus and
degradation of histones leading to chromatin decondensation
and NET release (109). ROS production by NOX2 promotes
the morphological changes that occur during NETosis (110)
and inactivates caspases to block apoptosis pathways (109).
NOX2-independent NETosis does not require the production
of ROS by NOX2. In this case, mitochondrial ROS combine
with increased intracellular calcium levels to activate peptidyl
arginase deiminase (PAD) enzymes (e.g., PAD4) leading to
hypercitrullination of histones, chromatin decondensation, and
NET release (111, 112). Several inflammatory agents have been
reported to induce NET release, including fMLP, IL-8, LPS, nitric
oxide, and TNFα (113). Many proteins decorating NET are post-
translationally modified, in particular histones which have been
found to be methylated, acetylated (114) and citrullinated (111,
115–117) leading to speculation that NETs may be a source of
auto-antigens in auto-immune disease (8). Recent work suggests
that NETs (MPO:DNA and/or elastase:DNA complexes) detected
in up to 79% of RA and up to 100% of SLE sera are generated in
a NOX2-independent manner (118).

There is an ever increasing body of evidence to support
the hypothesis that the externalization of double-stranded
DNA and post-translationally modified proteins on NETs is
implicated in the pathogenesis of SLE, through activation
of interferon-producing plasmacytoid dendritic cells (pDCs)
(Figure 3) (119) and damage to endothelial tissues and
organs (25, 120). SLE sera cross-react in vitro with NET
components (114, 121) and spontaneous NET production
(NETosis) by SLE neutrophils ex vivo is also observed (120,
122). NET structures staining positive for DNA, elastase,
MPO, and citrullinated histone H3 are found in cutaneous
SLE lesions (123) and the kidney (120). Most strikingly the
molecular targets of many of the almost 100 auto-antibodies
associated with SLE, including those directed at nuclear DNA
and nuclear proteins, can be detected in NETs (124). The
majority of SLE patients will be positive for antibodies against
ANA and/or dsDNA at some point in their disease course
(2). Antibodies against histones (including acetylated and/or
methylated histones) are also common (125–127). Recent
proteomics analysis of NETs from SLE patients identified
a number of histone proteins with acetylated, methylated
and/or citrullinated residues (128), particularly in NOX2-
independent NETs. A number of these, for example acetylated
histone H2B (K21, K20), methylated histone H3 (K27) and
acetylated histone H4 (K5, K8, K12, K16), correspond to known
SLE auto-antibodies (114, 121, 129) and serum NET debris
(130). Aside from histones, a number of rarer SLE auto-
antibodies correspond to proteins identified on SLE NETs (128)
including HMG-17 (131), catalase (132), lamin B1 and B2
(133–135), apolipoprotein A1 (136), cathelicidin (LL37) (137–
139), annexin AI and α-enolase (140, 141). When directly
compared with RA NETs, the levels of MPO, leukocyte elastase
inhibitor and thymidine phosphorylase were higher in SLE
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FIGURE 2 | Neutrophil ROS production and protease release damages host tissue. In RA, immune complexes on the surface of the joint activate ROS production and

protease release from granules (shaded red, green, and pink) which damages underlying cartilage and activates neighbouring immune cells and fibroblasts. Proteases

also activate pro-peptides, such as cytokines produced by neutrophils and other infiltrating immune cells. A similar process is responsible for damage to blood vessels

in SLE.

NOX2-dependent NETs, whereas histones H1.0, H2B (type 1-J),
H2B (type 2-F), and H4 were higher in SLE NOX2-independent
NETs (128).

Many NET proteins also correlate with SLE disease activity
and play a direct role in tissue damage. MMP9 contained within
SLE NETs activates endothelial MMP2, inducing endothelial
dysfunction and apoptosis (142). Neutrophil gelatinase-
associated lipocalin (NGAL) is both a urinary biomarker of
lupus nephritis and a predictor of disease flare, although it is
not known whether degranulating neutrophils or NETs are
the source of NGAL in SLE urine (143–145). Auto-antibodies
to NET proteins that become deposited within the glomeruli
of patients with lupus nephritis (141) attract complement
and leukocytes expressing Fcγ and complement receptors
(including other neutrophils), activating the infiltrating cells
causing further tissue damage, e.g., via ROS and protease
degranulation (86, 146). In addition, excess NET production
within the vasculature and glomeruli promotes vascular leakage
and endothelial-to-mesenchymal transition (EndMT), a process
that is associated with pathogenic fibrosis of tissues (147).
NET production via PAD2 and PAD4 has also been shown to
contribute to the development of atherosclerosis and vascular
stiffness in murine lupus models (148, 149). Auto-antibodies
against apolipoprotein A1 may neutralize the cardioprotective
effect of the HDL complex, causing cardiovascular disease in
SLE patients with anti-apolipoprotein A1 antibodies (136, 150).
Whilst cathelicidin/LL37 may not play a direct role in tissue
damage in SLE, its indirect roles include activation of type-I
interferon production, activation of the inflammasome and
further activation of NET production (137). The abundance of
NET debris in SLE sera may be due to impairments in clearance
mechanisms associated with tissue homeostasis. Both inhibitors
of DNase-I, and anti-NET antibodies in SLE serum, have been

proposed as mechanisms impairing the dismantling of NET
structures. Impairment of DNase-I is also associated with kidney
involvement in SLE (151).

Immune complexes in the sera of SLE patients may contain
nucleic acids (Sm RNP RNA or DNA), which activate neutrophils
to produce ROS and IL-8 via FcγR2a (152). This phenomenon
is inhibited by chloroquine, a DMARD commonly used to
treat SLE. SLE immune complexes often contain LL37:DNA
complexes derived from NETs. LL-37:DNA complexes activate
B cells via TLR9 leading to expansion of self-reactive memory B
cells and IgG production (153). B cell activation by LL37:DNA
can also be inhibited by chloroquine, suggesting an important
role for endosomal TLR activation by NETs in the pathology
of SLE. In a recent clinical study of 16 SLE patients, excessive
NET production by was abrogated by combination therapy with
rituximab (a B cell targeted therapy) and belimumab (anti-
BLyS/BAFF) (154). Low disease activity, including a significant
reduction in auto-antibody titers, was achieved in over 50% of
patients in the study. Further analysis of sera from the patients
in this study revealed that the combination of rituximab and
belimumab significantly decreased anti-dsDNA, anti-histones,
anti-nucleosomes and anti-C1q titers (155). In addition, the
ability of patient sera to induce NET formation in vitro was
decreased by around 75% following combination therapy with
rituximab and belimumab (155).

In RA it is the exposure of citrullinated proteins on NETs that
is a key driver of auto-immunity, leading to the development
of anti-citrullinated peptide auto-antibodies (ACPA) (8, 156).
NET debris can be detected in both serum and synovial fluid
from RA patients (98, 118) and NET structures staining positive
for CD15, elastase, MPO and citrullinated (cit) histone H3 can
be seen in synovial biopsy tissues (156, 157). Many proteins in
RA patient neutrophils are citrullinated via activation of PAD2
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FIGURE 3 | NET production in RA and SLE drives the auto-immune response. Fragments of DNA and proteins (including histones, MPO, elastase, HMGB1, LL37) are

taken up by plasmacytoid dendritic cells (pDCs) and presented to auto-reactive B- and T-cells, leading to production of cytokines including interferon alpha (IFNα) and

autoantibodies. NET fragments, including oxidized DNA (shown in orange) may also activate NET production by neighboring neutrophils.

and PAD4 (158), including known auto-antibody targets: cit-
actin, cit-histone H1.3, cit-histone H3, cit-vimentin (156, 158).
PAD enzymes are present in synovial biopsies, localized with
MPO in necrotic areas of synovial tissue that also contain large
areas of citrullinated proteins (159), and PAD2 and PAD4 are
present in NETs generated from ex vivo RA neutrophils (128).
PADs are also found in high concentrations in synovial fluid
alongside citrullinated proteins, such as α-enolase (160, 161).
Proteomics analysis of RA NETs identified citrullinated forms of
known auto-antibody targets, such as cit-α-enolase, cit-histone
H2A, cit-histone H4, cit-vimentin (128), as well as acetylated
and methylated histones in line with analysis of NET debris in
RA serum (118). Proteomic analysis of synovial fluid from RA
and spondyloarthritis (SpA) patients identified many neutrophil
proteins present at significantly elevated concentrations in RA
synovial fluid, including MPO, cathepsin G, annexin-A1, and
NGAL. Although no difference was observed in the amount of
cell-free DNA between RA and SpA synovial fluid, the levels of
21 NET proteins were elevated in RA SF, including histones H2A,
H2B and H4, MMP9, elastase, and α-enolase (98). Whilst the
levels of ACPA in RA serum do not appear to correlate with NET
material, antibodies to NET material (ANETA) are significantly
higher in seropositive RA patients (162).

Several mechanisms have been proposed explaining how
NETs and NET proteins contribute to joint damage and disease
activity in RA. Elastase within in NETs has been demonstrated
to disrupt the cartilage matrix, triggering PAD2 release

from fibroblast-like synoviocytes (FLS). Activated PAD2 causes
citrullination of cartilage fragments which are then internalized
by FLS and presented via MHC Class II to antigen specific T-
cells leading to the production of ACPA in HLA-DRB1∗04:01
transgenic mice (163, 164). Both MMP8 and MMP9, found
in RA NETs, contribute to degradation of the cartilage matrix
and are associated with increased mortality (100, 165, 166).
NETs also contain enzymes which degrade aggrecan, another key
structural component of cartilage (164). Citrullinated vimentin
and aggrecan are preferentially recognized by T cells expressing
the HLA-DRB1∗04:01/04 allele (known as the “shared epitope”)
(163, 167) inducing auto-antibody production (164). Auto-
antibodies secreted by RA synovial B cells cross react with cit-
fibrinogen, cit-histones H2A/H2B, and cit-vimentin, as well as
NETs generated from RA blood and joint neutrophils (168).
Presentation of citrullinated antigens to autoreactive T cells
provides a molecular explanation for the strong association
between the HLA-DRB1∗04:01/04 allele and the development of
RA (164, 167).

GENE EXPRESSION AND CELL
SIGNALLING

For many years, mature neutrophils were wrongly believed to
be transcriptionally silent, and any changes in protein levels
during activation were believed to be solely due to mobilization
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of internal stores during priming and/or membrane shedding
rather than synthesis of new protein. However, there is now
an increasing body of work demonstrating that neutrophil gene
expression is dynamic, being rapidly regulated over short time
points by exposure to inflammatory agents, such as TNFα,
GM-CSF, IL-1β, LPS, and opsonized micro-particles (169–171),
and over several hours by chromatin remodeling, for example
in response to the TLR8 agonist resiquimod (R848) (172).
Neutrophils have the capacity to express and secrete a wide range
of inflammatory mediators, including interleukins (including
IL-1α and−1β, IL-1RA, IL-6, IL-12, and IL-23), chemokines
(CCL and CXCL family members), TNF superfamily members
(including TNFα, BLyS/BAFF, APRIL, TRAIL, and RANKL),
metabolites of arachidonic acid (leukotriene B4, prostaglandin
E2, and thromboxane A2), and angiogenic factors, such as VEGF
and HGF (8, 22, 173–177).

Neutrophil gene expression is highly regulated during
granulopoiesis (178–180), with transcripts for granule proteins
(e.g., MPO, elastase, lactoferrin) becoming depleted once
the mature protein has been packaged within granules in
the maturing neutrophil (181). The content of neutrophil
granules is determined by the order in which the granules
develop: azurophilic granules first, followed by specific granules,
then gelatinase granules, and finally secretory vesicles (182).
Expression of neutrophil receptors (integrins, FcγR, cytokine
receptors) is also highly controlled during granulopoiesis, with
neutrophil markers CD16 (FcγR3b) and CD10 (neprilysin) for
example only being expressed as the mature neutrophil is ready
to exit the bone marrow (181, 183). Many neutrophil genes,
including those coding for granule proteins, migratory proteins,
chemokines, and chemokine receptors are also regulated by
circadian rhythms (19). Dynamic changes in neutrophil gene
expression also take place as cells migrate from the blood
into inflamed tissues during inflammation, with transcripts
for adhesion molecules decreasing and chemokine expression
increasing at sites of inflammation (49, 184). Polymorphisms
within expression quantitative trait loci (eQTLs) have been found
in over 160 genes which play a fundamental role in every stage
of neutrophil biology, from granulopoiesis to activation during
infection and ultimately apoptosis. Several of these eQTLs are
associated with known Mendelian disorders and inflammatory
diseases (185).

Transcriptomic analysis of RA and SLE neutrophils has
revealed a strong IFNα-induced gene expression signature in
both conditions (186, 187). In RA, a high IFNα-regulated
gene expression signature is a predictor of response to TNF
inhibitor therapy (188). IFNα has recently been shown to regulate
neutrophil activation in the presence of inflammatory cytokines
(173) and in particular is involved in a switch in expression of
chemokine genes. Whilst expression of genes for CCL and CXCL
family chemokines is relatively low in blood neutrophils from
RA patients with a high interferon gene expression signature,
the expression of these chemokines increases significantly in RA
synovial fluid neutrophils following migration to inflamed joints
(49, 189–191). RA blood neutrophils also express mRNA for
MHC Class II, with both RNA and MHC Class II protein being
detected in RA synovial fluid neutrophils (192). Together this

activated, synovial fluid neutrophil phenotype is responsible for
driving activation of innate and adaptive immune cells in RA
tissues. A polymorphism in the leukocyte phosphatase PTPN22
(R620W, rs2476601) enhances migration of RA neutrophils,
and causes increased production of ROS following TNF-
priming in vitro (193). Neutrophils from RA patients also
express significantly higher levels of membrane proteinase-3
(mPR3) compared to healthy controls, an observation that is
found in other neutrophil-driven autoimmune diseases, such
as vasculitis, but not in T-cell driven type-I diabetes (194).
In some RA patients, mRNA levels of granule genes (e.g.,
elastase, MPO) remain elevated even inmature blood neutrophils
despite these transcripts normally being down-regulated during
granulopoiesis (188). Expression of neutrophil granule genes is
associated with non-response to TNF inhibitor therapy in RA
but does not correlate with intracellular levels of granule proteins
(188). Expression of membrane TNFα correlates with DAS28 and
is decreased following successful treatment with TNF inhibitor
therapy (48).

A global down-regulation of miRNA expression has been
shown in RA blood and synovial fluid neutrophils compared
to healthy controls (191). Decreased miRNA levels correlate
with clinical parameters of disease including ACPA titer
and DAS28 scores and is more pronounced in synovial
fluid neutrophils. Targets of these down-regulated miRNAs
include genes associated with cell migration, cell survival and
inflammation, suggesting that a defect in miRNA expression may
drive neutrophil-mediated inflammation within RA joints (191).
An eQTL in the gene encoding PAD4 (PADI4, rs2240335-A) is
associated with increased expression of PAD4 in neutrophils and
is in almost complete linkage disequilibrium with the rs230188
SNP in PADI4 (LD r2 = 0.93) that confers an elevated risk of
developing RA (185, 195).

In SLE, the IFNα-induced gene expression signature is
believed to result from activation of pDCs by nuclear debris and
NET fragments. The IFNα-induced gene expression signature
can be detected in neutrophils, PBMCs and whole blood
transcriptome analysis (187, 196–198), and in some studies
has been shown to correlate with organ involvement and/or
disease activity (198). However, a subset of SLE patients do
not display this signature and indeed SLE patients are often
described as being interferon “high” or “low” (196, 199). SLE
neutrophil DNA is hypomethylated, especially near interferon-
response genes (200). Some success in stratifying interferon-high
patients to anti-IFNα therapy (anifrolumab) is evident (201),
although the largest clinical trials of anifrolumab (TULIP-1 and
TULIP-2) found no significant differences in the response to anti-
interferon therapy between the interferon-high and interferon-
low patient groups (202, 203). Expression of neutrophil genes
within SLE whole blood has been attributed to the increase in
the population of low density granulocytes (LDGs), discussed
below (198), although proteomics analysis of SLE neutrophils
and LDGs suggests that protein levels of MPO and other granule
proteins is higher in SLE neutrophils (204). The expression of
neutrophil granule protein genes in SLE whole blood is strongly
associated with lupus nephritis (197, 205), vascular inflammation
and cardiovascular involvement (206). SLE neutrophils also
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express high levels of BAFF/BLyS (198), the molecular target
of belimumab which is the first biologic therapy developed to
specifically target SLE (207).

IMMUNOMETABOLISM

Cellular metabolism is key regulator of neutrophil energy
production, activation and function under conditions of both
homeostasis and inflammation. The complex interplay of
metabolic pathways and the utilization of shared metabolic
intermediates has been the subject of great focus in immunology
research as well as in diseases of metabolic dysfunction and aging
(208–210). Complex changes in metabolic regulation within
leukocytes occur during activation, when migration from blood
to tissue or differentiation into tissue resident immune cells
causes dramatic changes in nutrient and oxygen availability,
placing sudden and high metabolic demands upon immune cells
(211, 212). Fine-tuning of metabolism during an inflammatory
response is a key for the generation of small moleculemetabolites,
such as ATP, NADPH, nucleotides, and amino acids, which are
required rapidly and in high abundance during cellular activation
(211, 212). Dysregulation ofmetabolic control has been described
in inflammatory diseases, such as RA (213), where changes in T-
cell glycolytic activity drives differentiation, hyperproliferation,
and hypermigration of T-cell subsets (213–215).

Glucose metabolism has its greatest role in neutrophil
energy production (Figure 4); neutrophils are known to rely on
glycolysis to fuel their energy requirements (216), where the
multi-step enzymatic conversion of glucose into pyruvate in
the cytosol provides relatively low levels of ATP and NADH.
Pyruvate would normally be oxidized by mitochondria through
the tricarboxylic acid (TCA) cycle in aerobic conditions, however
in neutrophils it is converted instead into lactate, enabling the
generation of NAD+ for re-use in the glycolytic pathway. The
first intermediate of glycolysis, glucose 6-phosphate (G6P), fuels
the pentose phosphate pathway (PPP). NAPDH is produced in
the oxidative phase of the PPP, maintaining NOX2 activity and
ROS production, and is necessary for chromatin decondensation,
NOX2-dependent NET formation and NET release (217). The
non-oxidative step of the PPP generates nucleic acids and
glycolytic precursors. Tight control over glucose metabolism and
PPP activity is achieved by the glucose-6-phosphate transporter
(G6PT)/G6Pase-β complex which maintains cellular energy
homeostasis and functionality in neutrophils by limiting G6P
availability in the cytoplasm. Dysfunction in glucose homeostasis
due to defective G6PT activity in neutrophils impairs ROS
production, calcium mobilization and chemotaxis (218, 219).

A number of other metabolic pathways have been described
in neutrophils, including the Krebs/TCA cycle, oxidative
phosphorylation (OXPHOS), and a fatty acid oxidation (FAO)
pathway, all taking place within the mitochondria. Early
experiments suggested that neutrophil mitochondria were not
fully functionally active, having a dispensable role in neutrophil
respiration and energy production. Mitochondrial density in
human neutrophils is low and inhibitors of OXPHOS do not
alter the rates of oxygen consumption or H2O2 production (220–
222). However, the notion of metabolically inactive mitochondria
was recently challenged by a study in mice which suggested

that a metabolic shift from glycolysis to OXPHOS for energy
sustainability was possible in neutrophils, both during changes
that occur within the cancer tumor microenvironment, and in
a number of neutrophil subsets (223). Mitochondria also have
a wider and more important role in the regulation of aerobic
glycolysis by maintaining the energy potential through complex
III of the respiratory chain. Glycerol-3-phosphate (G3P), a by-
product of glycolysis, can enter mitochondria where it is re-
oxidized on the outer surface of the inner membrane, effectively
maintaining membrane potential (224, 225). A further role for
neutrophil mitochondrial metabolism in neutrophil function has
been demonstrated, with mitochondrial activity being central to
processes including ROS production, chemotaxis, and apoptosis
(226–230). There is also increasing evidence of the utilization
of the TCA cycle by neutrophils for energy metabolism under
glucose-limited conditions (231) and during granulopoiesis
(232). In addition, LDGs convert glutamate or proline to alpha-
ketoglutarate (α-KG) to feed the TCA cycle and enable them
to perform metabolically demanding neutrophil functions under
conditions of glucose deprivation (233).

Parallel to glucose and mitochondrial metabolism, which are
restricted to the cytosol and the mitochondria, glutaminolysis is
a metabolic pathway that encompasses both environments and
is tightly correlated with the phagocytic and bacterial killing
ability of cultured neutrophils. Interestingly, neutrophils have
been found to utilize more glutamine than other leukocytes
including lymphocytes and macrophages (234). The precursor
glutamine is not completely oxidized to generate ATP, and
instead plays a role in the regulation and activation of the NOX2
complex, joining glucose metabolism in providing the means
of rapidly generating the reducing equivalents of NADPH for
the microbicidal NADPH oxidase (NOX2) system (235, 236).
Glutaminolysis converts glutamine into TCA cycle metabolites,
linking the two pathways together. Glutamine goes through a
series of biochemical reactions where it is initially converted to
glutamate, and then into α-ketoglutarate, which oxidizes NAD+

into NADH. At this point α-ketoglutarate enters the TCA cycle
and is converted to malate which is then transported out of
the mitochondria to be converted into pyruvate, which just
like in glucose metabolism is converted into lactate to generate
NAD+ (234, 237). Under conditions when glucose supply is
limited, neutrophils can switch to the utilization of glutamine
to meet their energetic needs (238). Furthermore, glutamine
addition to cell culture medium of isolated neutrophils increases
their phagocytic activity and rate of superoxide production
(239). Glutamine has also been found to indirectly affect the
functionality of neutrophils by modulating the production of
IL-8, a neutrophil chemoattractant, in various cell types during
activation (240, 241).

Within RA synovial fluid, a dynamic environment exists that
controls neutrophil fate by a variety of anti- and pro-apoptotic
factors. Low oxygen levels in the RA joint trigger a delay in
apoptosis (58). HIF1-α is upregulated in hypoxic conditions
by the family of oxygen sensing proteins known as prolyl
hydroxylase domain enzymes (PHD1-3). HIF1-α exerts control
over glycolysis by regulating the expression of key glycolytic
enzymes, G3PDH and triosephosphate isomerse-1, providing
a mechanism for the continued generation of ATP. This
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FIGURE 4 | Neutrophil metabolic pathways and the effect of their dysregulation in SLE and RA. (A) In physiological conditions, glycolysis is the main energy producing

pathway utilized by neutrophils; intermediate metabolites G6P and F6P are starter molecules for the pentose phosphate pathway (PPP), important in redox control,

NOX2-dependent NETosis and ROS production. The oxidative stage of PPP produces NADPH which is used in the glutathione metabolism to reduce glutathione

providing further redox capacity. Other energy producing pathways have been described, previously thought to be non-functional, such as the TCA cycle which

connects glutaminolysis pathway and further regulates NOX2 complex by generating the reducing equivalents of NADPH. (B) In SLE and RA dysregulation of these

pathways is responsible for the conditions observed at the cellular level. In SLE (red arrows), a lower expression of glucose transporters is met with lower levels of

intracellular glucose, diminishing the energy output by glycolysis and compromising cellular viability. Furthermore, a decrease of G6P intermediates correlates with

lower levels of NOX2-dependent ROS and decreased redox capacity. NOX2-independent ROS production in mitochondria is amplified in SLE neutrophils with

increasing release of NETs containing mitochondrial DNA. In RA (green arrows), the inflammatory environment and hypoxic conditions increase the expression of

HIF1-α which upregulates key glycolytic enzymes increasing energy production and viability. HIF1-α also is an upstream regulator of NF-κB which increases

pro-inflammatory cytokine production therefore maintaining the inflammatory environment.

mechanism is an essential requirement for neutrophil functional
responses to inflammation (242–244) and, by additionally
directing the expression of the leukocyte β2 integrin CD18, it is
critical for innate and adaptive immune responses (245). Studies
have revealed that NF-κB is an important downstream effector of
the HIF1-α-dependent response to hypoxia and that knockdown
of the HIF1-α gene decreases glycolytic metabolism and induces
cell death (59). RA synovial fluid contains significantly lower
levels of glucose than OA synovial fluid, reflecting the high
levels of cellular metabolism by infiltrating leukocytes and
synovial tissues (246). Other metabolites within RA synovial
fluid, including citrate, itaconate, and succinate, have been
shown to regulate ROS production, cytokine expression and
inflammasome activation in leukocytes (247–249), although
the direct effect of these individual metabolites on synovial
neutrophil function remains to be determined.

The abundance of apoptotic neutrophils in the blood along
with their defective clearance and the propensity to form
NETs contribute to the pathogenesis of SLE. Consistent studies
reporting increased apoptosis, inflammatory phenotypes and

mitochondrial defects in SLE neutrophils suggest that their
cellular metabolism might be highly skewed (218, 250). SLE
neutrophils have been found to have a decreased capacity for
glucose uptake via defective expression of glucose transporters
(GLUT-3 and GLUT-6) on the cell membrane compared to
healthy neutrophils (250, 251). Limited glucose availability may
pose a threat to cellular viability due to decreased glycolytic
flux. This is true for other immune cells, such as lymphocytes,
which enter BCL-2-regulated apoptosis when glycolytic flux
decreases to levels that no longer sustain viability (252).
Glucose availability is essential for the two primary pathways
in activated neutrophils (glycolysis and PPP), and impaired
glycolytic flux could explain the impaired NOX2-dependent ROS
production seen in some SLE neutrophils, where glucose would
be prioritized for energy production over ROS/NET production.
Indeed, impairment of the G6PD/glucose flux in experimental
models is directly associated with less NOX2 activity and
with lower ROS production (253). Decreased levels of NOX2
ROS production may be compensated for by hyper-functional
mitochondrial ROS production, which causes oxidation of
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unprotected mitochondrial DNAwhich is then extruded through
NETosis (122). Increased mitochondrial ROS production and
higher levels of O2

−, H2O2, and HO• in SLE neutrophils (76, 77)
are met by a decreased redox capacity compared to healthy
controls (68, 251, 254). This is due to lower concentrations of
glutathione which is critical for adequate redox capacity (255,
256). Neutrophils have a large capacity to keep glutathione in
the reduced form via the activity of glutathione reductase (GRs)
(257). A deficiency in this enzyme produces a more transient
oxidative burst in response to bacteria (258). On the other
hand, age-related impairment of glutathione peroxidase activity
accounts for increased intracellular accumulation of hydrogen
peroxide (259). Decreased levels of intracellular glutathione
peroxidase (GSH-px), due to impaired GRs activity, leads to
neutrophil dysfunction during conditions that are associated
with chronic inflammation (260, 261). NOX2-independent ROS
production in neutrophils is amplified by reagents affecting
glutathione homeostasis (262). The wider impact of circulating
SLE neutrophils in the modulation of other leukocyte activation
is emphasized by the increased release of NETs containing
mitochondrial DNA when compared to healthy donors; this was
linked to chronic activation of pDCs and amplification of IFNα

production (119, 263).

NEUTROPHIL SUBSETS

The peripheral blood population of neutrophils is
not a homogeneous pool (264); several populations
of neutrophils have been identified which circulate
alongside mature neutrophils, including low-density
granulocytes (LDGs, CD15high/CD14low/CD10+/−/CD16+),
granulocytic myeloid-derived suppressor cells (G-MDSCs,
CD11chigh/CD62Llow/CD11bhigh/CD16high/CD33low), and
reversemigrated neutrophils (RM, CD54+/CD18high/CXCR1low)
(265–267). Tumor associated neutrophils (TANs), which may
have a pro- or anti-tumor phenotype, are present in many
cancers (266, 268, 269); their function is outside the scope of
this review.

G-MDSCs are an immune regulatory neutrophil subtype that
inhibit the activation and expansion of autologous T cells, via the
production of ROS at the immune synapse (270). Expression of
MAC-1 (integrin αMβ2) is essential to the suppressor function
of G-MDSCs (270). G-MDSCs with the ability to inhibit T
cell proliferation are present in RA blood and synovial fluid
(271, 272) and have been studied to greater effect in murine
models of auto-immune arthritis, where they have been shown
to inhibit both T cell proliferation and differentiation of Th1 and
Th17 cells, and promote Treg numbers (273–275). G-MDSCs are
found at a higher proportion in the blood of SLE patients than
in healthy controls (272). SLE G-MDSCs produce high levels
of ROS and also have the ability to impair T cell expansion
(276). G-MDSCs from lupus-prone mice produce more ROS and
NETs than healthy mice, however the population of G-MDSCs is
unable to expand under inflammatory conditions, suggesting the
loss of G-MDSCs due to NETosis may contribute to the impaired
resolution of inflammation in SLE (277).

Reverse migration of neutrophils from sites of inflammation
back into the circulation has been observed in zebrafish, mice and
humans (267). Zebrafish RM neutrophils remain functional and
able to respond to a second inflammatory challenge (278). RM
neutrophils express high levels of ICAM-1 (CD54) (279), and in
mice have been shown to contribute to systemic inflammation
(280). RM neutrophils represent around 1–2% of circulating
blood neutrophils in RA patients and only around 0.25% of blood
neutrophils in healthy individuals (279). RM RA neutrophils
have lower levels of constitutive apoptosis and produce higher
amounts of ROS than circulating blood neutrophils (279).

Low-density granulocytes (LDGs) were first reported in
the blood of SLE patients in 1986 (281) but their function
and pathological significance has only recently been explored.
These cells, remaining in the peripheral blood mononuclear
cell (PBMC) layer after density-gradient centrifugation,
express cell-surface markers specific to mature neutrophils
(CD15high/CD14low/CD10+/−/CD16+) (282, 283), whilst
expressing mRNA transcripts characteristic of immature
neutrophils (e.g., MPO, elastase) (120, 283, 284). High numbers
of LDGs in SLE blood correlate with skin involvement, vasculitis,
dsDNA titers and SLEDAI scores (120, 284, 285), and SLE
LDGs have an increased tendency to form NETs in vitro (120).
Un-stimulated SLE LDGs secrete increased amounts of IL-8
and IL-6 and have impaired phagocytic capacity (282). SLE
LDGs also stimulate production of TNFα, TNFβ, and IFNγ

by T cells (286). Recent work has revealed that the SLE LDG
population is heterogeneous (mature CD10+ or immature
CD10−), with significant differences in transcriptomic and
epigenomic regulation of function and phenotype that correlates
with clinical manifestations of the disease (187, 284). Mature
CD10+ SLE LDGs express high amounts of mRNA and protein
for interferon-regulated genes, whereas immature CD10− SLE
LDGs express high amounts of mRNA for cell cycle genes
(187, 204). CD10+ SLE LDGs undergo phagocytosis, chemotaxis
and NETosis at higher levels than CD10− LDGs, which release
MPO at higher amounts than CD10+ LDGs and normal density
SLE neutrophils (187). It has been suggested that SLE LDGs
undergo NETosis in response to the production of mtROS,
with SLE LDG NETs containing mitochondrial DNA including
oxidized DNA (8-oxo-2’-deoxyguanosine) which is strongly
interferogenic (122). This phenomenon is also observed in
chronic granulomatous disease LDGs, which lack functional
NOX2 but can produce mtROS and NETs (122). SLE LDGs
have stiffer biomechanical properties and are slower to migrate
through microvascular mimetics in vitro (204). This may explain
why LDGs are not found in affected tissues in SLE (284).

RA LDGs have a distinct transcriptome profile compared
to RA neutrophils, expressing high levels of transcripts for
granule proteins and cell cycle checkpoint genes, and lower
levels of expression of apoptotic genes, cytokines, chemokines,
and signaling receptors (283). The presence of LDGs in RA
blood is unaffected by therapy, and LDG counts correlate
with measures of disease activity (DAS28) (283). RA LDGs
undergo lower levels of apoptosis in vitro after overnight culture;
however whilst LDG apoptosis can be further delayed by GM-
CSF, LDG apoptosis is unaffected by TNF-α. In addition, ROS
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production by TNFα-primed RA LDGs is lower than paired
blood neutrophils, likely due to their lower expression of TNF-
receptors (283). NET production by RA LDGs is not significantly
different from paired neutrophils (283).

Whilst the main focus of investigation into the phenotype
of LDGs has focused on SLE and to a lesser extent RA, their
presence in the blood is not exclusive to rheumatic disease. LDGs
have been identified in many other disease settings, including
asthma, vasculitis, multiple sclerosis and chronic kidney disease
(287–290). Indeed, they are even present in low numbers in
healthy controls (291). Isolation of LDGs from blood is highly
dependent upon the density of the isolation medium used (e.g.,
Ficoll, Percoll, Polymorphprep) (292) and this raises the question
as to whether studies using different isolation protocols for
preparation of neutrophils and LDGs from whole blood can be
directly compared. There are mixed reports on the functionality
of LDGs from healthy controls, and whether they have different
immunological properties (e.g., T cell suppression) to normal
density neutrophils and LDGs from inflammatory disease (291,
292). Another key question is whether LDGs represent a novel
subset of neutrophils, or whether their phenotype reflects one
of spectra of phenotypes that blood neutrophils may exhibit
through functional plasticity. Evidence from RA and SLE
(CD10− LDGs), where LDGs express cell cycle genes and
transcripts for neutrophil granule proteins, suggests that these
cells may have arisen from emergency granulopoiesis due to
chronic inflammation (187, 283). Administration of LPS in vivo
to healthy volunteers appears to support this conclusion, with
an increase in immature CD16dim band cells being observed in
blood 3h after LPS challenge (292). However, it is also possible to
induce a low density phenotype from normal density neutrophils
in vitro by activation with agents, such as fMLP, platelet activating
factor, TNFα and LPS (291, 292), suggesting that LDGs may
represent a subset of primed or activated neutrophils (292).
Further work needs to be carried out to determine the true origin,
phenotype and nature of LDGs and other neutrophil subsets,
such as G-MDSCs (264).

NEUTROPHILS AS A THERAPEUTIC
TARGET

In this review we have discussed the multitude of ways that
inflammatory neutrophils drive inflammation in RA and SLE.
This raises the potential to target dysregulated neutrophil
activation with therapeutics in both diseases (293). In RA,
neutrophil activation can be targeted by biologic DMARDs
(bDMARDs), such as anti-TNF therapy, which has been
demonstrated to decrease neutrophil membrane TNF expression
andNF-κB activation (48). Newer orally available, small molecule
therapies, such as JAK inhibitors have shown good efficacy
in RA, as they target intracellular signaling via a number of
cytokine receptors, including IFNα, IFNγ, GM-CSF, and IL-6
(294, 295). JAK inhibitors baricitinib (JAK1/2) and tofacitinib
(JAK3/1) inhibit cytokine priming in neutrophils and can inhibit
RA neutrophil migration and ROS production (296). In SLE, the
bDMARD belimumab inhibits the cytokine BLyS/BAFF, a major

source of which is activated neutrophils and LDGs (175, 198).
Belimumab is one of only two drugs specifically licensed to treat
SLE in the UK, the other being hydroxychloroquine.

Hydroxychloroquine, an anti-malarial already widely used
to treat both RA and SLE, is a potent modulator of neutrophil
function. It has been shown to inhibit neutrophilic inflammation
into inflamed kidneys (297), inhibit NET production via
inhibition of TLR9 (298), and block ROS and IL-8 production
in response to RNA-containing immune complexes (152).
Methotrexate, commonly used in both SLE and RA, inhibits
cytokine-delayed neutrophil apoptosis, ROS production and
leukotriene B4 synthesis (299–301). Glucocorticoids are
frequently used in both RA and SLE to control disease flares.
Prednisolone for example, rapidly disarms pro-inflammatory
neutrophils and inhibit both ROS release and production of
pro-inflammatory mediators (14, 302, 303).

Several newer therapies under development or in clinical trial
also target neutrophil activation. Major activators of neutrophil
production and priming, the colony stimulating factors
(CSFs), are exciting targets for treatment of neutrophil-driven
inflammatory diseases. Anti-GM-CSF (mavrilimumab) therapy
has had success in RA clinical trials (294), and anti-G-CSF
therapy is effective in treating murine arthritis, both inhibiting
neutrophil migration into joints, and suppressing cytokine
production (304). Neutrophil migration into inflammatory
murine joints is also significantly decreased by inhibitors of
CXCR1/CXCR2, the receptor for CXCL8 (IL-8) (305). This
decrease in neutrophil infiltration is mirrored by lower disease
activity and TNFα production within the joint (306). Bosutinib,
an Abl/Src kinase inhibitor currently used to treat patients with
chronic myeloid leukemia, inhibits neutrophil FcγR2A-induced
ROS production, recruitment to glomerular capillaries and
kidney injury in an immune complex-driven model of kidney
disease (85) suggesting this may be a promising therapy to target
neutrophilic damage in lupus nephritis.

Excess NET production represents an exciting prospect
for therapeutic development, with the potential to break the
chain leading to auto-antigen recognition, activation of pDCs,
interferon production, auto-antibody production and damage
to local tissues, such as cartilage and microvessels within the
kidney. As mentioned earlier, a clinical trial of rituximab and
belimumab inhibited NET production in SLE, and this was
associated with lower auto-antibody titers (including lower anti-
dsDNA and anti-histones) and a decrease in disease activity
(154, 155). NET production may also be targeted by inhibitors of
PAD4,MPO and neutrophil elastase.MPO and elastase inhibitors
reduce neutrophil-driven inflammation in animal models of
inflammatory disease and human respiratory disease (307, 308).
PAD4 is an enzyme that catalyses the conversion of arginine to
citrulline (116, 309). It plays an important role in chromatin
decondensation during NETosis and is physically associated
with the cytosolic subunits of the oxidative burst machinery
in a way that regulates assembly of the active NOX2 complex
(116, 309). Over the last few years, PAD4 has emerged as a
potential therapeutic for the treatment of RA and SLE. Initially
irreversible inhibitor compounds, such as F- and Cl-amide
were found to inhibit PAD4 (310), and showed efficacy in RA
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and SLE models through the inhibition of NET production.
Cl-amidine prevented development of atherosclerotic plaques,
interferon production and immune complex deposition in the
kidney in lupus-prone mice (148, 149, 311). However, their
poorly understood involvement in this process was the driving
force for discovering reversible inhibitors, such as GSK484 and
GSK199. GSK484 is the more potent of the two and selectively
targets PAD4. It inhibits citrullination in primary neutrophils
and NET formation in both mouse and human neutrophils
(312, 313). Currently novel agents targeting PAD4 are being
developed, which have shown to decrease the levels of circulating
NET DNA in serum (313, 314). However, complete inhibition
of NET production may block an important neutrophil function
that provides protection against infection (315). Indeed, PAD4
knock out mice are highly susceptible to developing systemic
inflammation from bacterial keratitis, where NETs normally
function to protect the host from infection at the expense of
the cornea (316). PAD enzymes also have a key physiological
role in regulating gene expression and cellular differentiation,
therefore a more targeted approach to PAD/NET inhibition may
be required for development of therapeutics (315).

FINAL SUMMARY

In this review we have highlighted the way in which dysregulated
neutrophil activation can contribute to the development and
progression of RA and SLE. In particular, dysregulated apoptosis

and NETosis lead to exposure of intracellular post-translationally
modified proteins and DNA activating the adaptive immune
response (interferon release, auto-antibody production) and
inducing damage to tissues either directly or by activating
neighboring cells. Neutrophil degranulation and ROS production
damage local tissues and contribute to systemic inflammation.
Aberrant neutrophil activation in RA and SLE is caused, in
part, by a dysregulation of gene expression and metabolism,
via different mechanisms specific to each disease. Targeting
unwanted neutrophil activation in RA and SLE may be a
promising avenue for investigation and may have fewer side
effects than the broad-spectrum immunosuppressants often used
to treat these life-limiting auto-immune conditions.
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