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Total hip arthroplasty (THA) is a cost-effective treatment for osteoarthritis (OA), and osteolysis is a common complication of THA.
This study was aimed at exploring the relevant molecular biomarkers for osteolysis after THA. We performed RNA sequence to
identify and characterize expressed mRNAs and lncRNAs in OA and osteolysis. Differentially expressed mRNAs (DEmRNAs)
and lncRNAs (DElncRNAs) in OA and osteolysis were acquired, as well as shared DEmRNAs/DElncRNAs in OA and osteolysis
and osteolysis-specific DEmRNAs/DElncRNAs. Then, shared and osteolysis-specific DElncRNA-DEmRNA coexpression
networks were constructed to further investigate the function of DElncRNAs and DEmRNAs in OA and osteolysis. In total, 343
DEmRNAs and 25 DElncRNAs in OA, 908 DEmRNAs and 107 DElncRNAs in osteolysis, and 406 DEmRNAs and 46
DElncRNAs between OA and osteolysis were acquired. A total of 136 shared DEmRNAs and 9 shared DElncRNAs in OA and
osteolysis and 736 osteolysis-specific DEmRNAs and 103 osteolysis-specific DElncRNAs were acquired. Then, 128 shared
DElncRNA-DEmRNA coexpression pairs and 522 osteolysis-specific DElncRNA-DEmRNA coexpression pairs were identified.
The present study highlighted the roles of four interaction pairs, including two shared lncRNA-mRNA interaction pairs in OA
and osteolysis (AC111000.4 and AC016831.6), which may function in the immune process of OA and osteolysis by regulating
CD8A and CD8B, respectively, and two osteolysis-specific interaction pairs (AC090607.4-FOXO3 and TAL1-ABALON), which
may play an important role in osteoclastogenesis.

1. Introduction

Osteoarthritis (OA) is a leading cause of chronic disability
in old people. For the treatment, the total hip arthroplasty
(THA) is a cost-effective way, which can reduce joint pain,
restore joint function, and increase the quality of life of
patients [1]. Despite the improvement of the quality of
polyethylene, osteolysis remains a risk for older designs
and younger, active patients. Osteolysis is a progressive,
active, biologic cascade, a phenomenon due to a foreign
body response to particulate wear debris from the pros-
thetic joint [2]. Increased wear particles activate osteoclast
formation, and overweight osteoclasts caused much bone
resorption, which eventually led to osteolysis [3]. Osteoly-
sis, as a complication of THA, leads to prosthesis failure

and bringing about additional suffering and burden for
patients [4].

Long noncoding RNAs (lncRNAs), as a type of noncod-
ing RNA, have been recognized as key regulatory molecules
with diverse roles in gene expression, epigenetic modifica-
tion, and protein activity [5]. Recently, lncRNA has been
revealed to be involved in osteolysis. lncRNA TSIX was
involved in particle-induced osteolysis by regulating miR-
30a-5p to promote osteoblast apoptosis [6]. lncRNADANCR
inhibits osteoblast differentiation in osteolysis after THA
through regulating FOXO1 [7]. lncRNA KCNQ1OT1 could
ameliorate particle-induced osteolysis, by inhibiting miR-
21a-5p to induce macrophage polarization [8]. However,
more studies focused on the role of lncRNAs in osteolysis
after THA need to be performed.
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In this study, we, respectively, investigated the gene
expression profiles of lncRNAs and mRNAs in patients with
osteolysis after THA and OA, attempting to screen out
differentially expressed mRNAs (DEmRNAs) and lncRNAs
(DElncRNAs) associated with osteolysis after THA and OA.
The objective of this study was to explore the underlying
mechanism and the relevant molecular biomarkers for osteo-
lysis after THA.

2. Materials and Methods

2.1. Subjects and Samples. The cohort subjected to RNA-Seq
comprised 3 patients with OA, 3 patients with osteolysis after
THA, and 3 healthy individuals. Inclusion criteria for
patients with osteolysis after THA: (1) with current radio-
graphic evidence of osteolysis and (2) received a THA after
failure to improve function and pain after at least 6 months
of conservative treatment. Subjects were excluded if they
had any history of inflammatory arthropathy or known sec-
ondary causes of hip arthritis such as trauma, avascular
necrosis, or developmental or childhood hip disease. Subjects
were also excluded if they had taken courses of immunosup-
pressant agents or bisphosphonates for a continuous period
of greater than 6 months since THA. OA was diagnosed
according to the criteria of the American College of Rheuma-
tology. Healthy individuals with no personal or family his-
tory of OA, no symptoms or signs of OA, or any other type
of arthritis, or any painful condition of the joints, were
included as controls. The participants with history of joint
diseases, including inflammatory arthritis (rheumatoid
arthritis or any other autoimmune disease), posttraumatic
or postseptic arthritis, poliomyelitis, and skeletal dysplasia,
were excluded. Table 1 described the characteristics of all
these participants. All samples were collected after obtaining
written informed consent from every participant. This study
was approved by the Ethics Committee of Shandong Provin-
cial Hospital (No. 2020-123) and performed in accordance
with the Declaration of Helsinki. Peripheral whole blood
(2.5mL) drawn from each subject was collected in PAXgene®
RNA blood tubes and stored at -80°C prior to processing.
RNA isolation was performed with PAXgene blood RNA
kit. RNA integrity and concentration were evaluated with
an Agilent 2100 Bioanalyzer (Agilent RNA 6000 Nano Kit).
Total RNA samples used in subsequent experiments fulfilled
the following requirements: RNA integrity number ðRINÞ >
7:0 and 28S/18S ≥ 1. In brief, total RNA was subjected to
ribosomal RNA (rRNA) removal using Ribo-Zero. A total
amount of 3μg RNA was used for library preparation.
Libraries for sequencing were constructed according to the
manufacturer’s protocol. The quality of the libraries was
determined using an Agilent 2100 Bioanalyzer and ABI
StepOnePlus Real-Time PCR System. Based on the BGIseq
platform, sequencing was performed. The raw sequencing
data were submitted to sequencing quality control by FastQC
to assess whether they will be used for subsequent data anal-
ysis. Reads with low quality (adaptor sequences, sequences
with a quality score < 20, and sequences with an N base rate
of raw reads > 10%) were removed. Clean reads were aligned
with the human reference genome, Ensemble GRCh38.p7.

2.2. Identification of DEmRNAs and Functional Annotation.
StringTie software was used to compare the results to the
known transcriptome and calculate the transcriptional abun-
dance. Then, Ballgown was used for quantification of gene
expression levels, as well as analysis of intergroup differential
expression of genes. DESeq2 was applied to identify DEmR-
NAs in OA vs. control and osteolysis after THA vs. control
with a p value < 0.05. DEmRNAs between OA and osteolysis
after THA were obtained with a p value < 0.05 as well. Hier-
archical clustering analysis of DEmRNAs was performed
with R package “pheatmap.” Then, shared DEmRNAs in
OA and osteolysis after THA and osteolysis-specific DEmR-
NAs (DEmRNAs in osteolysis after THA but no differences
in OA) were further identified with Venny 2.1.0. The Data-
base for Annotation, Visualization and Integrated Discovery
(DAVID), which is a web-based tool, provides integrated
solutions for the annotation and analysis of genome-scale
datasets from high-throughput sequencing. DAVID 6.8 was
used to perform GO and KEGG enrichment analysis for
shared DEmRNAs in OA and osteolysis after THA and
osteolysis-specific DEmRNAs. The lower the p value, the
more significant are the GO term and the pathway. A value
of p < 0:05 was considered to be represented statistically
significant.

2.3. Identification of DElncRNAs. DESeq2 was applied to
identify DElncRNAs in OA vs. control and osteolysis after
THA vs. control with a p value < 0.05 and ∣log2FC ∣ >1:5.
DElncRNAs between OA and osteolysis after THA were
obtained with a p value < 0.05 and ∣log2FC ∣ >1:5 as well.
Hierarchical clustering analysis of DElncRNAs was per-
formed with R package “pheatmap.” Then, shared DElncR-
NAs in OA and osteolysis after THA and osteolysis-specific
DElncRNAs (DElncRNAs in osteolysis after THA but no
differences in OA) were further identified with Venny 2.1.0.

2.4. DElncRNA-DEmRNA Coexpression Network and
Functional Annotation. The shared and osteolysis-specific
DElncRNA-DEmRNA coexpression networks were con-
structed to further investigate the potential functions of
lncRNAs and mRNAs in OA and osteolysis. Pearson cor-
relation coefficients were calculated between the expres-
sion values of DElncRNAs and DEmRNAs. The pairs
with ∣PCC ∣ >0:8 and p < 0:01 in shared DElncRNA-
DEmRNA pairs and pairs with ∣PCC ∣ >0:95 and p < 0:01 in
osteolysis-specific DElncRNA-DEmRNA pairs were defined
as coexpressed DElncRNA-DEmRNA pairs, respectively.
Then coexpressed networks were visualized by using Cytos-
cape. DAVID 6.8 was used to perform GO and KEGG enrich-
ment analysis for DEmRNAs in shared and osteolysis-specific
DElncRNA-DEmRNA coexpression network. A value of p <
0:05 was considered to be represented statistically significant.

2.5. Statistical Analysis. Statistical analyses were performed
using R software v3.5.3 (R Foundation for Statistical Com-
puting, Vienna, Austria). All tests were two-tailed, and p
values < 0.05 were considered statistically significant. In
addition, the GraphPad Prism Software, version 7.0, was used
for the statistical analysis of experimental data. The results
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Table 2: Top 10 up- and downregulated DEmRNAs.

Symbol log2FC p value FDR Regulation

OA vs. control

HIST2H4A 2.017903 1.45E-12 1.86E-08 Up

ZNF778 2.30578 2.34E-09 1.50E-05 Up

RAB8A 1.084187 4.61E-07 0.001473 Up

MYOM2 3.614517 1.16E-05 0.021164 Up

PI3 1.77021 4.16E-05 0.05915 Up

VASH1 1.031837 0.000207 0.203576 Up

SNHG28 1.440766 0.000309 0.263506 Up

LILRB3 1.133152 0.000349 0.27883 Up

UPRT 1.107994 0.000428 0.322295 Up

UNC13B 1.407436 0.000467 0.331741 Up

CD8A -1.49304 2.03E-07 0.000865 Down

AL157935.2 -3.11394 2.71E-06 0.006946 Down

AL121594.1 -3.12822 4.34E-06 0.00926 Down

EPHB4 -2.33741 1.40E-05 0.022395 Down

F11R -1.30037 6.96E-05 0.080899 Down

YPEL2 -1.41993 0.000184 0.196205 Down

CHKB-CPT1B -1.48977 0.00028 0.255821 Down

ZNF80 -1.53824 0.000671 0.393542 Down

EEF1AKMT3 -1.76553 0.000677 0.393542 Down

CD8B -1.42735 0.000767 0.426828 Down

Osteolysis vs. control

ZNF778 2.261961 6.77E-08 0.000222 Up

LILRB3 1.396428 1.23E-06 0.003224 Up

MYOM2 3.476227 3.33E-06 0.00575 Up

BCORL1 2.051727 1.40E-05 0.018296 Up

RTL5 1.812327 1.85E-05 0.022092 Up

FOSL2 1.834524 3.50E-05 0.026994 Up

CNTNAP3 2.346929 7.26E-05 0.047612 Up

MGAM2 2.714451 9.47E-05 0.049807 Up

ERV3-1 1.398861 9.50E-05 0.049807 Up

TMEM164 1.378476 0.000107 0.053473 Up

TMEM56-RWDD3 -3.54683 9.81E-12 1.29E-07 Down

AC013489.1 -4.17415 3.51E-06 0.00575 Down

PLVAP -2.61008 2.39E-05 0.026097 Down

PPDPF -2.88183 2.75E-05 0.026397 Down

RPS26 -2.22182 2.82E-05 0.026397 Down

HBB -2.40451 3.29E-05 0.026994 Down

RGS6 -2.33305 4.89E-05 0.035625 Down

EVPL -3.08781 5.28E-05 0.036452 Down

RIOK3 -2.15799 7.94E-05 0.049573 Down

LRRN3 -2.13595 8.98E-05 0.049807 Down

Osteolysis vs. OA

EPHB4 3.187856 9.59E-07 0.003135 Up

RASSF5 1.444879 1.47E-05 0.023969 Up

FAM118A 1.406201 4.97E-05 0.064931 Up

AL354822.1 2.9104 0.000364 0.250326 Up

AL121594.1 2.129941 0.0004 0.259591 Up
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are expressed as means ± standard deviations (SDs). In addi-
tion, we used Shapiro-Wilk to test the normal distribution of
data. However, the statistical analysis of clinical data showed
that the data are not normal distribution. Therefore, we
choose the Kruskal-Wallis test for statistical analysis. Pearson
correlation coefficients were calculated between the expres-
sion values of DElncRNAs and DEmRNAs. p < 0:05 was
considered to indicate a significant difference between the
groups.

3. Results

3.1. Identification of DEmRNAs and Functional Annotation.
DESeq2 was applied to identify DEmRNAs, and our results
showed that a total of 343 DEmRNAs (184 up- and 159
downregulated) in OA vs. control, 908 DEmRNAs (429 up-
and 479 downregulated) in osteolysis vs. control, and 406
DEmRNAs (112 up- and 294 downregulated) in OA vs.
osteolysis were identified. Of these, HIST2H4A and CD8A,
ZNF778 and TMEM56-RWDD3, and EPHB4 and MTURN
were the most up- and downregulated DEmRNAs in OA
vs. control, osteolysis vs. control, and OA vs. osteolysis,
respectively (Table 2). The heatmap of the top 100 up- and
downregulated DEmRNAs was shown in Figures 1(a)–1(c).
The volcano plots of DEmRNAs are shown in Figures S1A–
C. A total of 136 shared DEmRNAs (71 up- and 65
downregulated) in OA vs. control and osteolysis vs. control
and 736 osteolysis-specific DEmRNAs (381 up- and 355
downregulated) were acquired (Figure 1(d)).

To investigate the functions of shared and osteolysis-
specific DEmRNAs, DAVID 6.8 was used to perform GO
and KEGG enrichment analysis. For shared DEmRNAs,
cell activation (p = 2:81E − 03), leukocyte activation (p =
5:20E − 03), integral to plasma membrane (p = 3:17E − 04),
and protein homodimerization activity (p = 1:93E − 02) were
several significantly enriched GO terms, and mTOR signal-

ing pathway (p = 1:89E − 02) and cell cycle (p = 3:81E − 02)
were significantly enriched KEGG pathways (Figures S2,
S4 A and B). For osteolysis-specific DEmRNAs, intracellular
signaling cascade (p = 1:80E − 02), cell adhesion (p =
8:45E − 04), plasma membrane (p = 9:54E − 05), and
cytoskeletal protein binding (p = 1:08E − 02) were several
significantly enriched GO terms, and hematopoietic cell
lineage (p = 1:35E − 02), cell adhesion molecules (CAMs)
(p = 2:29E − 02), porphyrin and chlorophyll metabolism
(p = 3:40E − 02), and systemic lupus erythematosus (p =
4:86E − 02) were significantly enriched KEGG pathways
(Figures S3, S4 C–F).

3.2. Identification of DElncRNAs. DESeq2 was applied to
identify DElncRNAs, and our results showed that a total of
25 DElncRNAs (15 up- and 10 downregulated) in OA vs.
control, 107 DElncRNAs (58 up- and 49 downregulated) in
osteolysis vs. control, and 46 DElncRNAs (17 up- and 29
downregulated) in OA vs. osteolysis were identified. Of these,
NEAT1 and AC005726.2, FLJ42393 and AC123912.4, and
AC016737.1 and AC123912.4 were the most up- and down-
regulated DElncRNAs in OA vs. control, osteolysis vs.
control, and OA vs. osteolysis, respectively (Table 3). The
heatmap of DElncRNAs is shown in Figures 2(a)–2(c). The
volcano plots of DEmRNAs are shown in Figure S1D-F. A
total of 9 shared DElncRNAs (6 up- and 3 downregulated) in
OA vs. control and osteolysis vs. control and 103 osteolysis-
specific DElncRNAs (52 up- and 51 downregulated) were
acquired (Figure 2(d)).

3.3. DElncRNA-DEmRNA Coexpression Network and
Functional Annotation. To further investigate the potential
functions of lncRNAs and mRNAs in OA and osteolysis,
the shared and osteolysis-specific DElncRNA-DEmRNA
coexpression networks were constructed. A total of 128
shared DElncRNA-DEmRNA coexpression pairs including
9 DElncRNAs and 81 DEmRNAs were obtained (Figure 3(a)).

Table 2: Continued.

Symbol log2FC p value FDR Regulation

ZNF587 1.181929 0.000736 0.320854 Up

SERPING1 1.589099 0.002698 0.608048 Up

LRP1 1.363794 0.004148 0.796847 Up

CASP10 1.098776 0.004527 0.796847 Up

REC8 1.074025 0.004665 0.796847 Up

MTURN -1.58117 1.09E-05 0.021921 Down

HBB -2.3627 1.17E-05 0.021921 Down

CISD2 -1.29668 6.10E-05 0.07251 Down

AC093668.3 -2.78122 6.93E-05 0.073252 Down

DDA1 -1.3542 8.91E-05 0.08323 Down

AC013489.1 -3.94451 0.000133 0.11567 Down

ARL4A -1.83919 0.00018 0.147286 Down

EPB41 -1.62564 0.000288 0.221659 Down

CR1L -1.61874 0.000353 0.250326 Down

DLGAP5 -2.34576 0.000426 0.259591 Down

FC: fold change; FDR: false discovery rate; OA: osteoarthritis.
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Table 3: Top 10 up- and downregulated DElncRNAs.

Symbol log2FC p value FDR Regulation

OA vs. control

NEAT1 5.1159 1.85E-18 1.12E-14 Up

AL512625.3 2.570376 3.24E-05 0.065224 Up

AC016831.6 1.728574 5.90E-05 0.088885 Up

AC111000.4 2.064848 0.001215 0.563632 Up

LINC01341 2.02527 0.005032 0.92186 Up

AC018445.3 1.654176 0.010542 0.999047 Up

AC004231.1 1.894872 0.01745 0.999047 Up

AC114752.2 1.692437 0.020267 0.999047 Up

AP003117.2 1.771314 0.023032 0.999047 Up

AC096642.1 1.589585 0.025643 0.999047 Up

AC005726.2 -1.66485 4.64E-08 0.00014 Down

PITRM1-AS1 -2.72439 0.000346 0.348099 Down

OVCH1-AS1 -2.18336 0.000714 0.478621 Down

AC005082.1 -2.31905 0.002001 0.670439 Down

AL162457.1 -1.71468 0.002791 0.701277 Down

AC126755.7 -1.50226 0.004787 0.92186 Down

AP006545.1 -1.89154 0.011714 0.999047 Down

AC020659.1 -1.60564 0.013616 0.999047 Down

AC007541.1 -1.69387 0.031639 0.999047 Down

AC068870.2 -1.90393 0.039154 0.999047 Down

Osteolysis vs. control

FLJ42393 1.62292 7.39E-05 0.067195 Up

AC007272.1 2.182036 0.000975 0.279887 Up

AC016831.6 1.690991 0.001091 0.285274 Up

AL359532.1 1.86552 0.001529 0.335756 Up

AL359183.1 1.921891 0.001606 0.340963 Up

AC091185.1 1.772238 0.001807 0.359718 Up

AC018946.1 1.549455 0.002757 0.427746 Up

AC015871.4 1.542564 0.00288 0.427746 Up

AC100788.2 1.613121 0.003089 0.427746 Up

LINC02288 1.673173 0.003444 0.429946 Up

AC123912.4 -3.00991 2.78E-10 1.77E-06 Down

AC010615.2 -3.72122 1.34E-06 0.004253 Down

DDIT4-AS1 -1.59273 1.65E-05 0.033738 Down

AC092490.1 -2.67119 2.42E-05 0.033738 Down

AC100810.1 -2.2893 5.65E-05 0.059947 Down

SLC2A1-AS1 -2.12909 0.000292 0.191562 Down

AC100835.2 -2.25064 0.000369 0.195639 Down

AC097478.1 -2.43982 0.000553 0.242589 Down

LINC00570 -2.3716 0.000559 0.242589 Down

MIR9-3HG -2.61167 0.000581 0.242589 Down

Osteolysis vs. OA

AC016737.1 2.007544 0.000286 0.459454 Up

AC124319.2 1.591514 0.003026 0.999986 Up

AL357078.3 1.935801 0.005568 0.999986 Up

AL139020.1 2.119999 0.007539 0.999986 Up

AC004263.1 1.824237 0.015321 0.999986 Up
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Among them, AC018761.2 (degree = 49), AC090607.4 (degree =
46), and ABALON (degree = 42) were the top 3 DElncRNAs
that covered the most DEmRNAs. Then, to investigate the
functions of DEmRNAs in shared and osteolysis-specific
DElncRNA-DEmRNA coexpression network, DAVID 6.8
was used to perform GO and KEGG enrichment analysis.
For DEmRNAs in shared DElncRNA-DEmRNA coexpres-
sion network, T cell activation (p = 1:53E − 02), leukocyte
differentiation (p = 1:69E − 02), leukocyte activation (p =
1:77E − 02), immune system development (p = 2:72E − 02),
T cell differentiation (p = 2:96E − 02), and mTOR signaling
pathway (p = 2:85E − 02) were several significantly enriched
pathways (Figure 3(b)).

A total of 522 osteolysis-specific DElncRNA-DEmRNA
coexpression pairs including 36 DElncRNAs and 194 DEmR-
NAs were obtained (Figure 4(a)). Among them, AC111000.4
(degree = 38), OVCH1-AS1 (degree = 24), and AC016831.6
(degree = 19) were the top 3 DElncRNAs that covered the
most DEmRNAs. For DEmRNAs in osteolysis-specific
DElncRNA-DEmRNA coexpression network, myeloid cell
differentiation (p = 4:50E − 04), immune system develop-
ment (p = 7:00E − 04), cell proliferation (p = 2:27E − 03),
and positive regulation of myeloid cell differentiation (p =
4:73E − 02) were several significantly enriched pathways
(Figure 4(b)).

4. Discussion

Osteolytic lesions may develop after THA from a biologic
reaction to particulate debris [9]. It is a major complication
of THA, causing additional suffering and burden for patients.
Aggravating evidence indicates that lncRNAs regulate gene
expression via cis- and/or transregulation mechanisms and
participate in various biological processes, including chroma-
tin modification, DNA synthesis, cell proliferation, differenti-
ation, and apoptosis [10]. In this present study, we screened

out critical genes and lncRNAs correlated with OA and
osteolysis by RNA sequencing and bioinformatics analysis.

Due to the close interaction between immune cells and
bone cells, immune disorders can lead to abnormal bone
metabolism [11]. T lymphocyte differentiation could be
made by the “clusters of differentiation” (CD), and the com-
mon receptors are CD4 and CD8. CD8, a cell surface glyco-
protein, is predominantly expressed on the surface of
cytotoxic T killer cells and implicated in the immune system.
The CD8 antigen is a specifically recognized antigen dis-
played by the class major histocompatibility complex I mol-
ecules. Long et al. identified a 16-gene biomarker panel to
differentiate RA from OA and indicated the lower expression
level of CD8A in OA than in RA [12]. Landgraeber et al.
reported that the CD4+/CD8+ ratio was associated with the
stage of osteolysis in aseptic loosening [13]. In this study,
both CD8A and CD8B were significantly decreased in OA
vs. control and osteolysis vs. control. Functional annotation
revealed that CD8A and CD8B were enriched in immune-
related pathways, such as T cell activation, leukocyte differ-
entiation, leukocyte activation, immune system develop-
ment, and T cell differentiation. In addition, CD8A was
coexpressed with AC111000.4, and CD8B was coexpressed
with AC016831.6 in shared the DElncRNA-DEmRNA coex-
pression network. Taken together, we speculated that
AC111000.4 and AC016831.6 may function in the immune
process of OA and osteolysis by regulating CD8A and
CD8B, respectively.

The FOXO proteins are an evolutionarily conserved fam-
ily of transcription factors which comprised FOXO1,
FOXO3, FOXO4, and FOXO6 in mammals [14]. The four
FOXO members share obvious sequence homology and are
ubiquitously expressed in various organs, including bone
[15]. FOXOs regulate diverse cellular processes, including
oxidative stress, metabolism, apoptosis, and inflammation
[16]. In addition, FOXOs have been revealed to regulate bone

Table 3: Continued.

Symbol log2FC p value FDR Regulation

AC018653.3 1.519922 0.020607 0.999986 Up

AC099521.2 1.851515 0.024567 0.999986 Up

AC110801.1 2.016041 0.0264 0.999986 Up

AL022328.1 1.56358 0.02739 0.999986 Up

AL844908.2 1.529839 0.03055 0.999986 Up

AC123912.4 -3.68915 3.62E-08 0.000233 Down

AC010615.2 -3.84396 5.84E-06 0.018749 Down

AL356489.2 -3.8055 0.000598 0.654803 Down

AC092821.3 -1.68773 0.001213 0.866219 Down

KRT73-AS1 -1.77092 0.002183 0.999986 Down

FP236383.2 -1.99999 0.002243 0.999986 Down

AL159978.1 -2.32724 0.003423 0.999986 Down

TPM1-AS -1.77588 0.003634 0.999986 Down

MIR9-3HG -1.88441 0.004272 0.999986 Down

LINC00570 -1.98324 0.005975 0.999986 Down

FC: fold change; FDR: false discovery rate; OA: osteoarthritis.
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cell functions, osteoblast differentiation, and the mainte-
nance of skeletal homeostasis [17]. Bartell et al. suggested
that FOXO3 regulate receptor activator of NF-κB ligand-
(RANKL-) induced osteoclast differentiation [18]. Miller
et al. reported that FOXO3 play important inhibitory roles
in TNF-α-mediated osteoclastogenesis and bone resorption
[19]. Ambrogini et al. found that overexpression of FOXO3
in osteoblasts may reduce osteoclast numbers [20]. Increased
osteoclastogenesis leads to osteolysis. Here, FOXO3 was
determined to be a significantly decreased osteolysis-
specific DEmRNA and coexpressed with AC090607.4, which
indicated the importance of AC090607.4 in osteolysis by
targeting FOXO3.

TAL1, also known as SCL, plays a crucial role in hemato-
poiesis and is causally connected to T cell acute lymphatic
leukemia [21, 22]. The fact that embryonic stem cells of
Tal1-knockout mice did not develop into osteoclasts
in vitro supported that Tal1 plays a role in osteoclast differen-
tiation [23]. The maintenance of bone homeostasis mainly
depends on the balance between bone-forming osteoblasts
and bone-resorbing osteoclasts. The transcription factor
TAL1 was of great importance in cell cycle progression and
proliferation in differentiating murine bone marrow mono-
cyte precursors [24]. Knockdown of Tal1 in osteoclast pro-
genitors leads to larger osteoclasts, containing more nuclei,
and altered expression of a large number genes [25]. Wang
et al. found that TAL1 was a differentially expressed tran-
scription factor in osteoporosis [26]. In this study, TAL1
was coexpressed with ABALON in the osteolysis-specific
DElncRNA-DEmRNA coexpression network. Therefore,
the role of TAL1-BALON in osteolysis should be paid
attention.

5. Conclusions

In conclusion, we highlighted the roles of four interaction
pairs, including two shared lncRNA-mRNA interaction pairs
in OA and osteolysis (AC111000.4-CD8A and AC016831.6-
CD8B) and two osteolysis-specific interaction pairs
(AC090607.4-FOXO3 and TAL1-BALON) in this present
work. Taken as a whole, our work made contribution to
understanding the pathophysiology of osteolysis. Our study
also had a limitation. The sample size for RNA sequencing
in this study was small, and further studies with larger sample
size are warranted to confirm these results.
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