
RESEARCH ARTICLE

Correlation of histopathology and multi-

modal magnetic resonance imaging in

childhood osteosarcoma: Predicting tumor

response to chemotherapy

Ka Yaw TeoID
1*, Ovidiu Daescu1, Kevin Cederberg2, Anita Sengupta3, Patrick J. LeaveyID

4

1 Department of Computer Science, University of Texas at Dallas, Richardson, Texas, United States of

America, 2 Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas,

United States of America, 3 Department of Pathology, University of Texas Southwestern Medical Center,

Dallas, Texas, United States of America, 4 Department of Pediatrics, University of Texas Southwestern

Medical Center, Dallas, Texas, United States of America

* ka.teo@utdallas.edu

Abstract

Background

Osteosarcoma, which is the most common malignant pediatric bone cancer, remains

dependent on an imprecise systemic treatment largely unchanged in 30 years. In this study,

we correlated histopathology with magnetic resonance imaging (MRI), used the correlation

to extract MRI-specific features representative of tumor necrosis, and subsequently devel-

oped a novel classification model for predicting tumor response to neoadjuvant chemother-

apy in pediatric patients with osteosarcoma using multi-modal MRI. The model could

ultimately serve as a testable biomarker for a high-risk malignancy without successful preci-

sion treatments.

Methods

Patients with newly diagnosed high-grade appendicular osteosarcoma were enrolled in a

single-center observational study, wherein patients underwent pre-surgical evaluation using

both conventional MRI (post-contrast T1-weighted with fat saturation, pre-contrast T1-

weighted, and short inversion-time inversion recovery (STIR)) and advanced MRI (diffusion

weighted (DW) and dynamic contrast enhanced (DCE)). A classification model was estab-

lished based on a direct correlation between histopathology and MRI, which was achieved

through histologic-MR image co-registration and subsequent extraction of MR image fea-

tures for identifying histologic tumor necrosis. By operating on the MR image features,

tumor necrosis was estimated from different combinations of MR images using a multi-fea-

ture fuzzy clustering technique together with a weighted majority ruling. Tumor necrosis cal-

culated from MR images, for either an MRI plane of interest or whole tumor volume, was

compared to pathologist-estimated necrosis and necrosis quantified from digitized histologic

section images using a previously described deep learning classification method.
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Results

15 patients were enrolled, of whom two withdrew, one became ineligible, and two were sub-

jected to inadequate pre-surgical imaging. MRI sequences of n = 10 patients were subse-

quently used for classification model development. Different MR image features, depending

on the modality of MRI, were shown to be significant in distinguishing necrosis from viable

tumor. The scales at which MR image features optimally signified tumor necrosis were dif-

ferent as well depending on the MR image type. Conventional MRI was shown capable of

differentiating necrosis from viable tumor with an accuracy averaging above 90%. Conven-

tional MRI was equally effective as DWI in distinguishing necrotic from viable tumor regions.

The accuracy of tumor necrosis prediction by conventional MRI improved to above 95%

when DCE-MRI was added into consideration. Volume-based tumor necrosis estimations

tended to be lower than those evaluated on an MRI plane of interest.

Conclusions

The study has shown a proof-of-principle model for interpreting chemotherapeutic response

using multi-modal MRI for patients with high-grade osteosarcoma. The model will continue

to be evaluated as MR image features indicative of tumor response are now computable for

the disease prior to surgery.

Introduction

Osteosarcoma is the most common type of malignant bone cancer prevalent in children and

adolescents. Comprising 60% of all bone sarcomas [1–3], patients with high-grade osteosar-

coma typically receive a treatment schedule of pre-operative chemotherapy followed by surgi-

cal resection of the primary tumor followed by further post-operative chemotherapy.

Treatment response evaluated at time of surgery predicts outcome for patients with high-

grade osteosarcoma [4, 5], and efforts continue to deliver response-adapted therapy to patients

with this high-grade malignancy. This manuscript will refer to the histological high-grade sub-

type of osteosarcoma, which will hereafter be simply referred to as osteosarcoma.

For many malignancies, an effective course of chemotherapy is traditionally associated with

a shrinkage of tumor, which can be serially monitored through axial magnetic resonance imag-

ing (MRI) and computerized tomography (CT), and can be measured by standard criteria

such as RECIST 1.1 [6]. However, size of tumor is often not a reliable indicator of the efficacy

of chemotherapy for osteosarcoma because the tumor typically fails to reduce in size due to its

mineralized matrix not being affected by cytotoxic agents [7]. To evaluate the effectiveness of

chemotherapy, surgically resected tumor is analyzed histologically for its degree of necrosis

after pre-operative chemotherapy is completed. Chemotherapy is considered successful if the

histological grading of the tumor is greater than 90% necrosis. Serial and early determination

of treatment response has been unachievable to date for patients with osteosarcoma.

Axial imaging with conventional multi-planar MRI sequences–such as non-contrast

T1-weighted, fat-suppressed post-contrast T1-weighted, and short inversion-time inversion

recovery (STIR)–remains of importance for the care of patients with osteosarcoma due to its

ability to produce images with high tissue contrast and anatomical details. Such image detail is

relevant to surgical planning and useful in indicating tumor growth, if it occurs, despite pre-

operative chemotherapy. Features such as signal intensity and enhancement patterns after
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injection of contrast agents [8, 9] are also relevant to surgical planning, and while the evolution

of such patterns can be associated with cytotoxic effect, they remain an unreliable predictor of

tumor response and patient outcome when evaluated by the naked eye [10].

Advanced MR quantitative parameters have shown promise as potential biomarkers of

treatment effect for osseous tumors. Diffusion-weighted imaging (DWI) and dynamic con-

trast-enhanced MRI (DCE-MRI) are conceptually attractive MRI biomarker techniques, given

their relative widespread availability, non-invasiveness, and repeatability. DWI provides infor-

mation on the Brownian motion of water molecules in tissues, the degree of which is repre-

sented by a quantitative measure called apparent diffusion coefficient (ADC) [11, 12]. Areas of

restricted diffusion have a low signal intensity on ADC map. Necrotic areas within tumor are

typically associated with an increased local diffusion and thus a high signal intensity on ADC

map. Seeing the potential of using ADC as an imaging biomarker for osteosarcoma, DWI has

been explored by many investigators [13–26]. Previous results have overall indicated that ADC

could be used to identify good responding patients with osteosarcoma, as ADC has been

shown to differ markedly between necrosis and viable tumor.

Post-contrast MRI cannot unequivocally distinguish viable from non-viable tumor and inflam-

mation because the static images are acquired several minutes after contrast agent injection, allow-

ing time for the contrast agent to equilibrate among various enhancing tissues. Viable tumor,

revascularized necrotic tissue, reactive hyperemia, and inflammatory tissue could all exhibit post-

contrast enhancement [27, 28]. In response to this limitation, early-phase dynamic contrast-

enhanced MRI can help to distinguish (non-enhancing) edema from the rapidly enhancing viable

tumor. The basic principles of DCE-MRI, as well as its relevance and clinical applications for osteo-

sarcoma, have been previously discussed in articles such as [29–35] (to be elaborated upon later in

detail in the Discussion section). As concluded by prior studies [29–35], DCE-MRI sequences,

when being properly analyzed quantitatively, could be helpful for identifying osteosarcoma patients

responding positively to chemotherapy, as well as for differentiating necrosis from viable tumor.

Clinical trials for patients with newly diagnosed osteosarcoma continue to emphasize the

hypothesis that response-adapted therapy is achievable [36]. However, treatment response as esti-

mated by histological examination of tumor necrosis is dependent on a medical procedure largely

unchanged in several decades [37] that likely has several limitations. Such limitations include the

following: i) it takes 10 weeks to deliver a typical cassette of potentially ineffective pre-operative

chemotherapy [36], ii) response examination is typically performed only on a single plane of

tumor within a large three-dimensional specimen, iii) specimen processing of osseous matrix

involves de-calcification and potential specimen loss, and iv) the procedure for estimation of

tumor necrosis is time intensive and subject to significant inter-observer variability [38].

This report describes the development of a novel classification model for predicting tumor

response to chemotherapy using multi-modal MRI sequences, and the model is formed on the basis

of establishing a direct correlation between histopathology and MRI. The correlation is achieved

through histologic-MR image co-registration and subsequent extraction of MR image features rep-

resentative of tumor necrosis. By operating on those MR image features, tumor necrosis is estimated

from MR images using a multi-feature fuzzy clustering technique coupled with a weighted majority

ruling. Overall, the current work provides a proof of concept for the feasibility of identifying histo-

logic tumor necrosis in osteosarcoma using statistical classification based on MR image features.

Materials and methods

Patients

Patients were recruited from November 2016 to April 2019 into a prospective observation

study at Children’s Medical Center Dallas. The study was approved by the institutional review
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board of the University of Texas Southwestern Medical Center, Dallas, Texas. Patients with

newly-diagnosed high-grade respectable osteosarcoma of an extremity were eligible for enroll-

ment in the study. In addition, eligible patients must be of an age between 10 and 30 years, and

must be either English- or Spanish-speaking. All enrolled patients or their parents signed

informed consent. Newly diagnosed patients were all cared for by a pediatric oncologist, and

were identified as potentially eligible through clinical care. A patient was considered ineligible

if they i) required sedation for MR imaging, ii) could not undergo MR imaging, iii) had a sec-

ondary bone sarcoma or a bone sarcoma in a previously irradiated field, or iv) had a contrain-

dication to contrast agent.

All recruited patients received pre-operative chemotherapy with cisplatin, doxorubicin, and

methotrexate based on the ERUAMOS I regimen [36]. Enrolled patients had advanced MRI

sequences (DWI and DCE) added to their conventional sequences at the time of pre-operative

imaging typically performed after week 10 of chemotherapy. Enrolled patients also had an

additional MRI (conventional, DWI, and DCE sequences) performed after the fifth week of

chemotherapy.

Pre-surgical MRI

MRI was performed on a 3-Tesla scanner (Magnetom Skyra, Siemens Healthcare, Erlangen,

Germany), and all MR images were acquired in the coronal plane.

Conventional MRI. Conventional static MR evaluations included a T1-weighted spin-

echo sequence (repetition time (TR) = 600 ms, echo time (TE) = 10 ms, slice thickness = 4

mm, interslice gap = 1 mm, number of excitations (NEX) = 1, flip angle = 150˚) and a short

inversion-time inversion recovery (STIR) sequence (TR = 3780 ms, TE = 91 ms, inversion

time (TI) = 220 ms, slice thickness = 4 mm, interslice gap = 1 mm, NEX = 1, flip angle = 132˚).

In addition, a post-contrast T1-weighted fast-spin-echo variable-flip-angle (SPACE) fat-satu-

rated sequence (TR = 450 ms, TE = 11 ms, slice thickness = 1 mm, interslice gap = 0 mm,

NEX = 1, flip angle = 120˚) was acquired after DCE-MRI.

Advanced MRI. Readout-segmented echo-planar (RESOLVE) DWI sequences

(TR = 5450 ms, TE = 81 ms, slice thickness = 4 mm, interslice gap = 1 mm, NEX = 1 mm, flip

angle = 180˚) were obtained with b-values of 0, 400, and 800 s/mm2. DCE-MRI (TR = 5.07 ms,

TE = 1.78 ms, slice thickness = 1.5 mm, interslice gap = 0 mm, NEX = 1, flip angle = 15˚), by

means of a T1-weighted volumetric interpolated breath-hold examination (VIBE) sequence,

was performed using the following image acquisition protocol. Immediately after capturing

the first phase (i.e., pre-contrast image), a bolus of gadoterate meglumine (Dotarem, Guerbet,

Princeton, NJ) was administered intravenously at a constant rate of 2 mL/s by using a power

injector. It was then followed by a normal saline flush (20 mL) at a rate of 2 mL/s. After the

bolus injection began, DCE images were acquired continuously for three minutes at intervals

of 19.5 s.

Other MR imaging parameters such as acquisition matrix size and field of view were chosen

based on the size, location, and geometry of tumor, which varied considerably from patient to

patient.

Surgical resection

Surgical care of patients for local-controlled tumor resection were based on surgeon prefer-

ences and established standards of surgical care. No research requirements were implemented

for surgical specimen collection. Surgical specimens delivered to pathology were prepared

based on established standards.
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Histologic examination

Pathology. Each surgical specimen was sectioned into approximately 0.5-cm slices in the

coronal plane with the aid of a three-dimensional mold prepared from the fifth-week MRI.

The primary section was then fixed in 10% buffered formalin, before being decalcified with

10% hydrochloric acid. The section was divided into approximately 2 × 1.5 cm pieces, which

were processed into paraffin-embedded blocks in the standard manner. Individual histologic

sections were cut from the blocks at 4-μm thickness, mounted on glass slides, and stained with

hematoxylin and eosin. The glass slides were manually reviewed by a pathologist, and tumor

necrosis was estimated according to standard procedures. Patients with� 90% tumor necrosis

were considered as good responders, whereas patients with< 90% tumor necrosis were con-

sidered as poor responders. The glass slides were subsequently digitally scanned (Aperio AT

Turbo, Leica Biosystems, Vista, CA) for image processing and analysis.

Deep learning classification. By utilizing a previously established deep learning classifica-

tion model [39], digital whole slide images were analyzed for the presence of necrotic and via-

ble tumor tissue. The deep learning classifier yielded, as an output, a tumor viability map for

each whole slide image, indicating the areas of necrosis and viable tumor. An image of the

entire primary histologic section and its associated tumor viability map were then recon-

structed by stitching together the individual whole slide images and their respective tumor via-

bility maps using an image stitching software [40, 41].

Pre-processing of MR images

The signal intensities of all conventional MR images were standardized using a non-linear

transformation procedure [42] to achieve a level of consistency in intensity scale across the

MR images. The multi-modal MR images acquired in each patient study were aligned (co-reg-

istered) using the DICOM’s patient-based reference coordinate system (RCS). Furthermore, in

order to compensate for any image misalignment due to subject motion between scans, a rigid

body co-registration was performed in 3D Slicer (open-source software, www.slicer.org).

Post-processing and evaluation of advanced MR images

DWI sequence analysis. Apparent diffusion coefficient (ADC) was calculated from DWI

sequences using an inverse relationship between DWI signal and diffusivity, which can be pre-

sented by S(b) = S0 exp(−b � ADC), where S is the signal intensity at a prescribed diffusion

weighting (b-value). Three different b-values (i.e., 0, 400, and 800 s/mm2) were used to com-

pute the ADC.

DCE-MRI sequence analysis. A “subtraction” sequence was at first generated by subtract-

ing the first pre-contrast image from all subsequent images in a DCE-MRI sequence [27]. Two

semi-quantitative parametric images–namely, the steepest slope of and the area under the

time-intensity curve–were generated as follows. The steepest slope of the time-intensity curve

was calculated for each pixel in the subtraction DCE-MRI sequence as (SIend−SIprior) � 100 /

(SIbase � T), where T is the sampling time interval, SIbase is the signal intensity of the pixel in the

pre-contrast image (before the injection of contrast agent), and SIprior and SIend are the signal

intensities of the pixel that differ the most between any two consecutive time points [43]. The

area under the time-intensity curve was computed for each pixel over the first 100 seconds of

the subtraction DCE-MRI sequence.

In addition, DCE-MRI data was quantitatively analyzed using a two-compartment pharma-

cokinetic model [44]. The modeling was performed in 3D Slicer using the following parameter

settings. An arterial input function (AIF) was defined by a small region in a feeding artery visi-

ble in the DCE-MRI sequence. The relaxivity of contrast agent was 0.0039 Lmol-1s-1 (for Gd-
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DOTA at 3T). The T1 relaxation time for arterial blood was 1600 ms. The T1 relaxation time

for osteosarcoma was set to 1100 ms, a population-based mean value measured previously by

Guo et al. [45]. Two pharmacokinetic parametric maps were produced; for each pixel, two

quantitative perfusion parameters were computed–i) the transfer constant Ktrans between blood

plasma and extravascular extracellular space (EES), and ii) the volume fraction ve of EES.

Tumor segmentation on MR images

In each patient study, tumor was delineated as the volume of interest (VOI) in the post-con-

trast T1-weighted MRI sequence by a pediatric radiologist (i.e., single-observer approach). The

coronal MRI plane that best corresponded to the plane of primary histologic section was iden-

tified by a pathologist and a pediatric radiologist. The best-matching MRI plane was consid-

ered as the plane of interest (POI). Additionally, in the discussion that follows, the tumor area

of interest (AOI) was defined as the area of cross section of the tumor VOI along the POI.

In summary thus far, an image of primary histologic section, its co-registered histologic

tumor viability map, and a series of multi-modal MR images, consisting of three conventional

MRI sequences and eight advanced MRI derived parametric maps (Table 1), were carefully

produced in each patient study to be used in the subsequent process of establishing a classifica-

tion model for predicting tumor necrosis from MR images. Fig 1 depicts the overall image-

processing workflow that follows; it consists of two major stages–i) correlating MRI with histo-

pathology, and ii) predicting tumor necrosis based on MRI. The details of the procedure are

given in the following two subsections.

Correlation of histopathology and MRI

Image co-registration. By employing control point image mapping (MATLAB, Math-

Works, Natick, MA), primary histologic section image, together with its corresponding tumor

viability map, was registered to each of the pre-aligned multi-modal MR images in the POI.

Let AOIhist denote the area of tumor in the histologic image. The main focus herein was to

align the tumor AOIhist in the histologic image to the tumor AOI in the MR image. In each

Table 1. MR images of different modalities and their derived parametric maps.

No. Abbreviation Description

Conventional (CONV)
1 PC Post-contrast T1-weighted spin-echo fat-saturated

2 T1 T1-weighted spin-echo

3 STIR Short inversion-time inversion recovery

Diffusion weighted (DW)
4 ADC Apparent diffusion coefficient

Dynamic contrast enhanced (DCE)
Subtraction images (DCE-s):
5 DCE-sub-0 Subtraction image at time t = 0 s (after contrast arrival)

6 DCE-sub-1 Subtraction image at time t = 50 s (after contrast arrival)

7 DCE-sub-2 Subtraction image at time t = 100 s (after contrast arrival)

Quantitative parameter maps (DCE-q):
8 DCE-slope Steepest slope of the time-intensity curve

9 DCE-AUC Area under the time-intensity curve

10 DCE-Ktrans Influx volume transfer constant Ktrans

11 DCE-ve Relative extravascular extracellular space ve

https://doi.org/10.1371/journal.pone.0259564.t001
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patient study, eight to 12 control points, consisting of anatomical landmarks within or in the

vicinity of tumor, were defined in the given pair of histologic and MR images by a pathologist

and a pediatric radiologist. A geometric mapping was then inferred from the positions of these

control points using local weighted mean transformation.

Extraction of MR image-based features for identifying tumor necrosis. After co-regis-

tering the histologic image to each of the multi-modal MR images in the POI, each pixel in the

tumor AOIhist in the MR image can be explicitly categorized as necrotic or viable tumor based

on the tumor viability map associated with the co-registered histologic image.

Local image features were then extracted from each of the MR images along the POI as fol-

lows. A square window of side lengthW pixels was defined and centered at each pixel in the

tumor AOIhist. For each such window, four statistical parameters and 19 Haralick texture fea-

tures were computed (Table 2). Haralick texture features are scalars calculated from a gray

level co-occurrence matrix (GLCM) that counts the co-occurrence of neighboring gray levels

in the window. Briefly, each texture feature is a function of the elements in the GCLM, repre-

senting a specific relation, such as contrast and homogeneity, between neighboring pixels (for

Fig 1. Image processing workflow for correlating MRI with histopathology and predicting tumor necrosis using MRI. Each dashed box specifies the

investigated parameters in association with their respective steps in the workflow.

https://doi.org/10.1371/journal.pone.0259564.g001
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detailed definitions of the features, see [46]). The GLCM is a G × Gmatrix, where G is the

number of gray levels. Eight (symmetric) GLCMs were created by considering the closest

neighbor in eight directions (i.e., left, right, up, down, and four diagonals). The symmetric

GLCMs were summed and normalized to yield a direction invariant GLCM.

In order to examine the effects of window size W and the number of gray levels G on the

resulting features and the subsequent performance of the classification model based on those

features, the values of W and G were varied as follows: W = 3, 9, or 15, and G = 50, 100 or 200.

One-way analysis of variance (ANOVA) with unequal sample sizes [47] was used to investigate

if any of the features computed were significantly different between necrotic and viable tumor

regions when changing the size of the window W and the number of gray levels G. With

respect to its role in differentiating between necrotic and viable tumor regions, a feature was

deemed highly significant if P< 0.001, significant if 0.001� P< 0.05, and not significant if

P� 0.05. For any given pair of (W, G), only highly significant and significant features were

selected for use in the classification process.

Classification model for predicting tumor necrosis based on MR image

features

Multi-feature based fuzzy c-means (FCM) clustering. For every combination of (W, G)

and for each given MR image in Table 1, an FCM clustering [48] was performed on the

Table 2. Statistical parameters and Haralick texture features computed from MR images.

No. Feature

1 Original pixel value

Statistical features
2 Mean

3 Variance

4 Skewness

5 Kurtosis

Haralick texture features
6 Autocorrelation

7 Cluster prominence

8 Cluster shade

9 Contrast

10 Correlation

11 Difference entropy

12 Difference variance

13 Dissimilarity

14 Energy

15 Entropy

16 Homogeneity

17 Information measure of correlation 1

18 Information measure of correlation 2

19 Inverse difference

20 Maximum probability

21 Sum average

22 Sum entropy

23 Sum of squares

24 Sum variance

https://doi.org/10.1371/journal.pone.0259564.t002
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selected vector of features to obtain a fuzzy segmentation map indicating the degree to which

each pixel in the tumor AOI (as delineated by a pediatric radiologist) belonged to a necrotic

region.

The objective of an FCM clustering is to partition a collection of q pixels into c overlapping

clusters according to r features. Such a partition is represented by a matrix U = [uij], where uij
2 [0, 1] is the membership value of pixel i to cluster j (i.e., the extent to which pixel i belongs to

cluster j), where 1� i� q and 1� j� c. Let X be the matrix, of dimension q × r, containing r
features for each of the q pixels. In order to find an optimal partition U, an objective function

is defined as

Xc

j¼1

Xq

i¼1

ðuijÞ
m
kXi � vjk

2
ð1Þ

wherem is the weighting exponent controlling the degree of fuzziness of the membership

function, Xi is the feature vector (of size r) for pixel i, vj is the center of cluster j, and || � || is the

Euclidean norm. The objective function is then minimized by an iterative process, in which

the cluster centers and the partition are updated as

vj ¼

Xq

i¼1

ðuijÞ
mXi

Xq

i¼1

ðuijÞ
m

ð2Þ

and

uij ¼
1

Xc

k¼1

ð
kXi � vjk

2

kXi � vkk
2
Þ

1
m� 1

ð3Þ

respectively. The iterative process is terminated when the Euclidean norm of the difference in

V = [vj] between two consecutive iterations is less than a sensitivity threshold ε.

In the present study, the number of clusters was c = 2 (i.e., necrotic and viable tumor

regions), the weighting exponent for fuzziness wasm = 2, and the sensitivity threshold was ε =

10−5. Without loss of generality, let ui1 and ui2 be the membership values of pixel i to necrotic

and viable tumor regions, respectively. Given the primary interest was to identify tumor necro-

sis, for simplicity of notation, ui2 would be omitted, and ui would be used in place of ui1
hereafter.

Weighted majority rule. For every given pair of (W, G), the individual fuzzy segmenta-

tion maps, each of which was computed from a distinct MR image in Table 1, were combined

by using a weighted majority ruling to yield a final binary segmentation map indicating

whether a pixel in the tumor AOI belonged to necrotic or viable regions. In a weighted major-

ity rule, for a given pixel, if the sum of its weighted membership values to tumor necrosis in

the fuzzy segmentation maps being combined was greater than half of the total number of

maps, the pixel was then classified as necrotic in the final binary segmentation map. Different

weight factors were used to adjust the relative contributions of the individual fuzzy segmenta-

tion maps in computing the final binary segmentation map.

Formally, let s be the number of fuzzy segmentation maps to be combined. Let uik denote ui
in fuzzy segmentation map k, where 1� k� s. A binary membership value yi c2 {0, 1} is

defined for each pixel i, where yi = 1 and yi = 0 indicate necrotic and viable tumor, respectively.

According to a weighted majority ruling, for a given pixel i, if
Xs

k¼1
wkuki > s=2, then yi = 1;
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otherwise, yi = 0, where wk is the weight specifying the relative influence of each fuzzy segmen-

tation map k, k 2 [0, s], and wk satisfies
Xs

k¼1
wk ¼ 1.

Weight optimization. The notations introduced earlier were extended to each of n differ-

ent patients as follows. For a patient ℓ, where 1< ℓ� n, let qℓ be the number of pixels in the

tumor AOI, uikℓ be the membership value of pixel i in fuzzy segmentation map k, and yiℓ be the

binary membership value of pixel i. Let Nhist
ℓ denote the “gold-standard” reference value of

tumor necrosis estimated by means of histopathology. Let NAOI
ℓ be the predicted tumor necro-

sis (in percentage of the tumor AOI), which could be expressed as
Xq‘

i¼1
y‘i � 100=q‘. The abso-

lute error was defined as the absolute difference between NAOI
ℓ and Nhist

ℓ. In search of a set of

optimal weights wk for distinguishing necrosis from viable tumor, two different objective func-

tions were investigated:

favg ¼
1

n

Xn

‘¼1

jNAOI
‘ � Nhist

‘j ð4Þ

fmax ¼ max
‘
jNAOI

‘ � Nhist
‘j ð5Þ

Eqs (4) and (5) represent the mean and maximum absolute errors of n patients; they would

be called min-avg and min-max optimization measures, respectively.

For every given pair of (W, G), optimal weights wk were computed using min-avg and min-

max optimization approaches, respectively, for each of the following different subsets of MR

images (referred to as MRI subsets for brevity):

i. CONV (s = 3),

ii. DW (s = 1),

iii. DCE-q (s = 4),

iv. DW + DCE-q (s = 5),

v. CONV + DW (s = 4),

vi. CONV + DCE-q (s = 7),

vii. CONV + DW + DCE-q (s = 8), and

viii. CONV + DW + DCE-q + DCE-s (s = 11),

where s denotes the number of distinct MR or derived parametric images in a given MRI sub-

set. The optimization process was carried out in a discrete fashion using a “brute-force”

method. Each weight wk was assumed to be a discrete variable–that is, taking on the discrete

values in the closed range of [0, s] with a step size t. Formally, wk 2 {zt | z 2 Z�, 0� zt� s}.
Depending on the size s of a given MRI subset, a step size t was reasonably chosen from [0.01,

1] such that the set of optimal weights {wk | 1� k� s} could be found within reasonable time

by iterating through the discrete set of all possible permutations of candidate weights for

which
Xs

k¼1
wk ¼ 1 held true.

For each given combination of weight optimization method (i.e., min-avg or min-max) and

MRI subset (e.g., CONV + DW + DCE-q), the optimal value pair of (W, G) was one that

resulted in the lowest value of the objective function (i.e., favg or fmax), and its associated set of
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optimal weights wk was subsequently used in the classification model to generate results for

further analysis.

Dice and Szymkiewicz–Simpson coefficients

Two quantitative measures–namely, Dice [49] and Szymkiewicz–Simpson (or overlap) [50]

coefficients–were computed to characterize the similarity in spatial distribution between

tumor necrosis estimated by histopathology, through a deep learning classification model, and

that estimated using MR images. For a given patient ℓ, let Anec
ℓ denote the set of pixels in the

tumor AOIhist belonging to necrosis, and Bnec
ℓ be the set of necrotic pixels in the tumor AOI.

The Dice and overlap coefficients are defined as 2|Anec
ℓ \ Bnec

ℓ| / |Anec
ℓ| + |Bnec

ℓ| and |Anec
ℓ \

Bnec
ℓ| / min(|Anec

ℓ|, |Bnec
ℓ|), respectively. Both coefficients range between zero and one, with

values closer to one indicating a higher degree of similarity.

Note that the Dice coefficient is insensitive to the different sizes of the sets (i.e., Anec
ℓ and

Bnec
ℓ) being compared. This is reflected by the use of the total size of the two sets as the denom-

inator in the definition for the Dice coefficient. This size-insensitive property is a major draw-

back of utilizing the Dice coefficient, especially when the two sets being compared have

different sizes, which happened to be the case in the present study; more details would be pro-

vided in the Discussion section. In contrast, the overlap coefficient takes into account the

uneven sizes of the two sets being compared. In fact, through the use of the size of the smaller

set as the denominator in its definition, the overlap coefficient indicates the extent to which

one set contains the other (i.e., the overlap coefficient is one when one set is completely within

the other). Both the Dice and overlap coefficients were considered herein as they would pro-

vide different valuable insights in assessing the similarity of tumor necrosis between the AOIh-

ist and AOI.

Evaluation of tumor necrosis based on tumor VOI

For every combination of weight optimization method and MRI subset, the classification

model established with the previously determined set of optimal weights wk was used to com-

pute tumor necrosis from the entire tumor VOI. Let NVOI
ℓ denote the percentage of necrosis

computed from the tumor VOI. The VOI-based tumor necrosis was then compared to that of

the tumor AOI and the estimation reported by histopathology, respectively; in particular, their

actual differences NVOI
ℓ–NAOI

ℓ and NVOI
ℓ–Nhist

ℓ were calculated.

Sample size calculation

A power analysis was performed a priori, based on which a sample size of 24 prospective

patients, assuming that half of them would be responsive to treatment, would provide 80%

power to detect an odds ratio of at least 4.5 per standard deviation of a normally distributed

predictive feature. Unfortunately, the desired number of prospective subjects was not achieved

by the end of the study (February 2020). The study was initially closed to patient enrollment

because of slow accrual due to referral and intuitional considerations, and the accrual was dis-

continued towards the end of the study because of the pandemic.

Statistical analysis

Results are presented as mean ± standard error of the mean. Each pairwise statistical compari-

son was performed using one-way ANOVA [47], and P< 0.05 was considered statistically

significant.
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Results

The present study enrolled 15 consecutive patients (7 male and 8 female) diagnosed with high-

grade appendicular osteosarcoma in a single-center observational study between November 1,

2016 and April 7, 2019 (see Table 3 for a summary of the demographic data of the patients).

The patients ranged in age from 10 to 20 years (median = 13 years). Bone tumors were located

in the femur in five cases, in the tibia in four cases, in the humerus in three cases, and in the

fibula and radius in one case each. Two patients withdrew and one patient became ineligible to

proceed mid-study. Two patients were excluded due to lack of pre-surgical (week-10) imaging.

In the end, a total of n = 10 patients were considered for further imaging data processing and

analysis. In addition, for three of the n = 10 patients, a DCE-MRI sequence was either not

acquired or invalid due to logistical or image acquisition issues.

The process of correlating histopathology and MRI begins by registering a primary histo-

logic section image to an MR image in the POI. Fig 2 showcases, using the instances of two dif-

ferent patients (i.e., a good responder with Nhist
ℓ� 90% and a poor responder with Nhist

ℓ<

90%), the histologic section image and the MR image (post-contrast T1-weighted) in the POI

before and after their co-registration. Control points are defined along the boundary of tumor

mass and neighboring anatomical landmarks such as the epiphysis and growth plate. As visu-

ally verified by a pathologist and a pediatric radiologist, based on the overlay of the MR image

and its co-registered histologic image (Fig 2F and 2G), the contour of the tumor in the MR

image appears well aligned with that in the histologic image.

The registration of a histologic section image to an MR image in the POI allows for the

identification of histological necrotic and viable tumor regions in the MR image. In search of

the bestMR image features that differentiate between necrotic and viable tumor regions, statisti-

cal and Haralick texture features are computed from various MR images using different pixel-

centered window sizes and numbers of gray levels. In Fig 3, a three-color heatmap is used to

represent the significance levels of the features in distinguishing necrosis from viable tumor.

In general, as the size of the window increases, more features are identified as statistically sig-

nificant (P< 0.05) in differentiating between viable and necrotic tumor regions. Regardless of

the number of gray levels, when the size of the window increases from 3 to 15 pixels, the num-

ber of significant features increases for each given MR image by 2 ± 4 (minimum = 1,

Table 3. Demographic information for patients in the study (patients included in the imaging data analysis are highlighted).

Patient no. Age Sex Ethnicity Tumor location

1 20 Male White Femur

2 13 Female Hispanic Radius

3 12 Male White Fibula

4 14 Female Black Femur

5 16 Male Hispanic Humerus

6 11 Female White Femur

7 10 Female Black Femur

8 12 Female White Tibia

9 16 Male Hispanic Tibia

10 12 Female Black Tibia

11 13 Female Hispanic Humerus

12 17 Male Black Tibia

13 13 Male White Femur

14 11 Female White Humerus

15 16 Male Black Femur

https://doi.org/10.1371/journal.pone.0259564.t003
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Fig 2. Co-registration of histologic and MR images of osteosarcoma in POI through control point mapping.

Representative images are shown for a good-responding patient (Nhist
ℓ� 90%) and a poor-responding patient (Nhist

ℓ<

90%). (A) Post-contrast T1-weighted MR image, with the boundary of the tumor AOI drawn in red. (B) Histologic

section image (reconstructed from individual whole slide images) prior to image registration, and (C) its

corresponding histologic tumor viability map (wherein necrotic and viable tumor regions are indicated in red and
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maximum = 8, median = 3). The only exceptions are PC, STIR, and DCE-sub-2, for which the

number of significant features either remains the same or decreases by one as the size of the

window increases. The set of significant features tends to differ considerably from one MR

image type to another, as can be observed in Fig 3. For instance, for T1, most Haralick texture

features are insignificant atW = 3 pixels, but become significant atW = 15 pixels. In the con-

trary, for PC and STIR, most Haralick texture features are significant atW = 3 pixels, and

remain so as W increases to 15 pixels. On the other hand, changing the number of gray levels

does not have a noticeable effect on the number of significant features. At any given window

size, the number of significant features remains the same for most MR images as the number

of gray levels increases from 50 to 200. For any given MR image, the variation in the number

of significant features is 0 ± 1 (minimum = -2, maximum = 2, median = 0) as the number of

gray levels changes.

Fig 4 shows, through the examples of three Haralick texture features (i.e., contrast, entropy,

and homogeneity), the effect of using different window sizes and numbers of gray levels when

computing the features. When the number of gray levels is kept constant (at 100), there are

large regions of relatively uniform intensity in the feature image computed using a window

size of W = 15 pixels, and the texture appears quite different from the speckled pattern

observed in the feature image calculated using W = 3 pixels. Generally, a larger window results

in a decrease in the spatial resolution of the feature computed, but affords a macroscale spatial

depiction of the feature–a representation not possible when using a smaller window size, at

which the fine textures at the microscale are captured in detail. In contrast, increasing the

number of gray levels from 50 to 100 have no visible effect on the Haralick texture features

computed from the MR images. As demonstrated in Fig 4, the feature images appear almost

similar regardless of the number of the gray levels used when the size of the window is constant

(at 9 pixels). This implies that the numbers of gray levels G = 50, 100, and 200 are similarly ade-

quate in resolving intensity variations in the given MR images when computing the GLCM.

For each predefined MRI subset, the optimal weight factors, which indicate the relative con-

tributions of each distinct MR image in the given MRI subset for computing the tumor viabil-

ity map, are determined using two optimization methods (i.e., min-avg and min-max) for

different value pairs of window size and number of gray levels. Fig 5 shows the results from the

weight optimization procedure–specifically, the optimal value of the objective function favg or

fmax (depending on which weight optimization measure is used) for each different combina-

tion of MRI subset, window size, and number of gray levels. In consistency with the previous

observation on the noticeable impact of changing the window size on MR image features as

opposed to the negligible effect of the number of gray levels, when the number of gray levels

changes from 50 to 200, the resulting optimal values of the objective function do not deviate as

considerably as those when the window size changes from 3 to 15 pixels. Nonetheless, for sub-

sequent data processing and analysis, the best settings of window size and number of gray lev-

els–that is, those that yield the lowest optimal value of the objective function–are selected for

each MRI subset. For either weight optimization method, W = 3 pixels has been shown to be

the optimal window size for CONV, DW, and CONV + DW, while W = 9 pixels is optimal for

all other MRI subsets. For both weight optimization methods, G = 50 is the optimal number of

gray levels for DCE-q, G = 100 for DW and DW + DCE-q, and G = 200 for all the others.

blue, respectively) computed by a deep learning classification model. Each pair of defined control points is represented

by a yellow dot (in MR image) and a blue dot (in histologic image) labeled with the same number. (D) Histologic

image and (E) its associated tumor viability map after being co-registered to MR image. (F) Average intensity

projection of MR image fused with histologic image. (G) Average intensity projection of MR image fused with

histologic tumor viability map.

https://doi.org/10.1371/journal.pone.0259564.g002
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At those optimal settings of (W, G), a comparison is made between tumor necrosis esti-

mated from MR images and that evaluated by a pathologist. Fig 6 shows the absolute error in

tumor necrosis estimated from various MRI subsets using either min-avg or min-max

Fig 3. Statistical significance of difference in MR image features between histologic necrosis and viable tumor.W and G denote the window size and the

number of gray levels, respectively. Features are identified by their numbering in Table 2. Light blue indicates P< 0.001 (highly significant), medium blue

indicates 0.001� P< 0.05 (significant), and dark blue indicates P� 0.05 (not significant).

https://doi.org/10.1371/journal.pone.0259564.g003
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optimization approaches. Overall, in comparison to min-avg optimization, min-max yields a

set of optimal weights that result in tumor necrosis predictions with a higher absolute error

and a lower variability (indicated by a smaller standard error of the mean). For any given MRI

subset, there is no statistically significant difference in the absolute error between the two

Fig 4. Effects of window size W and number of gray levels G on Haralick texture features. Images show the differences in texture features, such as contrast,

entropy, and homogeneity, computed for the tumor AOIhist in the post-contrast T1-weighted MR image as window sizeW varies (from 3 to 9 to 15 pixels)

while keeping the number of gray levels constant at G = 100. No visible differences can be observed in the texture features when the number of gray levels G
changes from 50 to 100 to 200 while the window size remains constant atW = 9 pixels.

https://doi.org/10.1371/journal.pone.0259564.g004
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Fig 5. Optimal values of objective function for different combinations of weight optimization methods and MRI subsets. Optimal values of objective

functions favg and fmax represent the minimized mean absolute error and the minimized maximum absolute error, respectively, obtained in the weight

optimization process.

https://doi.org/10.1371/journal.pone.0259564.g005
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weight optimization methods. For min-max optimization, a statistically significant difference

(P� 0.03) is observed in the absolute error between i) CONV and CONV + DCE-q, ii) CONV

and CONV + DW + DCE-q, iii) CONV and CONV + DW + DCE-q + DCE-s, iv) CONV +

DW and CONV + DCE-q, v) CONV + DW and CONV + DW + DCE-q, and vi) CONV +

DW and CONV + DW + DCE-q + DCE-s. However, no statistically significant difference

(P> 0.05) is observed in the absolute error between i) CONV and CONV + DW, ii) CONV +

DCE-q and CONV + DW + DCE-q, and iii) CONV + DW + DCE-q and CONV + DW +

DCE-q + DCE-s. The main implications of these statistical results are two-fold. First, adding

Fig 6. Absolute error in tumor necrosis estimated using various combinations of weight optimization methods and

MRI subsets. The leftmost box represents the absolute error in histologic tumor necrosis estimated from primary histologic

section images using a previously established deep learning classification method.

https://doi.org/10.1371/journal.pone.0259564.g006
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DCE-q to CONV significantly improves the accuracy of the resulting tumor necrosis predic-

tion, whereas adding DW does not. Secondly, the accuracy of the estimated tumor necrosis

does not improve by adding DCE-s to CONV + DW + DCE-q. As seen in Fig 6, CONV

+ DCE-q, CONV + DW + DCE-q and CONV + DW + DCE-q + DCE-s are the three MRI sub-

sets that yield the best estimations of tumor necrosis with the highest accuracies (with refer-

ence to histopathology). For instance, the absolute error for CONV + DW + DCE-q is

4.1 ± 0.8% (n = 7). On the other hand, CONV, DW, and CONV + DW produce the worst

results with the lowest accuracies. In the case of CONV, an absolute error of 8.2 ± 1.7%

(n = 10) is observed. For min-avg optimization, no statistically significant difference

(P> 0.05) is found in the absolute error between any two given MRI subsets.

Fig 7 illustrates, through the instances of the same two patients as in Fig 2, the viability

maps for the tumor AOI computed from different MRI subsets using either of the two weight

optimization approaches. Compared with histologic tumor viability maps (Fig 2E), the tumor

viability maps estimated from MR images appear quite similar (if not completely the same) in

their overall spatial distribution of necrotic and viable tumor regions. The Dice and overlap

coefficients are employed for measuring the said similarity for each MRI subset (Fig 8). For

both weight optimization methods, no statistically significant difference in either the Dice or

overlap coefficients is found between any two given MRI subsets. Likewise, for any given MRI

subset, neither of the two coefficients are significantly different between the two weight opti-

mization methods. Yet, the general profile of the computed measures is similar to that previ-

ously observed in the absolute errors of tumor necrosis estimations. Particularly, CONV

+ DCE-q, CONV + DW + DCE-q, and CONV + DW + DCE-q + DCE-s are among the MRI

subsets that yield the highest similarity. For instance, the Dice and overlap coefficients are

0.70 ± 0.03 and 0.94 ± 0.01 (n = 7), respectively, for CONV + DW + DCE-q (using min-avg

optimization). On the contrary, CONV, DW, and CONV + DW produce the tumor viability

maps with the least similarity to that estimated by histopathology. In the case of CONV, the

Dice and overlap coefficients are 0.61 ± 0.07 and 0.87 ± 0.09 (n = 10), respectively. As expected,

the Dice coefficient is significantly lower than the overlap coefficient. This implies that the

sizes of Anec
ℓ and Bnec

ℓ are indeed quite different. But, as indicated by a relatively high overlap

coefficient, one set is more or less contained within the other.

Finally, the MRI-based classification model, established earlier by using a correlation

between histologic and MR images in the POI, was used to estimate tumor necrosis for the

entire VOI. Fig 9 shows the three-dimensional viability maps for the tumor VOI computed

from various MRI subsets using either of the two weight optimization methods. Through the

coronal orientation view of the three-dimensional tumor viability map (i.e., in the same

orthogonal direction of the POI), it appears that, for a given patient, the overall distribution of

tumor necrosis, as well as its relative proportion with respect to viable tumor, could be quite

different from those inferred from the POI. In Fig 10, the amount of tumor necrosis estimated

for the VOI is compared to that for the AOI and the estimation provided by a pathologist.

Although a statistical significance is not seen across the board, a clear overall negative inclina-

tion is observed in the actual differences between NVOI
ℓ and NAOI

ℓ (or between NVOI
ℓ and

Nhist
ℓ)–that is, the volume-based tumor necrosis estimations tend to be lower than those evalu-

ated based on a single tissue section or MRI slice.

Discussion

The current study set out to find a reliable and accurate classification model for differentiating

necrosis from viable tumor in patients with high-grade osteosarcoma using MR images. We

used a previously developed machine learning tool to identify histologic necrosis versus viable
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tumor in resected osteosarcoma. Through histologic-MR image co-registration, we built a

model to extract MR image features to identify necrosis and viable tumor. Without prior

knowledge of what statistical and textural MR image features sufficiently characterize

Fig 7. Viability mapping of tumor AOI computed using different combinations of weight optimization methods and MRI subsets. Tumor viability maps

are shown for a good-responding patient (Nhist
ℓ� 90%) and a poor-responding patient (Nhist

ℓ< 90%). Necrotic and viable tumor regions are represented in

red and blue, respectively.

https://doi.org/10.1371/journal.pone.0259564.g007
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histologic necrosis and viable tumor, as well as the scales at which the features properly reflect

the qualities of the two regions of interest, different features and analysis parameters (such as

pixel-centered window size and number of gray levels) were examined in search of the best fea-

tures and parameter settings. In the process of establishing a classification model, MR images

of different modalities and their various combinations were taken into consideration. An opti-

mal weighted majority ruling was sought such that the individual MR images were combined

in an optimal ratio to yield the best possible prediction of tumor necrosis given a specific error

minimization criterion.

The main findings were as follows. MR image features shown to be significant in distin-

guishing necrosis from viable tumor were different depending on the modality or type of the

given MR image (Fig 3). The scales at which the features optimally indicated necrotic and via-

ble tumor were different as well depending on the MR image type (Fig 5). Conventional MR

images (i.e., PC, T1, and STIR) alone were sufficiently capable of differentiating necrosis from

viable tumor, with an accuracy averaging above 90%. Conventional MR images were equally

effective as ADC in distinguishing necrotic from viable tumor regions. The accuracy of tumor

necrosis prediction by conventional MR images improved when DCE-q (i.e., DCE-slope,

DCE-AUC, DCE-Ktrans, and DCE-ve) was added into consideration. The same did not occur

when adding ADC. With respect to DCE-MRI, no additional benefit was found in adding

DCE-s (i.e., subtraction images) when DCE-q was already included.

Conventional MRI

The current findings as regards conventional MRI are encouraging from the perspective of a

radiologist, given that conventional MRI is commonly performed and readily available at diag-

nosis and mid-treatment. In fact, it is not surprising that conventional MR images could be

Fig 8. Measures of similarity of necrotic tumor region between tumor viability map computed by histopathology and that estimated

from various MRI subsets. (A) Dice coefficient. (B) Overlap coefficient.

https://doi.org/10.1371/journal.pone.0259564.g008
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Fig 9. Viability maps for tumor VOI estimated using different combinations of weight optimization methods and MRI subsets. Three-dimensional tumor

viability maps are shown in the coronal orientation for a good responder (Nhist
ℓ� 90%) and a poor responder (Nhist

ℓ< 90%).Necrotic and viable tumor regions are

represented in red and blue, respectively.

https://doi.org/10.1371/journal.pone.0259564.g009
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informative (to a certain extent) in approximating the degree of tumor necrosis. Researchers

have shown that visual interpretations of conventional MR images are indeed possible for the

prognosis of osteosarcoma [10, 51, 52]. First, intraosseous (intramedullary) tumor is evident

on T1-weighted MR images as areas of low signal intensity. Areas of high T1 signal intensity

within a lesion typically represent areas of hemorrhage, whereas areas of low T1 signal inten-

sity within a lesion usually correspond to areas of bone formation (dense mineralization).

Post-contrast T1-weighted MR images (with fat suppression), through a contrast enhancement

of well-vascularized tissues, allow the differentiation of vascularized tumoral areas (e.g., viable

tumor, granulated or fibrous tissue) and non-vascularized tumoral areas (e.g., liquefaction

necrosis). However, these images do not distinguish viable tumor from immature vascularized

granulation tissue, fibrous tissue, neovascularity in necrotic areas, and reactive hyperemia. In

other words, static post-contrast T1-weighted MR images are highly sensitive but lack of speci-

ficity, which could lead to an overestimation of the amount of residual viable tumor. STIR

imaging is commonly used for detecting abnormal fluid content within tissues such as tumor,

edema, and infection [53, 54]. A high STIR signal is typically seen within most tumors due to

their increased water content. A low STIR signal within tumor usually indicates bone forma-

tion (dense mineralization).

MRI sequences acquired at diagnosis usually comprise non-contrast T1-weighted, post-

contrast fat-saturated T1 weighted, and STIR. Dynamic contrast-enhanced MRI and DWI are

typically not indicated for routine clinical use. Hence, while these advanced MRI techniques

are important additional prognostic factors predictive of tumor necrosis, it was imperative for

the current study to examine the value of conventional MRI sequences (alone or combined

with other sequences) in assessing tumor response to chemotherapy. A classification model

Fig 10. Comparison of volume- and single plane-based estimations of tumor necrosis. (A) Actual difference in tumor necrosis estimation

between that of VOI and AOI (i.e.,NVOI
ℓ–NAOI

ℓ). (B) Actual difference between VOI-based and histopathologic tumor necrosis estimations

(i.e.,NVOI
ℓ–Nhist

ℓ). An asterisk below a box indicates that the associated actual difference is statistically significant (P< 0.05).

https://doi.org/10.1371/journal.pone.0259564.g010
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was created to “interpret” conventional MR images of osteosarcoma, and it was shown that a

reasonable estimate of tumor necrosis could be obtained through the model.

DCE-MRI

The use of multi-modal MR images, especially advanced MRI sequences, was demonstrated

herein to be critical in achieving the greatest accuracy in prediction of tumor necrosis. Specifi-

cally, DCE-MRI sequence and its derived parametric images were proven in the current study

to play a significant role in differentiating necrosis from viable tumor. This observation is con-

sistent with various prior results on the capacity of DCE-MRI in evaluating musculoskeletal

sarcomas, from quantifying tumor necrosis to identifying good responders. For instance,

semi-quantitative parametric images (i.e., DCE-s, DCE-slope, and DCE-AUC) are important

for detecting early and progressive enhancing structures in tumors. Other studies demon-

strated an excellent correlation between early enhancing lesions, viable tumors, and poor che-

motherapeutic (histologic) response [8, 27, 28, 43, 55, 56]. The degree of viability tends to vary

in different parts of tumor, and DCE-MRI exhibits the potential of correctly identifying viable

tumor regions by showing different local enhancement patterns. Particularly, as seen in [27,

28, 57], early and rapid enhancement patterns in DCE-MRI sequences could be used to iden-

tify viable tumor (although early enhancing regions might also include normal physes and

arteries). Furthermore, most DCE-MRI studies performed in patients with osteosarcoma dem-

onstrated that a decrease in the slope of the time-intensity curve, tumor blood volume (ve),

and vessel permeability (Ktrans) reflects a favorable therapeutic response to chemotherapy. Spe-

cifically, as previously shown in [8, 56, 58], a significantly greater reduction in the slope of the

time-intensity curve was observed in good responders. A comprehensive meta-analysis of six

previous studies (with a total of 66 patients) [59] concluded that a greater than 60% reduction

in the slope of the time-intensity curve indicated a good response. Indeed, as later reported in

[15], the slope of and the area under the time-intensity curve were significantly different

between viable and necrotic tumor regions. On the other hand, only a limited number of stud-

ies have investigated the effectiveness of using quantitative kinetic parameters in predicting

chemotherapeutic response of osteosarcoma. Nevertheless, significant changes in the values of

pharmacokinetic parameters have been observed during and after treatment. In particular,

according to [45, 60, 61], significantly lower Ktrans and ve were found in good responders than

poor responders after chemotherapy. In short, there exists abundant scientific evidence in sup-

port of the validity of the classification model in using DCE-MRI to differentiate tumor necro-

sis and residual viable neoplastic tissue.

It is interesting to note that no significant improvement was obtained in the estimation of

tumor necrosis when DCE-s was added to the MRI subset already containing DCE-q. It seems

that DCE-s did not contribute any additional information useful for improving the accuracy of

tumor necrosis prediction, as DCE-slope and DCE-AUC were likely equivalent to DCE-s in

terms of representing critical spatial information of contrast enhancement pattern of tumor.

DWI and ADC

Unlike DCE-MRI sequences, ADC was shown to be ineffective in improving the accuracy of

tumor necrosis estimation by conventional MR images. In fact, ADC produced a tumor necro-

sis estimation with a similar accuracy as conventional MR images. Nonetheless, the potential

of using ADC for identifying tumor necrosis was indisputable, as reinforced by the finding of

various image features that were significant in distinguishing necrotic from viable tumor

regions (Fig 3). It has been generally agreed in the literature that DWI reflects the tissue cellu-

larity of musculoskeletal tumors, and a lower ADC is observed in more cellular and aggressive
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tumors due to restricted diffusion of water [23]. According to various studies [13, 14, 16, 18,

21, 22, 26], comparing the ADC before and after neoadjuvant chemotherapy showed that the

minimum and mean ADC increased after therapy. It was postulated that tumor necrosis has a

significantly different ADC from viable tumor, substantially contributing to the differences

observed before and after treatment. Indeed, a significantly higher ADC was observed in

tumor necrosis, as compared to viable tumor region [14–16]. Tumor necrosis causes an

increase in ADC due to increased cellular permeability and decreased cellularity. Furthermore,

significantly [21] or non-significantly [19] higher ADCs in good responders were reported

after chemotherapy. In [16], the minimum ADC was found to be significantly higher in good

responders than poor responders. In [19], a significant difference in ADC was observed

between good and poor responders at mid-course of chemotherapy. Byun et al. [20] showed

that a 13% increase of ADC allowed a prediction of good response with a sensitivity, specific-

ity, and accuracy of 83%, 73%, and 78%, respectively. Most recently, a meta-analysis of five

prior studies (with a total of 106 patients) [25] confirmed the ability of using DWI to predict

response of osteosarcoma to chemotherapy.

AOI vs. VOI

In spite of its overall statistical insignificance, the degree of tumor necrosis estimated from the

VOI was generally less than that estimated from the AOI (Fig 10). This observation suggests

that, as some studies have claimed in the past [62–64], the amount of residual viable tumor

estimated from the entire tumor volume could be different than that estimated from a single

histologic section. In fact, a volumetric evaluation of tumor necrosis may be a better prediction

than a histopathological estimation, which is based on a selected section of tumor, chosen by a

pathologist and may not accurately represent the entire tumor mass. A further investigation,

such as histopathological grading of multiple sections of tumor, is required to confirm the

validity of using tumor volume for estimating histologic necrosis. Potential implications of

VOI-predicted response may include improved surgical planning as well as more precise prog-

nostic information and precision therapy for patients.

Histopathology-MRI correlation

In order to establish a correlation between histopathologic necrosis and MR image features,

pre-identified regions of histologic tumor necrosis were mapped onto a corresponding MR

image in the POI through a co-registration between histologic and MR images. Instead of

requiring a pathologist to manually delineate necrotic tumor regions in each primary histo-

logic section, a previously established deep learning classifier [39], which was a result of an

extensive evaluation against various models [65, 66], was used for the task and to generate his-

tologic tumor viability maps. This helped to eliminate human errors and bias in the segmenta-

tion process. However, it was observed that a significant amount of liquified necrotic tumor

tissue could be lost during tissue processing for histopathology. This essentially led to an inac-

curate estimation of the actual amount of tumor necrosis for some patients by the deep learn-

ing classifier, contributing to the comparatively high absolute errors associated with the deep

learning classification method as observed in the results (Fig 6), even though the necrotic

tumor regions in each histologic section were indeed correctly identified (as verified by a

pathologist). In other words, the histologic tumor viability maps produced by the deep learn-

ing classifier were accurate in identifying tumor necrosis, albeit being partial and incomplete.

Introspectively, this finding further underscores the relative advantage of using MRI in evalu-

ating tumor necrosis without the concern of artifacts and tissue loss induced by the prepara-

tion for histopathology.
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Unlike other tumor types, osteosarcomas are commonly heterogenous. Due to the heteroge-

neous nature of the tumors, it is problematic to correlate changes in image intensity (or other

parameters derived from MRI sequences) with tumor necrosis. Texture-based statistical mea-

sures [46, 67, 68] are useful for characterizing intra-tumoral heterogeneity and for describing

local spatial distributions of signal intensities that are important for identifying a given region

of interest such as tumor necrosis. Since different analytic parameters (such as window size and

number of gray levels) could affect the calculations of texture features (Fig 4), a parametric

investigation was undertaken to determine the optimal values of the parameters. The results

show that, depending on the modality and type of a given MR image, different texture features

computed with varied analytic parameters could be associated with tumor necrosis (Fig 3).

Measuring accuracy of tumor viability mapping

To evaluate the similarity in spatial distribution of tumor necrosis between AOIhist and AOI,

the Dice and overlap coefficients were both employed. Due to liquefaction of necrotic tissue

mass and its subsequent loss during specimen preparation for pathologic examination, it was

observed that a histologic tumor section might contain void areas, which were considered as

non-tumor by the deep learning classification model (i.e., black areas within the boundary of

tumor in Fig 2C). Furthermore, the existence of non-tumor tissue within a tumor mass and

possible artifacts resulting from tissue sample preparation (for histology) and image stitching

could contribute to additional non-tumor areas within the contour of tumor in a histologic

viability map. In contrast, each pixel in the tumor AOI (i.e., within the contour of tumor in an

MR image as delineated by a pediatric radiologist) was categorized as either necrotic or viable

by the MRI-based classification model. Consequently, the number of necrotic tumor pixels |

Anec
ℓ| in the AOIhist was generally lower than the number of necrotic tumor pixels |Bnec

ℓ| in

the AOI, even though their bounding contours of tumor and their necrosis estimations (in

percentage of the tumor) might be similar. Thus, the Dice coefficient alone might not be repre-

sentative of the overlap between the actual histologic tumor necrosis and the tumor necrosis

estimated from MR images. This helps to explain the difference between the Dice and overlap

coefficients observed in the current study. Namely, the overlap coefficient was relatively high

(close to one), indicating that Anec
ℓ was roughly a subset of Bnec

ℓ. But, in comparison with the

overlap coefficient, the Dice coefficient was generally skewed low, implying that the sizes of

Anec
ℓ and Bnec

ℓ were indeed different due to the reasons aforenoted.

Medical image fusion

Research literature refers to the workflow depicted in Fig 1 as image fusion, which consists of

image registration and “fusion” of relevant features from the registered images (see [69–71] for

general reviews). In the current study, morphological filters were used for feature detection

(i.e., pixel-centered window-based image feature extraction), and it was followed by the utiliza-

tion of a fuzzy membership function for image feature aggregation (i.e., for combining features

from different MRI modalities for accurately identifying tumor necrosis). The selection of fea-

ture extraction method and aggregation function that result in an optimal image fusion

remains an open problem and is indeed often dependent upon given medical applications

(e.g., organs and imaging modalities under study). Partially due to a small sample size

(n� 10), the authors chose to create a relatively simple classification model based on fuzzy c-
means clustering and weighted majority ruling. Nevertheless, the model was proven sufficient

in illustrating the feasibility of predicting tumor necrosis by soft clustering on MR image fea-

tures, following which a weighted majority ruling was performed to obtain a hard two-class

prediction (i.e., necrosis and viable tumor).
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Other limitations and future directions

The current results show, by and large, minimizing the average absolute error, when determin-

ing the optimal weights for combining MR images of different types, yielded tumor necrosis

estimations with not only a higher accuracy but also variance, while minimizing the maximum

absolute error ensured minimum variance in sacrifice of accuracy. An alternative herein

would have been to find a middle ground between the two optimization measures by combin-

ing them. For instance, an objective function such as f = wavgfavg + wmaxfmax could be formed,

where wavg and wmax would be optimized (along with wk) in search of the minimum value of f.
This would be a part of the authors’ continuing effort to further refine the current model as

more imaging data becomes available. In future studies, more sophisticated image fusion and

classification techniques such as neural networks shall be considered, as they become feasible

with more assessable imaging data.

Due to issues such as incomplete mapping of histologic tumor necrosis, which results from

unavoidable tissue shrinkage and loss during specimen processing for histopathology, and

unattainability of a perfect histologic-MR image co-registration, it remains to be seen whether

a feasible version of the current classification model could be obtained by performing the

weight optimization based on a spatial mapping of tumor viability (e.g., through maximizing

the Dice coefficient) instead of an overall percentage of tumor necrosis. In addition, almost all

patients enrolled were good responders with higher than 90% tumor necrosis; this fact might

possibly skew the optimization outcome towards identifying tumor necrosis. Furthermore,

due to missing or lost data at random (i.e., as a result of technical or logistic glitches), the sam-

ple sizes were different in the models developed using conventional MRI versus advanced

MRI. It was unfortunate as it led to a loss of statistical power in modeling, but it was believed

that the analysis could be run with the remaining data without introducing bias, for the ran-

dom loss of data could reasonably be expected not to skew the study’s results. Nevertheless,

given the limited sizes of the samples, it is possible that a difference in performance could be

driven by the change in both the sample size and the variation of the data itself. Only with

more testing data one could verify the true validity of the current models. As mentioned ear-

lier, the currently available imaging data is indeed limited (n = 10 patients), a direct conse-

quence of slow progress due to limitations such as rarity of lesion, variability in histology and

anatomy, and inconsistency of MRI sequences acquired. Notwithstanding, the results are

promising and pointing to the prognostic value of utilizing MRI, both conventional and

advanced, for evaluating tumor response in patients with osteosarcoma.
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