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ABSTRACT Sometimes, to move ahead, you must take a look at where you have
been. Culturing microbes is a foundational underpinning of microbiology. Before ge-
nome sequencing, researchers spent countless hours tediously deducing the nutri-
tional requirements of bacterial isolates and tinkering with medium formulations to
entice new microbes into culture. This art of cultivation took a back seat to the
powerful molecular tools of the last 25 years, and as a result, many researchers have
forgotten the utility of having a culture in hand. This perception is changing, as
there is clearly a renewed interest in isolating microbes from various environments.
Here, I suggest three focus areas to ensure continued growth and success of this
“cultural” renaissance, including (i) setting clear cultivation goals, (ii) funding explor-
atory cultivation, and (iii) culturing and studying unusual organisms. “Unculturable”
is a frame of mind, not a state of microbiology; it is time to dust off the bottle of
yeast extract.
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For over a century, our understanding of microbial biology has been predicated on
the ability of scientists to cultivate and study organisms under controlled laboratory

conditions. Indeed, until the 1980s, our knowledge of microbial diversity was con-
strained to those microbes that grew in the laboratory or appeared under the micro-
scope. Yet, it was also understood that the majority of microbes were recalcitrant to
growth in the laboratory. The incongruence between enumeration by direct micro-
scopic counting and culturable counting was eloquently presented by Staley and
Konopka as “the great plate count anomaly” (1) and is oft attributed to the widespread
notion that more than 99% of bacteria are unculturable. This anomaly was confirmed
when Pace and colleagues started investigating natural environments with molecular
tools targeting rRNA genes, lifting the veil masking vast uncultured microbially diverse
populations for the first time (2). Perhaps inadvertently, the coincident timing of the
great plate count anomaly and Pace et al.’s early rRNA-based approaches became the
impetus for a major shift in the ways that microbial ecologists explored natural
microbial assemblages; a whole generation of researchers traded piles of agar plates
and growth curves for DNA sequencers, computer servers, and metabolic reconstruc-
tions from genomic data. Today, DNA sequencing is perceived (or at least touted) as the
way to circumvent the problem of microbial unculturability.

A “CULTURAL” RENAISSANCE

Sooner or later, everything old is new again.
—Stephen King (29)

After a decade of refining the “big-data” side of microbiology, we are in the midst
of a cultural renaissance in which the importance of cultivation-focused efforts has
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been rediscovered, with exciting results and implications. Several groups have dem-
onstrated that a high percentage of host-associated microbiome members can be
cultivated (3–7) and that such culture collections are indispensable for deducing
important aspects of microbiome function (8–10). The renewed motivation to culture
cells from nonhost environments, such as soil (11), aquatic environments (12), and the
deep biosphere (13), is inspired, in part, by these successes and the enormous amounts
of molecular data that have illuminated seemingly limitless microbially diverse popu-
lations that we know very little about (14). We can now dissect life’s blueprints for these
uncultivated lineages and use this information to facilitate cultivation, insight not
afforded to previous generations of researchers.

Translating genomic information into an understanding of organismal physiology is
anything but straightforward, and culturing environmental microbes is very time-
intensive. This is highlighted by the story of the abundant marine heterotroph Pe-
lagibacter (SAR11). Pelagibacter was discovered with molecular methods in 1990 (15)
and cultured on natural seawater medium 12 years later (16). Surprisingly, it was not
immediately obvious from Pelagibacter genome sequences (17) what nutrients were
required for growth. In fact, with genomes in hand, it took an additional 8 years plus
several postdocs and graduate students to translate that information into a defined
medium (reference 18 and references therein). Subsequent laboratory studies have
elucidated the unusual biology that contributes to Pelagibacter’s unparalleled success
in the sea and its key role in Earth’s biogeochemistry (reviewed in reference 19). The
unique characteristics of Pelagibacter cells were discovered by careful testing in the
laboratory after scrutinizing of genomes, transcriptomes, and proteomes, a back-and-
forth process that requires a culture, a genome, and patience.

Pelagibacter’s narrative highlights an important lesson. By shying away from the
challenge of studying microbial cultures, we effectively turn our backs on an entire
world of emergent properties that govern microbial activity and ecosystem function,
properties that are not always predictable a priori from sequence information. To
analogize, one cannot understand the experience of driving a Ferrari from the list of its
components; a parts list does not convey the handling, the sound, or the driver’s
connection with the machine. Because of the investment in sequencing technology,
our genetic inventories are more extensive than ever, yet the cultivation of novel
microbes remains a complex task, much like assembling a 3-dimensional puzzle.
Hypotheses generated from genome-based metabolic reconstructions from single cells
or metagenomes provide a crucial dimension to guide the assembly of the puzzle, but
genomes are a parts list; we seek an understanding of the emergent principles of the
cells themselves and the communities that they constitute.

While this cultural renaissance is indicative of a greater awareness for the need to
study cell cultures to comprehensively understand Earth’s microbiome, it is not always
clear how to leverage and integrate molecular data to do that. Below are three steps
that will lay a foundation for the future of integrated Earth microbiome research with
an emphasis on elucidating the uncultured microbially diverse populations that we
understand the least.

DECIDE WHAT TO CULTURE

Let us be clear; from a sheer numbers perspective, it is impossible to culture every
microbe on Earth no matter what the environment. Because of this, we should set
cultivation goals that are specific, achievable, and relevant. I envision explicit most-
wanted lists that use molecular data to inform exactly which taxa we should target for
cultivation and why they are important. Further, this molecular data can be used to
identify potential cultivation strategies through metabolic reconstruction. The ratio-
nales for cultivation of a particular taxa will vary across research groups but may include
(i) an organism’s high relative abundance, (ii) its key role in biogeochemistry or
bioremediation, (iii) its potential to produce natural products, and (iv) its substantial
divergence from cultured taxa. Table 1 contains a short list of potential most-wanted
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microbes from various ecosystems that would be valuable to obtain in culture, based
on an informal survey of colleagues and my own interests.

INVEST IN RISKY CULTURE-BASED WORK

A popular perception is that exploratory culture-based research is unusually risky
and unlikely to result in new isolates of interest. First, this is false (4, 11, 12, 20, 21).
Second, all science is risky, and much is unsuccessful; how much do we want to learn?
While it is tempting to point the finger at funding agencies for not supporting
exploratory cultivation work, it is our colleagues, the reviewers and panelists, that
marginalize these proposals. Funding agencies could shift this discourse by soliciting
proposals that explicitly aim to (i) coordinate exploratory cultivation experiments with
creative genomics or metabolomics approaches, (ii) develop new or higher-throughput
cultivation strategies, and (iii) support long-term projects that investigate the biology
of slow-growing or noncanonical model organisms that do not conform to the scale of
traditional funding cycles. As J. Cameron Thrash explores in a companion Perspective
in this issue, we need to constrain the costs of investing in cultivation-based work. If
microbes hold the answers to many solvable problems, at some point we will need to
invest in culturing them. Long-term, I envision well-funded high-throughput cultivation
core labs that culture bacteria from user samples. Not only would these centers
preserve living biodiversity that will almost certainly have utility in a changing world,
but the cultivation of enigmatic taxa might be a strict numbers game: the more
experiments that are conducted, the more likely they will capture something novel.

TABLE 1 Examples of microbes that are most wanted in culture

Candidate organism
or group Environment(s) Phylum Reason for cultivation

SAR202 Marine Chloroflexi Abundant in mesopelagic
waters

SAR86 Marine Gammaproteobacteria Abundant in surface waters
SAR324 Marine Deltaproteobacteria Ubiquitous in the dark

ocean
“Candidatus Actinomarinidae” Marine Actinobacteria (OM1) Streamlined genome and

key role in biogeochemistry
“Candidatus Thalassoarchaea” Marine Euryarchaeota (Marine Group II) Abundant and key role in

biogeochemistry
“Candidatus Marinimicrobia” Marine Candidate phylum marine group A Abundant and key role in

biogeochemistry
Water column B Thaumarchaeota Marine Thaumarchaeota Key role in biogeochemistry
Marine group III Euryarchaeota Marine Euryarchaeota Deep mesopelagic and

bathypelagic communities
“Candidatus Udaeobacer

copiosus”
Soil Verrucomicrobia Numerically dominant in

some soils
Acidobacteriia spp. Soil Acidobacteria Potential secondary

metabolite producer
Blastocatellia spp. Soil Acidobacteria Potential secondary

metabolite producer
Holophagales spp. Soil Acidobacteria Potential secondary

metabolite producer
“Candidatus Rokubacteria” Soil Candidate phylum Rokubacteria (SPAM) Novel phylum
“Candidatus Dormibacter” Soil Candidate phylum AD3 Novel phylum
“Candidatus Eremiobacteraeota” Soil Candidate phylum WPS-2 Novel phylum
Anaerobic methanotroph

(ANME) clades 1, 2, and 3
Sediment Euryarchaeota Key role in biogeochemistry

Bathyarchaeota Sediment Crenarchaeota Key role in biogeochemistry
“Candidatus Atribacteria” Sediment Candidate phylum Atribacteria (OP9/JS1) Key role in biogeochemistry
Assorted Chloroflexi Assorted Chloroflexi Contaminant remediation and

key roles in biogeochemistry
“Candidatus Asgardarchaeota” Assorted Candidate superphylum Asgardarchaeota Novel phylum key to

eukaryote origins
Any representative of the

Candidate Phylum Radiation
Assorted Assorted Divergent from all cultured

bacteria
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BUILD KNOWLEDGE BRIDGES WITH CULTURES

The ability to sequence DNA is no longer a limiting factor in understanding
microbial communities; the bottleneck lies with translating these sequence data into a
functional context. The root of this limitation is that most genes have poor or no
functional annotation, and our interpretation of the remainder is biased by the phys-
iology of a few model organisms, the so-called streetlight effect (22). Isolating and
studying organisms with unusual biology can bridge this knowledge gap. For example,
focused functional genomics approaches uncovered widespread lipid remodeling in
marine heterotrophs and related this process to poorly annotated genes (23–25).
Likewise, the genome-facilitated discovery of complete ammonia oxidation to nitrate
by Nitrospira cultures fundamentally changed our understanding of the nitrogen cycle
(26). Moreover, high-throughput functional genomics approaches, such as transposon
insertion sequencing (TnSeq), have proven to be scalable and powerful for identifying
the fitness landscape of poorly annotated genes (27). While these approaches certainly
require more effort than sequencing alone, the information that they provide in many
cases unambiguously links genotype to phenotype.

OLIGOTROPHY AS AN EMERGENT PRINCIPAL

The challenge of translating genomic data into microbial cultures and linking genes
with function is a driving force for our research group. However, an important dimen-
sion to the problem of isolating uncultured microbes may be an emergent principle not
easily deduced from genomes: oligotrophy. Oligotrophy describes the paradoxical and
enigmatic phenomenon of microbial cells growing optimally when nutrient availability
is low. New evidence suggests that the numerically abundant microbes in nonhost
systems are oligotrophs (28). Yet, we have a massively incomplete understanding of the
physiological basis for oligotrophy and how oligotrophs contribute to microbial com-
munity stability and ecosystem function.

We have built our lab around the idea that many uncultured soil microbial lineages
are oligotrophs. In general, oligotrophs are challenging to culture because they are
small, slow-growing cells and do not attain high yields on low nutrient media, render-
ing common methods of quantifying microbial growth ineffective. To circumvent this,
we invested in equipment to separate cells from environmental matrices and count
oligotrophic cultures with high throughput and sensitivity. Our initial cultivation results
are encouraging; across several experiments, we have �3,000 cultures, some of which
are representatives of uncultivated lineages of important soil bacteria. In these exper-
iments, the concentration of a defined set of nutrients significantly influenced what
grew, and many strains isolated on low-nutrient medium appear to be obligate
oligotrophs that are inhibited by modest concentration increases of the same nutrients.
Our long-term goal is to increase the efficiency and reduce the person-hour cost of
cultivation by automating certain aspects of the cultivation process so that we can
spend more time investigating interesting isolates in-depth.

My hopes are not only that the cultural renaissance is perceived as a reference to a
renewed interest in culturing cells but also that it invokes a cultural shift in the way
microbiologists perceive cells and their role in modern microbiology. Cells are not
simply “bags of biochemistry” but living entities that are seamlessly integrated into the
physical, ecological, and evolutionary landscape of Earth. Because of this, the methods
by which we choose to study them must be similarly integrated.
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