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ABSTRACT Meta-analysis has become a popular tool for genetic association studies to combine different
genetic studies. A key challenge in meta-analysis is heterogeneity, or the differences in effect sizes between
studies. Heterogeneity complicates the interpretation of meta-analyses. In this paper, we describe
ForestPMPlot, a flexible visualization tool for analyzing studies included in a meta-analysis. The main
feature of the tool is visualizing the differences in the effect sizes of the studies to understand why the
studies exhibit heterogeneity for a particular phenotype and locus pair under different conditions. We show
the application of this tool to interpret a meta-analysis of 17 mouse studies, and to interpret a multi-tissue
eQTL study.

KEYWORDS

GWAS
genetic
association
studies

heterogeneity
meta-analysis

Meta-analysis has become a popular tool for genetic association studies
to achieve higher power in identifying genetic variants that affect a trait
(Evangelou and Ioannidis 2013). Recently, by combiningmultiple stud-
ies through meta-analysis, a large number of genetic studies have suc-
cessfully identified novel associated loci that were not identified by any
single study included in the meta-analysis (Morris et al. 2012; Lango
Allen et al. 2010; Lambert et al. 2013; Heid et al. 2010; Anttila et al.
2013). As more genetic studies of phenotypes become available, meta-
analysis will become even more widely utilized in genetic association
studies.

Interpreting and understanding the results of meta-analysis is
now becoming important, yet it remains a challenge. The combined
studies in a meta-analysis are often heterogeneous. For example,
genetic association studies can differ from each other in terms of
environmental conditions (Kang et al. 2014), study design, popu-
lations, statistical noise, and the use of covariates in the analysis
(Manning et al. 2012). These factors can make the effect sizes differ

between studies, a phenomenon called between-study heterogene-
ity (Han and Eskin 2011). A correct interpretation of this hetero-
geneity will lead us to a better understanding of the effect under
specific conditions, and to an informed decision in the replication
study.

In this paper, we describe ForestPMPlot, a flexible visualization
tool for analyzing studies included in a meta-analysis. The main
feature of the tool is visualizing the differences in the effect sizes of
the studies to understand why the studies exhibit heterogeneity for a
particular phenotype and locus pair under different conditions.
Unlike traditional forest plots, which only display effect size mag-
nitude and its standard error for each study, ForestPMPlot displays
the P-value and the posterior probability prediction for the exis-
tence of the effect in each study (m-value), which is estimated by
utilizing cross-study information (Han and Eskin 2012). The main
advantage of the m-value is that it can effectively segregate from
one another the studies predicted to have an effect, the studies
predicted to not have an effect, and the ambiguous studies that
are underpowered. ForestPMPlot visualizes the relationship be-
tween P-values and m-values in a plot called PM-Plot and displays
it along with the forest plot. By visualizing much richer information
than the traditional forest plot, ForestPMPlot can considerably
facilitate the interpretation of the results of meta-analysis.

METHODS
In this section,wefirst reviewthe twodifferentmeta-analysis approaches
[fixed effects (FE) model and random effects (RE) model], and explain
our approaches for visualizing the results of meta-analysis.
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FE model meta-analysis
The underlying assumption of FE meta-analysis is that the effect size is
the same across the studies included in the meta-analysis (Mantel and
Haenszel 1959). Under this assumption, in the FE meta-analysis, the
effect size estimates of studies, such as the log odds ratios or regression
coefficients, are combined and summarized into one summary statistic.
The common method of combining effect sizes under FE models is the
inverse variance weighted effect size estimate (de Bakker et al. 2008;
Fleiss 1993). Let X1; . . . ;Xc be the effect size estimates from c studies
included in a meta-analysis and let Vi be the variance of Xi. Then, for
FE meta-analysis, the weight for each effect size is set to the inverse
variance of the effect size estimate (Wi ¼ V21

i ). Thus the inverse-
variance-weighted effect size estimate is

�X ¼
X

WiXiX
Wi

And the standard error of �X is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

 Wi

q 21
. Because �X asymptotically

follows a normal distribution, we can compute the FE meta-analysis
statistic in the following way.

ZFE ¼
�XffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
Wi

q 21 ¼
X

WiXiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
Wi

q

The above statistic (ZFE) follows the standard normal distribution
under the null hypothesis of no association. Thus, the P-value can
be computed by

PFE ¼ 2F
�
2jZFEj

�
where F denotes the cumulative density function of the standard
normal distribution.

RE model meta-analysis
Unlike FE model meta-analysis, RE model meta-analysis treats the
underlying effect size of each study as a random variable. Specifically,
a typical assumption is that the effect size of each study follows a normal
distribution with the grandmean �b and the variance t2 (Han and Eskin
2011; DerSimonian and Laird 1986):

bi � N
�
�b; t2

�
:

In this model, t2 represents the between-study variance. In other
words, the more the effect sizes of studies included in a meta-analysis
differ, the larger the between-study variance (t2).

Given the above model for effect sizes of the studies, the traditional
RE model tests the null hypothesis �b ¼ 0 vs. the alternative hypothesis
�b 6¼ 0. Recently, Han and Eskin (2011) showed that, under the condi-
tion that there is no heterogeneity under the null hypothesis, which is
often the case in genetic association studies, the traditional RE model
can be overly conservative. Instead, they proposed a new RE model
approach that increases power by testing the null hypothesis
�b ¼ 0 and t2 ¼ 0 vs. the alternative hypothesis �b 6¼ 0 or t2 6¼ 0.
The Han-Eskin model uses the following likelihood model:

L0 ¼
Y
i

1ffiffiffiffiffiffiffiffiffiffiffi
2ps2

i

q exp

�
2

b2
i

2s2
i

�

L1 ¼
Y
i

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p
�
s2
i þ t2

�q exp

 
2

ðbi2mÞ2
2
�
s2
i þ t2

�
!
:

The maximum likelihood estimates m̂ and t̂2 can be found by an
iterative procedure suggested by Hardy and Thompson (1996). Then,
the likelihood ratio test statistic can be built

SHan2Eskin¼
X

  log

�
s2
i

s2
i þ t̂2

�
þ
Xb2

i

s2
i

2
X ðbi2m̂Þ2

s2
i þ t̂2

;

(1)

which asymptotically follows amixture of 1 and 2 degrees of freedom
x2. Accurate P-values with small sample correction can be calcu-
lated efficiently using precomputed tabulated values (Han and Eskin
2011).

Identifying studies with an effect through m-value
To distinguish studies with an effect from studies without an effect, we
utilize the m-value framework. The m-value (Han and Eskin 2012;
Kang et al. 2014) is the posterior probability that the effect exists in
each study. Thus one can interpret m-value in the following way: a
small m-value (e.g., 0.1) represents a study that is predicted to not
have an effect, a large m-value (e.g., 0.9) represents a study that is
predicted to have an effect, and otherwise it is ambiguous to make a
prediction.

In the following, we explain how to compute m-value. Suppose we
have n studies we want to combine. Let E ¼ ½d1; d2; . . . ; dn� be the
vector of estimated effect sizes, and V ¼ ½V1;V2; . . . ;Vn� be the vector
of variances of n effect sizes. We assume that the effect size di follows
the following normal distribution.

P
�
dijno effect

� ¼ N
�
di; 0;Vi

�
(2)

P
�
dijeffect

� ¼ N
�
di;m;Vi

�
(3)

We assume that the prior for the effect size is

m � N
�
0;s2� (4)

A possible choice fors in genome-wide association studies (GWAS) is
0.2 for small effect and 0.4 for large effects (Stephens and Balding
2009). Let Ci be a random variable whose value is 1 if a study i has an
effect, and 0 otherwise. Let C be a vector of Ci for n studies. Since C
includes n binary variables, C can have 2n possible configurations. Let
U ¼ ½c1; . . . ; c2n � be a vector containing all these possible configura-
tions. We define m-value mi as the probability PðCi ¼ 1jEÞ, which is
the probability of study i having an effect given the observed effect size
estimates. We can compute this probability using the Bayes’ theorem
in the following way.

mi ¼ P
�
Ci ¼ 1jE� ¼

X
c2Ui

P
�
EjC ¼ c

�
P
�
C ¼ c

�
X

c2U
P
�
EjC ¼ c

�
P
�
C ¼ c

� (5)

where Ui is a subset of U whose elements’ ith value is 1. Now we need
to compute PðEjC ¼ cÞ and PðC ¼ cÞ. PðC ¼ cÞ can be computed as

PðC ¼ cÞ ¼ B
�jcj þ a; n2 jcj þ b

�
B
�
a;b

� (6)

where jcj denotes the number of 1s in c, and B denotes the beta
function where we set a and b be 1 (Han and Eskin 2012). The
probability E given configuration c, PðEjC ¼ cÞ, can be computed as

1794 | E. Y. Kang et al.
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Z N

2N

Y
i2c0

N
�
di; 0;Vi

�Y
i2c1

N
�
di;m;Vi

�
p
�
m
�
  dm (7)

¼ �CN
�
�d; 0; �V þ s2�Y

i2c0
N
�
di; 0;Vi

�
(8)
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where c0 represents the indices of 0 in c and c1 the indices of 1 in c,
Nðd; a; bÞ denotes the probability density function of the normal
distribution with mean a and variance b. Wi ¼ V21

i is the inverse
variance or precision, and �C is a scaling factor.
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PM-plot
For interpreting and understanding the result of a meta-analysis, it is
informative to look at the P-values and m-values at the same time. We
propose the PM-plot framework (Han and Eskin 2012), which plots the
P-values and m-values of each study together, and visualizes the re-
lationship between m-values and P-values in a two-dimensional space.
Through the PM-Plot, a researcher can easily distinguish which study is
predicted to have an effect, and which study is predicted not to have an

Figure 1 Seventeen mouse HDL studies with various environmental/genetic conditions are combined in this meta-analysis (Kang et al. 2014).
In this example, we want to focus on three BXH-wt(M) and four BXH-wt(F) studies. These BXH strains are F2 mice constructed from a cross
between C57BL/6J · C3H/HeJ F2 wild-type strains under western diet conditions (van Nas et al. 2010), but differing by sex. When we con-
sider the effect size estimates only in forest plot format, two confidence intervals of effect estimates overlap each other, making it ambiguous
if the observed heterogeneity is a result of stochastic errors. However, in the PM-Plot, since the m-values are calculated utilizing cross-study
information, the posterior probabilities are well segregated for these two studies (m-value: 0.93 vs. 0.03), allowing us to hypothesize that the
SNP effects on HDL in C57BL/6J · C3H/HeJ F2 strains under the western diet condition can be interacting with sex. Implicated genes are
Fabp3, also known as fatty acid binding protein 3, which is a well-known gene playing a regulatory role at the nexus of lipid metabolism and
signaling including HDL-cholesterol, LDL-cholesterol, and fasting insulin (Mitchell et al. 1996; Zhang et al. 2013). (A) Forest plot and (B)
PM-plot for rs32595861 locus (Fabp3 gene) analyzing data from the Kang et al. (2014) study. FE, fixed effects model; RE, random effects
model.
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effect. The x-axis of the PM-Plot represents the m-value between 0 and
1, the y-axis represents the statistical significance of association,
2log10(P-value), and the dashed horizontal line is the significance
threshold. The colored circle for each study is placed in the PM-Plot
according to its m-value and P-value. We classify the estimated poste-
rior probability for each study into three categories: a study that has an
effect (m$ 0.9) is denoted by a red dot, a study that does not have an
effect (m # 0.1) is denoted by a blue dot, and a study whose effect is
uncertain (0.1 , m , 0.9) is denoted by a green dot. The dot size re-
presents the study’s sample size. Figure 1B shows one example of a
PM-plot. One reason that studies are ambiguous (0.1,m, 0.9) is that
they are underpowered due to small sample size. If the sample size
increases, the study can be drawn to either the left or the right side.
ForestPMPlot utilizes an automatic algorithm to place the study names
(numbers corresponding to the actual names in the forest plot)
to minimize the overlap between labels (Lemon 2006). For the multiple
tissue eQTL application (Figure 2), we can add particular color for dots
that represents the corresponding tissue type.

Data availability
The authors state that all data necessary for confirming the conclusions
presented in the article are represented fully within the article.

RESULTS AND DISCUSSION

Application to GWAS meta-analysis
Figure 1 is an example of the output of ForestPMPlot for a mouse HDL
study (Kang et al. 2014), which combines 17 mouse studies. The
17 HDL mouse studies included in this meta-analysis have different
environmental/genetic conditions, such as diet (high fat/low fat, etc.)
and various gene knockouts, including homozygous deficiency in leptin

receptor (db/db), LDL receptor knockouts, and Apoe gene knockouts.
In Figure 1, study names describe the characteristic of each study. In
this example, the study name is encoded as {mouse-strain}-{condition}
format. HMDP stands for hybrid mouse diversity panel, which com-
bines classic inbred strains for mapping resolution, and recombinant
inbred strains for mapping power (Bennett et al. 2010). Mice for the
HMDPxB panel were created by breeding females of the various
HMDP inbred strains (Bennett et al. 2010) tomales carrying transgenes
for both Apoe Leiden (van den Maagdenberg et al. 1993) and for
human Cholesterol Ester Transfer Protein (CETP) (Jiang et al. 1992)
on a C57BL/6 genetic background, which cause the progression of
atherosclerosis along the arterial tree. BXH wild type (BXH/wt) mice
were produced as previously described (van Nas et al. 2010). Briefly,
C57BL/6J mice were intercrossed with C3H/HeJ mice to generate
321 F2 progeny. BXD-db strain is an F2 intercross between the inbred
strains DBA/2 and C57BL/6 (Davis et al. 2012). The male C57BL/6
parents carried heterozygosity deficiency in the leptin receptor
(db +/2), and F1 progeny were selected for homozygosity of the mutant
allele. Among F2 progeny, only those with homozygous deficiency in
leptin receptor (db/db) were selected. For CXB-ldlr strain, female
BALB/cByJ-LDLRKO (designated as C) mice were crossed with male
C57BL/6J-LDLRKO (designated as B) to generate F1 mice. Then, an
intercross of F1 was performed to generate F2 mice.

Given the heterogeneous natures of studies that differ in many
different dimensions, interpreting a significant but heterogeneous result
can be challenging. Examining both the forest plot and the PM-Plot
allows us to generate an appropriate hypothesis on why the effect size
differences are occurring. For example, consider studies 3 and 4, which
contain mouse C57BL/6J · C3H/HeJ F2 wild-type strains under the
western diet condition (vanNas et al. 2010), but differ by sex. These two
studies show heterogeneous effects in the forest plot, but the two

Figure 2 Thirteen multiple-tissue eQTL studies analyzed in GTEx Consortium (2015). In this example, 13 different tissue eQTLs were analyzed
together for SEMA3B gene expression levels. The first column shows the P-value for each tissue specific eQTL study. The different colored dots
represent the different tissues, the study name column shows the various tissue names included in this multi-tissue eQTL analysis. The forest plot
shows that the SNP rs28559826 shows a better association with the SEMA3B gene expression level in three tissues (heart left ventricle, stomach,
and thyroid), although the confidence intervals overlap between many tissues. On the other hand, the PM-plot clearly shows that association of
the top three tissues (heart left ventricle, stomach, and thyroid) are outstanding compared to other tissue eQTLs. The gene SEMA3B is also known
as the semaphorin/collapsin family of molecules. This gene plays a critical role in the guidance of growth cones during neuronal development. It
has been shown to act as a tumor suppressor by inducing apoptosis (SEMA3B 2015). (A) Forest plot and (B) PM-plot for rs28559826 locus
(SEMA3B gene) analyzing data from the GTex study (GTEx Consortium 2015). RE, random effects model.
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confidence intervals of effect estimates overlap each other, making it
ambiguous if the observed heterogeneity is a result of stochastic errors.
A researcher can perceive, however, that there exist other studies that
have similar effect sizes to these two studies, increasing our belief that
this observed heterogeneity is driven by true interactions of sex, genetic
background, and diet. Nevertheless, the forest plot alone does not display
or systematically infer such cross-study information. In the PM-Plot,
the m-values are calculated utilizing cross-study information. The pos-
terior probabilities are well segregated for these two studies (m-value:
0.93 vs. 0.03), allowing us to hypothesize that the SNP effects onHDL in
C57BL/6J ·C3H/HeJ F2 strains under the western diet condition can be
interacting with sex. This shows an example where our visualization
framework can lead to plausible interpretations, which would not have
been straightforward had we used the traditional forest plot alone.

Application to multi-tissue eQTL analysis
One powerful application of our proposed framework is in multi-tissue
eQTL analysis in the Genotype-Tissue Expression (GTEx) project. The
GTEx project studies human gene expression and genetic regulation in
multiple tissues,providingvaluable insights into themechanismsofgene
regulation, which can lead to the new discovery of disease-related
perturbations. In this project, genetic variation between individuals will
be examined for correlation with differences in gene expression level to
identify regionsof thegenomethat influencewhether, andbyhowmuch,
a gene is expressed. In particular, examiningmultiple tissues can give us
valuable insights into the genetic architecture of the regulatory mech-
anism, because many regulatory regions are known to act in a tissue-
specific manner (Ernst et al. 2011; Encode Project Consortium 2012).
Hence, understanding the role of regulatory variants, and the tissues in
which they act, is essential for the functional interpretation of GWAS
loci and insights into disease etiology.

Figure 2 is an example of the output of ForestPMPlot for a multi-
tissue eQTL study for SEMA3B gene (GTEx Consortium 2015). Exam-
ining both the forest plot and the PM-Plot allows us to obtain an insight
into the tissue-specific genetics effects in eQTL analysis, which leads to
the identification of three significant eQTL tissues (heart left ventricle,
stomach, and thyroid). This example clearly shows that examining both
the forest plot and the PM-Plot allows us to easily hypothesize that there
is a specific group of studies showing tissue differences in eQTL analysis.

Conclusions
In conclusion, we describe ForestPMPlot, aflexible visualization tool for
analyzing studies included in a meta-analysis, such as meta-analysis of
GWAS. The main feature of the tool is visualizing the differences in the
effect sizes of studies for better understanding of why the studies exhibit
heterogeneity. Unlike the traditional forest plot framework, which
displays only effect sizemagnitude and its standard error for each study,
ForestPMPlot additionally displays the posterior probability prediction
for the existence of the effect in each study, and the P-values. This allows
us to effectively segregate from one another studies predicted to have an
effect, and studies predicted not to have an effect. Through visualization
of these estimates and predictions, ForestPMPlot can considerably facili-
tate the interpretation of the results ofmeta-analysis.We show an example
analysis where our visualization framework leads to plausible interpreta-
tions of gene-by-environment interaction andmultiple tissue eQTL,which
would not have been straightforward with the traditional framework.
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