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Rapid identification of pathogens is required for early diagnosis and treatment of life-threatening blood-
stream infections in humans. This requirement is driving the current developments of molecular diagnos-
tic tools identifying pathogens from human whole blood after successful isolation and cultivation. An
alternative approach is to determine pathogen-specific signatures from human host immune cells that
have been exposed to pathogens. We hypothesise that activated immune cells, such as neutrophils,
may exhibit a characteristic behaviour — for instance in terms of their speed, dynamic cell morphology
— that allows (i) identifying the type of pathogen indirectly and (ii) providing information on therapeutic
efficacy. In this feasibility study, we propose a method for the quantitative assessment of static and mor-
phodynamic features of neutrophils based on label-free time-lapse imaging data. We investigate neu-
trophil activation phenotypes after confrontation with fungal pathogens and isolation from a human
whole-blood assay. In particular, we applied a machine learning supported approach to time-lapse micro-
scopy data from different infection scenarios and were able to distinguish between Candida albicans and
C. glabrata infection scenarios with test accuracies well above 75%, and to identify pathogen-free samples
with accuracy reaching 100%. These results significantly exceed the test accuracies achieved using state-
of-the-art deep neural networks to classify neutrophils by their morphodynamics.

� 2022 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Candida bloodstream infections (BSI) are the most common
form of invasive candidiasis and constitute the fourth leading
cause of nosocomial invasive infections in Intensive Care Units
(ICUs) patients in the US [1]. The study on Extended Prevalence
of Infection in Intensive Care (EPIC II) revealed that the prevalence
of Candida BSI was 6.9 per 1000 patients with an associated mor-
tality rate of around 43% compared to 27% caused by bacterial
BSI [2]. Among hospitalised patients, Candida species present the
most frequent isolated fungal BSI pathogens [3]. In particular, C. al-
bicans and C. glabrata are responsible for the majority of Candida
cases worldwide, where C. albicans is the predominant species with
50% of cases, while C. glabrata is responsible for 15–25% of invasive
Candida infections in the US and Northern Europe [4]. These statis-
tical data imply that methods for the fast and reliable diagnosis are
urgently needed to allow for an early start of targeted treatments.

Various animal models have been used to study invasive Can-
dida infections, such as fruit fly, zebrafish and mouse. In contrast,
human whole-blood infection (WBI) models enable analysing
host-pathogen interactions in a setting similar to in vivo BSI [5].
The human WBI models allowed (i) identifying virulence factors
[6], (ii) analysing immune responses including time-resolved data
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on immune cell activation and pathogen status [7], and (iii) testing
potential therapeutic approaches [8,9]. We have previously studied
BSI by combining the human WBI model with the quantification of
immune processes by virtual infection modelling [5,10]. In this
context, we found that neutrophils play a central role in the
defence against C. albicans BSI. Moreover, we have performed
extensive comparative analyses for the two species C. albicans
and C. glabrata and found that they are differentially recognised
by neutrophils using live cell imaging combined with automated
image analysis [11–14] and computational modelling [15–18]. This
motivated us to study the possibility of automatically identifying
the type of pathogen in BSI based on neutrophil morphological
properties.

In this feasibility study, we combine the human WBI model
with live cell imaging of primary neutrophils and computational
analysis to extract features that allow us to detect BSI caused by
C. albicans and C. glabrata. The central hypothesis is that (i) neu-
trophils in a human WBI model respond with morphological
changes to the presence of pathogens and (ii) these changes are
pathogen-specific. To advance the development of rapid and reli-
able diagnostic methods, we are investigating the potential of the
automated characterisation of neutrophil activation phenotypes
for human Candida BSI. From a technical point of view, this study
exploits our recent developments regarding the analysis of live cell
imaging data with respect to tracking of unlabelled cells over
extended times [19] and segmenting cells with high accuracy for
dynamical changes of their morphology (morphodynamics) [20].
Features of immune cells under different stimuli that have been
previously studied include (i) changes in cell size [21], (ii) modifi-
cations of membrane topography [22,23] and (iii) variations in the
migration behaviour [24]. Our study utilizes features based on the
cell morphodynamics and provides a fully automated pipeline
based on live cell imaging data of unlabelled primary neutrophils
in order to distinguish the two scenarios of Candida BSI.
2. Materials and Methods

2.1. Ethics statement

This study was conducted in accordance with the Declaration of
Helsinki. All protocols were approved by the Ethics Committee,
University Hospital Jena (permit number: 273–12/09).

2.2. Fungal strains and culture

GFP-expressing C. albicans [5] and C. glabrata [25] strains were
routinely used in all experiments. C. albicans and C. glabrata were
seeded in yeast extract–peptone–dextrose medium (YPD medium:
2% D-glucose, 1% peptone, and 0.5% yeast extract, in water) and
grown overnight at 30 �C and 37 �C, respectively, in a shaking incu-
bator. Both fungal species were reseeded in fresh YPD medium,
grown until they reach the mid-log phase followed by harvesting
in HBSS.

2.3. Whole-blood infection model

To avoid anticoagulation and not influence complement activa-
tion, human peripheral blood from healthy donors was drawn in
Hirudin S-monovettes� (Sarstedt) after informed consent. Whole-
blood infection assay was performed as described previously, using
an inoculum that allows rapid innate immune activation but pre-
cludes unspecific effects on adaptive immune cells [5]. In brief,
HBSS (mock-infected control), C. albicans or C. glabrata were added
in a final concentration of 1�106 fungal cells per 1 ml of whole
blood and then incubated for 1 h at 37 �C on a rolling mixer. After
2298
incubation, samples were used directly for neutrophil isolation
with sequential live cells imaging of neutrophils.

2.4. Isolation of human neutrophils

Untouched neutrophils were isolated from either mock- or Can-
dida-infected blood using MACSxpress Whole Blood Neutrophil
Isolation Kit according to the instructions from the manufacturer
(Miltenyi Biotec). Remaining erythrocytes were lysed for 5 min
with ACK Lysing Buffer (Life Technologies) and purity of neu-
trophils was checked at flow cytometry to be >95% (see Supple-
mentary Fig. 1). For this, neutrophils were stained with mouse
anti-human CD66b antibody (BD Biosciences Cat# 561649, RRID:
AB_10897169) for 20 min at 4 �C and measured with the BD FACS-
CantoTM II system and the BD FACSDivaTM software (both BD Bio-
sciences). In parallel, staining with the appropriate isotype
control antibody (BD Biosciences Cat# 560861, RRID:
AB_10926214) was performed to ensure specificity of antibody
binding. FlowJo10 software was used for analysis. Obtained neu-
trophils were resuspended in RPMI 1640 with 5% heat-
inactivated human serum and used for live cell imaging.

2.5. Live cell imaging and Time-lapse microscopy

Live cell imaging was performed by adding 4�105 neutrophils
isolated either from mock-, C. albicans- or C. glabrata-infected
human blood in a l-dish (ibidi) in a total volume of 2 ml RPMI
1640 containing 5% heat-inactivated human serum. 2.5 ng/ml of
propidium iodide (PI, Sigma) was added into the medium to distin-
guish viable cells from dead ones. PI stains only nucleic acids in
dying cells characterized by leak in the plasma membrane. There-
fore, death of a neutrophil or a fungal cell can be identified in the
video by the respective cell/fungus turning red fluorescent. Neu-
trophils were incubated in an environmental control chamber at
37 �C and 5% CO2. Images were acquired every 7 s with a Zeiss
LSM 780 confocal microscope, which was focused on the bottom
of the dish. Cells behaviour was monitored with a 20x microscope
objective (Zeiss Plan-APOCHROMAT 20x/0.8NA) using a differen-
tial interference contrast (DIC) setting with illumination by
488 nm laser. Image size was 2048 by 2048 px with the scale
0.208 lm/px.

2.6. Segmentation and tracking of neutrophils

For cell detection and tracking we used our Algorithm for
Migration and Interaction Tracking (AMIT, [13,14,19]) in its latest
release of the third version [20] that is available from our GitHub
repository: https://github.com/applied-systems-biology/amit.
AMIT enables automated segmentation and tracking of label-free
cells from microscopy data. In addition, it provides the possibility
to eliminate track segments associated with long-lasting clusters
of cells that may be indistinguishable by eye. This post-
processing procedure is necessary, because the extraction of unbi-
ased information about the morphology of individual cells inside
such clusters is impossible. The maximal possible track duration
is about 30 min corresponding to the 260 frames of recorded video
with a frame rate of about one frame per seven seconds.

2.7. Measurement of neutrophil speed

The instantaneous cell speed was calculated from consecutive
time steps in lm/min for each cell track. These instantaneous
speed values were used to compute the arithmetic mean speed
value per cell. The latter was collected from all cell tracks of a video
as a representative speed value distribution. In addition, for every
video, the set of instantaneous cell speeds was split into two sub-
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sets by a cell morphology detector. As explained in detail below,
this detector distinguishes between cells with non-spreading mor-
phology (N-morphology) and spreading morphology (S-
morphology) and enables to numerically distinguish the measured
neutrophil speed for these two morphology states.
2.8. Extraction of gradient-based cell features

For each frame in a video from time-lapse microscopy, we
applied a morphological contrast enhancement [26] and contrast-
limited adaptive histogram equalisation [27] as a pre-processing
step, followed by gradient detection with the Sobel operator [28]
to compute an intensity gradient magnitude map per image. After-
wards, all values were normalised to the maximal value of the gra-
dient amplitude for a given video (see Supplementary Fig. 2) and
for each previously segmented neutrophil, the value range of
[10th, 80th] percentiles in the pixel intensity was used as a
descriptor of cell surface roughness. This feature is also referred
to as pHG-descriptor, since it is based on the percentiles of the his-

togram for the normalised gradient magnitudes.
2.9. Data set organisation and sampling procedures

After cell tracking and feature extraction, each video was repre-
sented by a track file consisting of a table that contains the descrip-
tion of each cell at every time point. The various analyses of the
video data were then made based on this table.

For the evaluation of the robustness of the N-morphology
detector, we performed Monte-Carlo simulations by randomly
selecting 1.8�103 cells per iteration from every video of the
mock-infected samples. These were used in the calibration set,
while the video data of samples infected by Candida composed
the test set. The number of 1.8�103 cells was chosen, because it
corresponds approximately to the number of cells in the episodes
of the first 5 min of the video with lowest cell concentration.
Including data from each donor was necessary for the compensa-
tion of variations between videos regarding illumination issues
that were not fully compensated during extraction of gradient-
based cell features.

In the population-based analysis of snapshots, information
about each video was split into two parts corresponding, respec-
tively, to the first 42 frames (� 5-minutes-episodes) and the fol-
lowing 218 frames (� 25-minutes-episodes) of a video. Then, for
the N-morphology detector calibration, we randomly selected the
1.8�103 cells from the 5-minutes-episodes of each video of
mock-infected samples. The 25-minutes-episodes composed the
test set and was used for the estimation of spreading cell fraction
in each sample (see subsection 3.3) and instantaneous speed anal-
ysis (see subsection 3.4).

The morphodynamics analysis was performed on the complete
videos (30 min) of Candida-infected samples. In these analyses of
tracked cells, we compared characteristic distributions (see sub-
sections 3.4 and 3.5). In order to reduce the influence of individual
samples we used a fixed number of instances (complete cell tracks
or track fragments) that were randomly selected from each video
in the following way: (i) the characteristics of interest were sorted
in ascending order, where multiway sorting was applied in the case
of more than one descriptor; (ii) the desired number of instances
was derived by generating random indexes from a uniform distri-
bution covering the whole range of the initial vector indices. This
strategy yields statistically representative sampling.
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2.10. Detection of cells with N-morphology

For the detection of cells based on specific descriptors, a single-
class classifier was created using the method of Data Driven Soft
Independent Modelling of Class Analogy (DD SIMCA) [29,30],
which is a modification [31] of the classical SIMCA [32] approach.
SIMCA is a well-known tool for pattern recognition in many
research and industrial applications (for example, see [33–38]).
The DD SIMCA method utilises a decomposition of data by princi-
pal component analysis (PCA) [39] for a description of the target
class data structure within a multicollinear feature space combined
with the statistics of two distances that are used to characterise
variability inside the calibration set (see Supplementary Fig. 3).
The first distance refers to the position of an object (the point in
a multivariate feature space which represents a real object) rela-
tive to the model (orthogonal distance, OD) and the second dis-
tance refers the displacement between the projection of the
object onto the model and the centre of this model (score distance,
SD). The statistics of these distances are used to establish two
rules: (i) a decision rule for the detection of extreme/unusual
objects, i.e. objects that do not follow major trends in the calibra-
tion data grasped by the principal components, and (ii) an accep-
tance rule for the classification of new objects. Both rules impose
a comparison of the respective statistics of the distances with
regard to critical values. While the classical SIMCA relies on F-
statistics of OD and utilises parameters of the calibration data set
(number of samples and variables) together with the number of
chosen components in the PCA model for the computation of crit-
ical values, the DD SIMCA employs scaled chi-squared distributions
of OD and SD for the calibration set in the estimation of critical val-
ues. Respecting the data structure makes the latter method more
suitable for statistical unmixing of multivariate distributions of
data.

In the present study, we applied this method in the following
unsupervised way: (i) PCA was performed for the whole calibration
data set comprising cells from mock-infected samples with N-
morphology being the dominant form. The analysis of PCA results
revealed that the first and second principle components are
enough to describe more than 90% of total variation in data on
mock-infected samples (see Supplementary Fig. 3). We therefore
limited the number of principle components in the model to two.
(ii) An outlier border was determined using the outlier significance
level c ¼ 0:01, which specifies the probability that at least one
point from the data will be erroneously considered as an outlier
[30]. (iii) All data points beyond the outlier border were considered
to be outliers and were removed from the calibration data set, i.e.
we performed multidimensional distribution unmixing and
obtained a representative purified population of cells with N-
morphology. This filtered calibration set was then used for the final
model calibration and acceptance area determination. (iv) In the
classification procedure, all data points within the acceptance area
were assigned to be cells with N-morphology, while all other cells
were considered to have S-morphology.

All operations were done using the R package ‘mdatools’ [40].

2.11. Automated classification of infection scenarios

To automatically classify the various infection scenarios, we
applied a two-step procedure: (i) each instance, i.e. a video frame
in the population-based analysis of snapshots or a cell track in
the morphodynamics analysis, was classified by a Bayesian classi-
fier [41] after pre-calibration by a calibration set. (ii) A video was
assigned to a certain infection scenario based on a majority voting
by the individually classified instances.

We used the R package ‘naivebayes’ [42] to perform the Baye-
sian classification (in case of multiple descriptors a naïve form).
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2.12. Comparison of cell characteristics for different infection scenarios

We used the multiple quantile comparison method [43]. This
method utilises a combination of the Harrell-Davis quantile esti-
mator [44] and a bootstrapping to determine the confidence inter-
val (CI) for the difference between quantiles of the distributions to
be compared. The difference in certain quantiles of any two distri-
butions is considered to be significant in frequentist sense at con-
fidence level a.

All computations were done with the R package ‘WRS20 [45].

2.13. Multiple group comparison test

In cases where the data have a non-replicated complete block
design we used the Quade test with post-hoc analysis [46]. This
method is a generalisation of the signed paired rank test for three
or more groups, where the null-hypothesis says that, apart from
donor effects, the location parameter of the analysed property is
the same for each infection scenario. The obtained p-values were
adjusted by the Holm method [47].

All operations were done using the R package ‘‘PMCMRplus”
[48].

2.14. Effect size statistics

To numerically characterise a magnitude of difference between
conditions and be able to compare it between different character-
istics (median fraction of spreading cells per frame and average
speed) we used the common language effect size (CLES), which
expresses the probability that a randomly selected score from
one group will be greater than a randomly sampled score from
another one [49]. The values were computed with the R package
‘canprot’ [50] using empirical probability density functions.

In addition, we computed the difference between distributions
via Hedges g effect size statistics [51] for paired measurements
[52] and computed the standard deviations for each group individ-
ually. For this we used the R package ‘effsize’ [53].

2.15. Confidence intervals for proportions

We applied the method of Wilson’s confidence interval compu-
tation for single proportions [54,55] using the R package ‘PropCIs’
[56]. The input arguments included: (i) confidence level a (proba-
bility of type I error, set to a = 0.05), (ii) total numberH of entities
to be examined and (iii) number of ‘successes’ h. For the interval
estimation of the fraction of cells with morphodynamics that is
considered to be specific for a true infection scenario in a given
sample, h corresponds to the number of such cells among all H
examined cells. See the following sub-section for more details.

2.16. Post-hoc analysis of errors of type II

In addition to Wilson’s confidence intervals we computed the
probability for making an error of type II regarding the evaluation
of two alternative hypotheses about pathogen-specific morphody-
namics. The null-hypothesis corresponds to the statement that a
pathogen-specific morphodynamics does not exist; therefore, frac-
tions of cells with C. albicans- and C. glabrata-specific morphody-
namics are expected to be equal 0.5 in each sample. The
alternative corresponds to the hypothesis that a pathogen-
specific morphodynamics does exist; therefore, observed fractions
of cells with specific morphodynamics for a given infection sce-
nario must be greater than 0.5. For samples where the detected
fraction of cells specific for a given pathogen is less than 0.5, the
probability of error type II for a given set of hypotheses cannot
be computed.
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The probability was computed using a one-sample single side
test for proportions [57] as implemented in the R package
‘MKPower’ [58].
3. Results

Our results are based on time-lapse imaging data of live unla-
belled neutrophils, recorded over a period of 30 min with a frame
rate of about one frame per seven seconds (260 frames in total) (for
details see subsection 2.5). These cells were isolated from human
whole-blood infection (WBI) assays (see subsection 2.3) with
either of two Candida species — C. albicans or C. glabrata — and
were compared to neutrophils from mock-infected blood. In total
we have acquired blood samples from 9 healthy donors that were
each subdivided to separately study and compare the three infec-
tion scenarios.

3.1. Neutrophils exhibit morphological signatures induced by
pathogen-interaction in human whole blood

Visual inspection of the video data revealed the existence of two
types of dynamically appearing cell morphologies. In Fig. 1, we
provide a typical example for a neutrophil that dynamically
changes its morphology into the state of a spreading cell (S-
morphology) and back into the morphology of a non-spreading cell
(N-morphology) via a sequence of intermediate states. Thus, in a
first approximation, the cell population C tið Þ in video frame i can
be considered as a mixed distribution of cells composed of two
morphologies: CðtiÞ ¼ SðtiÞ þ NðtiÞ, where SðtiÞ and NðtiÞ denote
the number of cells with S- and N-morphology, respectively, at
time point ti. The fraction of cells exhibiting S-morphology is
defined by.

rðtiÞ � SðtiÞ=CðtiÞ ð1Þ
with 0 � r tið Þ < 1. In agreement with previous findings that pecu-
liar morphological patterns are a sign of neutrophil activation
[23], we observed that cells with S-morphology were only rarely
present (r tið Þ � 1) among neutrophils isolated from mock-
infected blood (see Supplementary video set 1). In contrast, the
occurrence of cells with S-morphology was observed more fre-
quently and for a larger cell fraction after confrontation with either
C. albicans or C. glabrata. This observation motivated us to design a
workflow for the automated identification of neutrophil morphol-
ogy and the quantitative comparison of infection scenarios by the
occurrence of cells with S-morphology.

3.2. Automated classification yields highly robust predictions of
neutrophil morphology

We performed the segmentation and tracking of neutrophils
with our software tool AMIT [13,14], which was recently enhanced
to recognise whole cell tracks [19]) and to additionally extract
morphological information on dynamically changing cell shapes
[20]. In particular, the distinction between S- and N-morphology
of neutrophils required the identification of descriptors that are
sensitive to the size and surface texture of cells and robust against
varying and uneven illumination in the images as well as against
inaccuracies in the cell segmentation. Considering these require-
ments as well as the non-rigidness of neutrophil shapes, two ade-
quate descriptors were identified: (i) the cell’s footprint area and
(ii) the intensity-gradient of segmented neutrophils (for details
see subsection 2.8).

Using these descriptors, we built a one-class classifier for neu-
trophils with N-morphology acting as a novelty detector, i.e. all
cells rejected by the classifier were considered to be cells with S-



Fig. 1. Time-dependent change of a single neutrophil during 20 consecutive frames
(arrows indicate the time ordering). Cells in sub-images B3–E3 can be considered as
spreading cells (S-morphology).

Fig. 2. Fraction of cells repeatedly identified as exhibiting S-morphology in each
repetition of the Monte-Carlo simulations. Each sample includes O(104) segmented
cell images.
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morphology. This approach elegantly circumvents the necessity of
manual distinction between S- and N-morphology for every cell,
which is labour-intensive and could easily result in a bias of the
classifier. Thus, we here use our observational knowledge that neu-
trophils with N-morphology are the predominant type within
mock-infected samples. The one-class classifier corresponds to a
statistical procedure for the unmixing of the morphology distribu-
tion and allows the estimation of r tið Þ for every frame in a video
(for details see subsection 2.10).

The robustness of our classifier regarding estimation of r tið Þ
was checked by performing Monte-Carlo simulations with 103 rep-
etitions, where the N-morphology detector was calibrated using an
equal number of randomly selected cells from each mock-infected
sample (for details see subsection 2.9). This detector was used for
cell classification in videos with neutrophils isolated from C. albi-
cans and C. glabrata WBI. For every cell the received labels, i.e. S-
or N-morphology, were recorded before counting how often each
cell was assigned to be a cell with S-morphology. We then analysed
the statistics of cells being associated with that class in at least one
of iteration during the simulations (Fig. 2). For every infected sam-
ple, more than 80% of such cells received that label 103 times
(Fig. 2, see also Supplementary Fig. 4). This supports the robustness
of the classifier outcome with regard to providing a trustworthy
estimate of r tið Þ. Supplementary video set 2 visualises the classifi-
cation results from a single iteration for various videos.

3.3. Donor variability obscures predictions based on classification by
neutrophil morphology

Based on our one-class classifier, we addressed our hypothesis
that the three scenarios — mock-infection, C. albicans infection
and C. glabrata infection — may be distinguishable by the fre-
quency of neutrophils occurring in the S- or N-morphology. For this
analysis every video was divided into two episodes with durations
of 5 and 25 min, which were used for the calibration of the
N-morphology detector and for the characterisation of samples
via the distributions of values r tið Þf g (for details see subsection
2.9). Taking into account fluctuations of r tið Þ caused by cell migra-
tion in and out of the field of view, we focused on the median as the
indicator of central tendency of the r tið Þf g -distribution for the
25-minutes-episodes. The classification results are summarised
per donor in Fig. 3a and reveal quantitative differences between
the three infection scenarios (see Fig. 3b and Table 1). The statisti-
cal differences per infection scenario support our hypothesis
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regarding the pathogen-specific morphological changes of neu-
trophils in a human WBI assay.

Next, we implemented a Bayesian classifier with majority vot-
ing to identify infection scenarios based on r tið Þf g-distributions
(for details see subsection 2.11). We performed simulations with
leave-one-out cross-validation (LOOCV) [41], where we performed
93 iterations for the three infection scenarios with nine samples
each by fixing one sample from every infection scenario as test
sample and using all other samples for classifier calibration. This
approach allows imitating large sample populations and measur-
ing the classifier performance in the case of low sample numbers.

The classifier was evaluated by the observed successful classifi-
cation ratio (OSCR), which equals the fraction of correctly assigned
samples for a given class. As can be seen in Fig. 3c, our classification
procedure recognises mock-infected samples with OSCR = 1, which
confirms that the classifier can successfully distinguish infected
and non-infected samples. However, as can be inferred from
Fig. 3a, distinguishing between different infection scenarios is
obscured by the donor variability. In fact, for C. albicans infection
we obtained the reduced value of OSCR = 0.89, while for C. glabrata
infection the performance dropped to OSCR = 0.67. As shown in
Fig. 3b, the medians of the r tið Þf g-distributions were not suited
for achieving a clear distinction between the two infection scenar-
ios. The LOOCV reveals that this is also true for the mock-infected
samples (see Fig. 3d), as can be seen from the reduction of the cer-
tainty measure by about 11% (compare Fig. 3c and d). Nevertheless,
these overall promising findings prompted us to advance our anal-
ysis from a population-based analysis of snapshots to the analysis
of individual cell tracks including aspects of morphodynamics.
3.4. Neutrophil speed is inadequate for discrimination of Candida
infection scenarios

Visual inspection of the video data gives the impression that,
depending on the infection scenario with either of the two Candida
species, the morphodynamics of neutrophils may be different (see
Supplementary video set 1). In particular, neutrophils seem to (i)
experience differently long episodes in the state of S-morphology
and (ii) migrate slower when in the state of S-morphology com-
pared to N-morphology. We hypothesised that a specific morpho-
dynamics behaviour of neutrophils may be induced upon contact
with a particular pathogen in human whole blood and speculated
that the discrimination of infection scenarios may be improved
by accounting for dynamic effects.



Fig. 3. a) Box diagrams for the fraction of spreading cells per video frame (260 frames in total) for each donor. b) Median value of the distributions in a) per donor. **
p = 0.0027, *** p � 10�4 (Quade test with post-hoc analysis and p adjustment by Holm). The effect size statistics is listed in the Table 1. c) Confusion matrix for the results of
the Bayesian classifications based on individual frames. Each cell of the matrix represents the ratio of proper sample classifications (numerator) for given infection scenarios
over all iterations (denominator). d) Confusion matrix for the results of a sample classification based on description of whole video data.

Table 1
Comparison of effect sizes expressed via common language effect size (CLES) and Hedge’s gj j for median fraction of spreading cells (CLESfrac, gfrac

�
�

�
�) and for average speed per

sample (CLESspeed, gspeed

�
�

�
�). Details about calculations are described in paragraph Effect size statistics in Materials and Methods section.

Pair for comparison CLESfrac CLESspeed gfrac
�
�

�
� gspeed

�
�

�
�

‘mock’–‘C. albicans’ 1 0.91 3.18 1.58
‘mock’–‘C. glabrata’ 1 0.94 5.47 2.13
‘C. albicans’–‘C. glabrata’ 0.90 0.63 1.67 0.35
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To quantify these observations, we first computed the average
speed for each neutrophil from its individual cell track for each
donor and infection scenario. However, as shown in Fig. 4a, there
is no evidence for a clear pathogen-specific impact on the average
neutrophil speed. On first sight, this finding may seem contradic-
tory to a previous study where the average neutrophil speed was
reported to be a suitable discrimination feature [24]. However,
while that study was performed in the context of the myelodys-
plastic syndrome, the sample average neutrophil speed (Fig. 4b)
is evidently not an adequate discrimination feature in the present
context of Candida BSI, because this measure appears to be less
pathogen-sensitive than the dynamic change in cell morphology
(Fig. 3b). This was also confirmed by a quantitative comparison
of effect size measures (see Table 1 and subsection 2.14) and con-
sidering our results on the morphology-based classification of
infection scenarios (Fig. 3d).

Thus, while a speed-based classification of infection scenarios
will not yield acceptable accuracies, we still wanted to validate
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our impression from the visual inspection that there are differ-
ences in the morphodynamics of neutrophils for the two Candida
species. To this end, neutrophils were first classified as being either
in the S- or N-morphology followed by the computation of the
instantaneous speed distributions for each infection scenario with
the two Candida species. As can be seen in Fig. 5a and b, the major-
ity of neutrophils with S-morphology are indeed statistically
slower, which has also been confirmed by a comparison of the dis-
tributions using the multiple quantile comparison method [59] to
compute the difference D between consecutive percentiles of the
respective distributions for the two Candida infection scenarios
(Fig. 5c). Another evidence for a speed difference between spread-
ing cells and non-spreading ones is a near-monotonical decline
(Spearman’s q = � 0.74) of the average speed per cell with increas-
ing fraction of spreading cells (Fig. 5d). Thus, while the visual
impression could be confirmed, we still have to conclude that neu-
trophil speed is not an adequate feature for discrimination of WBI
with different Candida species.



Fig. 4. Diagrams of the average speed per cell (a) and per donor (b). The number of data points per sample is O(104), length of whiskers is not larger than 1.5 interquartile
interval. For data in (b) the Quade statistical test was applied with post-hoc analysis and p adjustment by Holm: * p = 0.1265, ** p = 0.0224, *** p = 0.0011. The effect size
statistics is listed in the Table 1.

Fig. 5. Distributions of instantaneous speed for spreading and non-spreading neutrophils for a joint sample sets after confrontation with (a) C. albicans and (b) C. glabrata.
Each joint sample set (represented by an individual curve) includes 9 � 103 data points composed of data from randomly selected 1 � 103 spreading cells (dashed lines) or an
equal amount of non-spreading cells (solid lines) from each video. c) Shift functions presented by the difference between deciles of distributions in (a) and (b), respectively.
The whiskers indicating the 0.95 bootstrap CI (for details see subsection Comparison of cell characteristics for different infection scenarios in the Materials and Methods section).
d) Scatter diagram demonstrating the correlation between the median fraction of spreading cells per frame and median average speed per cell for the same sample.
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3.5. Evidence for the existence of pathogen-specific morphodynamics
of neutrophils

Next, we computed neutrophil morphodynamic features based
on the information from the previous classification of neutrophil
morphology states. Using this information every tracked cell can
be characterised by a frequency of transitions to the spreading
state, the total amount of time a cell exists in that state, and the
duration of its longest spreading episode. Here, in order to reduce
too short cell tracks and by that the noise in the data, we restricted
the analysis to cells that were observed for at least 90 s (13 frames)
and that switched at least once to the spreading morphology with
a maximal duration of at least 28 s (4 frames). These restrictions
excluded only 20% of neutrophils in samples infected by the Can-
dida species (see Supplementary Fig. 5). As shown in Fig. 6, the
visual impression that neutrophils tend to exhibit the S-
morphology for longer episodes after confrontation with C. glabrata
compared to the infection with C. albicans could be quantitatively
confirmed. As can be seen in Fig. 6, the total duration of spreading
episodes per track (Fig. 6b) and the maximal duration of spreading
episodes per track (Fig. 6c) showed statistical differences between
infection scenarios. These were considered relevant for distin-
guishing between infection scenarios, although these characteris-
tics may be susceptible to donor-specific variability (see
Fig. 6. Comparison of morphodynamics descriptors for joint populations of C. albicans- o
range of values as well as decile-difference diagrams with whiskers indicating 0.95 bootst
in the Materials and Methods section). All diagrams were built using balanced sampli
Materials and Methods section). a) Distributions of the normalised number of transitions
time that cells remain in state with S-morphology. c) Distributions of durations of the l
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Supplementary Fig. 6). To perform the classification task based
on neutrophil morphodynamics, we used a combination of naïve
Bayes classifier for individual track classification followed by a
majority voting for the whole sample classification (for details
see subsection 2.11). Thus, a test sample was assigned to one of
the infection scenarios based on majority fraction of tracked cells
being identified as C. albicans-specific or C. glabrata-specific. For
classifier evaluation, we used the LOOCV per condition sampling
procedure (with 92 iterations in total).

Using this morphodynamics-based classification we reached
OSCR = 1 for the C. albicans-infected samples, which is higher
than in the population-based analysis of snapshots. However,
for the C. glabrata-infected samples the OSCR remains roughly
the same: OSCR = 0.63. Since the maximal duration of spreading
episodes per track is a characteristic that is robust against track
fragmentation, which may be caused by track interruptions due
to long-lasting clusters, we also used this feature alone in the
Bayesian classifier. The OSCR raised to OSCR = 0.78 for C. glabrata,
while the quantitative results for C. albicans remained the same
(Fig. 7a). Finally, in Fig. 7b the typical detected fraction (mean
value over all iterations) of cells with morphodynamics specific
for the true infection scenario is shown for every donor and infec-
tion scenario. In addition, for every infection sample we per-
formed an interval estimation (defined via Wilson’s confidence
r C. glabrata-infected neutrophils by a box plot with whiskers indicating the whole
rap CI (see subsection Comparison of cell characteristics for different infection scenarios
ng (for details see subsection Data set organisation and sampling procedures in the
between non-spreading and spreading state. b) Distributions of the total amount of
ongest spreading episode per cell track.



Fig. 7. a) Confusion matrix for sample classification results based on the fraction of neutrophil tracks with pathogen-specific morphodynamics. b) The typically detected
fraction of cells with pathogen-specific morphodynamics in a given sample. The mean value is computed over all iterations and the whiskers indicate 0.95 CI for the detected
fraction (see Confidence intervals for proportions in the Materials and Methods section). The number indicates a probability of the error type II for fraction of neutrophils with C.
albicans- or C. glabrata-specific morphodynamics in a given sample. The symbol NA was used where the computation of this probability is not possible. For further details see
subsection Post-hoc analysis of errors of type II in the Materials and Methods section.
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interval, for details see subsection 2.15) of the fraction of cells
with morphodynamics that can be considered specific for the true
infection scenario. For instance, for the C. glabrata-infected sam-
ple from the donor with ID 2, which was represented by about
200 cells in the video, � 52% of all cells were characterised by
the morphodynamics analysis to be specific for the C. glabrata
rather than the C. albicans infection scenario. However, the corre-
sponding confidence interval extends to values below 50% indi-
cating that there is a probability that the fraction of cells in the
whole blood sample with C. glabrata-specific morphodynamics
equals that of C. albicans. We in fact estimated this probability
to equal 91% in the case of blood donor with ID 2 (for details
see subsection 2.16). In contrast, for blood donors with ID 5
and ID 9, this probability is estimated to be 0% and 11%, respec-
tively. Moreover, for six out of the nine blood donors, the proba-
bility of having an equal number of cells showing C. glabrata and
C. ablicans morphodynamics for a true infection scenario with
C. albicans is well below 35%.

Taken together, while we cannot rule out misclassifications of
infection scenarios with C. albicans and C. glabrata, taking into
account the morphodynamics of neutrophils does improve the
classification accuracy (Fig. 7b) compared to the static analysis
(Fig. 3c) from 67% to 78% for C. glabrata and from 89% to 100% for
C. albicans.
3.6. White-box approach passes deep neural network challenge

Finally, we challenged our white-box approach for identifying
the pathogen-specific morphodynamics of neutrophils based on
the two descriptors ‘neutrophil footprint area’ and ‘intracellular
intensity-gradient’. To this end, we applied state-of-the-art deep
neural network technique by evaluating the classification results
of a long short-term memory (LSTM) network [60] for data from
the nine donors with a leave-one-out cross-validation (LOOCV)
[41] (see Blood sample classification using Deep Learning techniques
in the Supplementary materials). Overall, we achieved test accura-
cies (ACC) well below 65% from 7000 image sequences obtained
from each class (two infection scenarios and the mock-infected
samples). In particular, this LSTM-based-approach yielded only
moderate values of ACC = 0.7 for mock-infected samples,
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ACC = 0.63 for C. albicans-infected and ACC = 0.48 for C. glabrata-in-
fected samples. The corresponding confusion matrix (Supplemen-
tary Fig. 8e) reveals the difficulties of the LSTM to discriminate
the neutrophil morphodynamics between infection scenarios with
C. glabrata and C. albicans.
4. Discussion

The application of imaging technologies is an essential compo-
nent of disease diagnosis and treatment monitoring of patients
with life-threatening bloodstream infections. It encompasses a
wide range of tools and methods utilised to examine an organism
at different levels ranging from the detection of infection foci in a
whole organ by computed tomography to identifying pathogens by
means of microscopy with high spatial and temporal resolution. In
particular, modern label-free methods have a promising potential
in the future, among which various types of spectral imaging
including Raman spectroscopy, Fourier transform infrared (FTIR)
spectroscopy, or matrix-assisted laser desorption/ionization time-
of-flight mass spectrometry (MALDI-ToF MS) providing informa-
tion about the molecular composition of individual cells. Even
though the efficiency of these spectroscopy techniques has been
demonstrated for fungal cultures (e.g., [61–63]), limitations for
their application in the rapid identification of pathogens in human
blood remain. In particular, methods based on cell cultivation
require more than 24–48 h, which can lead to fatal delays in initi-
ating pathogen-specific therapy. Moreover, for pathogen concen-
trations in the sample well below the observed median
concentration in clinical samples, which is only 1 CFU/mL for Can-
dida bloodstream infections [64], cell cultivation for pathogens
may not even be successful. Therefore, since immune cells like
neutrophils must have sensed the infection-causing pathogens in
patient blood, these interactions are hypothesised to induce mea-
surable changes in the readily available neutrophils that may allow
for the indirect identification of pathogens. For example, as was
recently shown applying Raman spectroscopy, neutrophils that
were first isolated from human whole-blood and subsequently
confronted in vitro with Gram-positive bacteria (Staphylococcus
aureus), Gram-negative bacteria (Escherichia coli), and fungal
pathogens (C. albicans) could be distinguished by their molecular
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fingerprint [65]. The present study advances along these lines
while optimizing various aspects: (i) we investigated activation
phenotypes of isolated neutrophils after confrontation with patho-
gens in the human whole-blood assay to more realistically mimic
pathogen detection for bloodstream infections, (ii) we focused on
fungal pathogens and the distinction of two species from the Can-
dida genus that require different treatment strategies, and (iii) we
decided for the commonly available imaging technique of time-
lapse microscopy to investigate the pathogen-specific morphody-
namics of neutrophils as activation phenotype.

We developed an effective method for the automated compara-
tive analysis of morphological and behavioural changes in neu-
trophils using live-cell imaging data. As a model system we used
the humanWBI assays with twomost common fungal bloodstream
pathogens — C. albicans and C. glabrata. We started with visual
inspection of the acquired videos revealing that in Candida-
infected samples neutrophils with spreading (S-) morphology
appear more often, whereas in mock-infected samples neutrophils
with non-spreading (N-) morphology is the dominant morphotype.
Based on this observation, we constructed an N-morphology detec-
tor (one-class classifier), which was calibrated fully automatically
and, therefore, free from operator errors. We could also demon-
strate that the classifier outcome is weakly depending on the cells
used in the calibration (Fig. 2 and Supplementary Fig. 4). Using this
classifier, we were able to estimate the fraction of neutrophils with
S-morphology over the whole observation period (Fig. 3). In addi-
tion, we showed that the fraction of neutrophils with
S-morphology is statistically higher for infection scenarios with
C. glabrata (Fig. 3b), suggesting the possibility for rapid differentia-
tion between blood samples infected by the two Candida species
(Fig. 3c and d).

Based on the classifier outcome and the tracking data, we per-
formed an extended analysis of the behaviour of neutrophils from
Candida-infected samples. We showed that in our experimental
conditions the average neutrophil speed per sample is not a reli-
able marker of infection (Fig. 4), although there is a difference in
neutrophil speed when comparing N- and S-morphology (Fig. 5).
In contrast, regarding the morphodynamics of neutrophils, we
quantitatively confirmed the observation that long-lasting spread-
ing episodes are more often appearing for infection scenarios with
C. glabrata than C. albicans (Fig. 6), which leads to the improvement
of infection recognition in our WBI assays (Fig. 7a). However, we
cannot assert an observation of pathogen-specific morphodynam-
ics of neutrophils unequivocally due to sample and donor variabil-
ities (Fig. 7b) as well as the number of blood samples. For example,
as indicated by a power analysis (significance level a = 0.05,
expected power of 0.8), approximately 1000 blood donors would
be required for a statistically definitive conclusion that at least
54% of neutrophils, which corresponds to the average fraction
detected in our experiments, exhibit C. glabrata-specific morpho-
dynamics in a C. glabrata-infected sample. While recruiting this
large number of blood donors is clearly beyond the scope of our
feasibility study, we inferred the following analysis pipeline for
the best classification results: (i) calibration of the one-class classi-
fier based on static features of neutrophils from non-infected sam-
ples, (ii) classification of samples being infected or not based on the
fraction of spreading cells, (iii) including neutrophil morphody-
namics to distinguish between samples from different infection
scenarios.

In this study, we applied our Algorithm for Migration and Inter-
action Tracking (AMIT, [13,14,19]) in its latest release of the third
version [20]. The performance of AMIT with regard to the auto-
mated segmentation and tracking of label-free neutrophils was
previously found to outcompete established learning-based algo-
rithms [20], such as MU_Lux-CZ [66] and SegNet [67]. Neverthe-
less, in the present study we checked whether deep neural
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networks can improve the distinction of infection scenarios by C.
albicans and C. glabrata based on a long short-termmemory (LSTM)
network [60], which we applied to classify the time-series of neu-
trophils with dynamically changing morphology. However, this
black-box-approach yielded relatively moderate test accuracies
(ACC) with values well below 65% compared to our white-box
approach that is based on the two descriptors ‘neutrophil footprint
area’ and ‘intracellular intensity-gradient’ and achieved values well
above 75% for the two infection scenarios and 100% for mock-
infected samples. We speculate that this may be explained by
peculiarities of the LSTM network architecture, which may be
unable to grasp sufficient information about aperiodic spreading
events from relatively short sequences.

In further studies, instead of increasing the complexity of anal-
ysis pipelines, we consider improving the cell description by add-
ing information about intensity and amount of neutrophil-
derived trail formation [68,69] and neutrophil autofluorescence
[70,71]. This could be tested after modification of the image acqui-
sition step implying detection of transmitted light images by a
high-resolution camera with a high readout speed (or global shut-
ter) at intervals of one second or shorter. This would allow elimi-
nating cell-movement-associated blurring effects and by that
improve the accuracy in image processing with regard to cell seg-
mentation and tracking as well as morphological information.
Besides, it would pave the way for detailed analysis of dynamic
transitions between the two states of N- and S-morphology, as well
as performing comparative analyses of potentially different S-
morphologies under various conditions. In addition, high-speed
imaging would enable estimating within-donor heterogeneity,
which is particularly essential regarding the neutrophil population
microheterogeneity, i.e. existence of neutrophil sub-sets with dif-
ferent functions, distinct morphology as well as receptor reper-
toires [72–74]. Extension of this feasibility study to a larger
cohort of blood donors and inclusion of BSI patients will be the
next step for exploring the potential of this approach for transla-
tional research.
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