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Abstract

Understanding how dispersal patterns are influenced by landscape heterogeneity

is critical for modeling species connectivity. Resource selection function (RSF)

models are increasingly used in landscape genetics approaches. However, because

the ecological factors that drive habitat selection may be different from those

influencing dispersal and gene flow, it is important to consider explicit assump-

tions and spatial scales of measurement. We calculated pairwise genetic distance

among 301 Dall’s sheep (Ovis dalli dalli) in southcentral Alaska using an intensive

noninvasive sampling effort and 15 microsatellite loci. We used multiple regres-

sion of distance matrices to assess the correlation of pairwise genetic distance and

landscape resistance derived from an RSF, and combinations of landscape fea-

tures hypothesized to influence dispersal. Dall’s sheep gene flow was positively

correlated with steep slopes, moderate peak normalized difference vegetation

indices (NDVI), and open land cover. Whereas RSF covariates were significant in

predicting genetic distance, the RSF model itself was not significantly correlated

with Dall’s sheep gene flow, suggesting that certain habitat features important

during summer (rugged terrain, mid-range elevation) were not influential to

effective dispersal. This work underscores that consideration of both habitat

selection and landscape genetics models may be useful in developing manage-

ment strategies to both meet the immediate survival of a species and allow for

long-term genetic connectivity.

Introduction

Landscape heterogeneity influences the distribution of

animals through the spatial configuration and degree of

connectivity of preferred habitats. Dispersal and seasonal

movement patterns among geographic areas could be

impeded by physical barriers or by large expanses of

habitats a species avoids, or conversely facilitated by

continuity of preferred habitats (McRae and Beier 2007;

Rudnick et al. 2012). In turn, gene flow across land-

scapes resulting from dispersal influences patterns of

population genetic structuring (Manel et al. 2003; Spear

et al. 2010; Wagner and Fortin 2012). To understand

how landscape heterogeneity influences effective dispersal

and gene flow, models that characterize habitat use are

increasingly employed to inform landscape genetics anal-

yses. Habitat-based and landscape genetics approaches

are different but complimentary, and combined can

identify important habitats for different life history

requirements of a species. Integrated habitat and land-

scape genetics models also provide valuable information

for resource managers to promote connectivity between

critical habitats through designing corridors and conser-

vation areas (Chetkiewicz and Boyce 2009).
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A major objective of the field of landscape genetics is to

assess the effects of landscape features on genetic connec-

tivity (Manel et al. 2003). A landscape genetics approach

may be used to quantify the effects of landscape features on

spatial patterns of neutral genes (Holderegger and Wagner

2008) and infer breeding and dispersal movements (Storfer

et al. 2007). Landscape genetic models can measure how

landscape features influence gene flow by quantifying the

resistance of environmental characteristics on dispersal

(Spear et al. 2010). A range of values are assigned to habitat

characteristics using resistance surfaces; low resistance val-

ues facilitate animal movement (with little restraint), while

high resistance values restrict animal movement and thus

gene flow. Hypothesized resistance values are often based

on expert opinion (Coulon et al. 2004; Epps et al. 2007;

Shirk et al. 2010) or empirical data (e.g., survey or teleme-

try locations; Schwartz et al. 2009; Spear et al. 2010; Shafer

et al. 2012) and are then tested with genetic data.

Resource selection functions provide information on the

relative probability of use of a given set of resources by an

organism (Manly et al. 2002). Instead of assessing single

landscape variables independently, RSFs can be used as a

resistance layer to evaluate the combined effects of land-

scape characteristics on genetic structure. Application of

the inverse values of RSFs to parameterize resistance sur-

faces assumes that higher quality (and more frequently

used) habitat presents lower costs (or ‘friction’) for move-

ment. Habitat suitability or RSF models have been used to

parameterize resistance surfaces to assess the influence of

habitat features on least-cost path corridors (Chetkiewicz

and Boyce 2009; Pullinger and Johnson 2010), patterns of

gene flow using graph theory modeling (Garroway et al.

2008), and landscape genetics models (McRae and Beier

2007; Spear et al. 2010; Epps et al. 2013). The combination

of methods provides a powerful analytical platform, but is

based on the assumption that the ecological factors that

drive habitat selection are similar to those that influence

dispersal and gene flow.

Indeed, habitat selection and landscape genetics models

often measure different ecological processes at different

temporal and spatial scales (Table 1). It is important to

recognize that suitable habitat within a home range may

not equate to low resistance for dispersal and gene flow

(Braunisch et al. 2010; Spear et al. 2010). For example,

habitat features required to maintain nutritional condition

and safety from predators within an organism’s home

range could vary substantially from those used for move-

ment to seasonal breeding ranges or for exploratory move-

ments. Habitat selection and landscape genetic models also

reflect different timescales. Genetic data integrates multiple

generations of breeding dispersal and thus represents the

average long-term effective dispersal across a landscape. On

the other hand, RSF models generally account for daily or

seasonal movement patterns and use current resource data

to characterize habitats within a contemporary time frame.

One of the benefits of RSF models is that they may be

created using data from multiple spatial scales (Johnson

1980; Hebblewhite et al. 2008), but generally focus on

selection of specific resources within a seasonal or home

range. Landscape genetics models may also be analyzed

using data collected at multiple spatial scales (e.g., Wasser-

man et al. 2010 but commonly estimate interindividual

genetic distance, or genetic distance among networks of

populations to assess population-wide genetic connectivity.

Table 1. Comparison of resource selection function (RSF) and land-

scape genetics models in terms of the ecological processes they mea-

sure at different spatial and temporal scales, and model assumptions.

RSF Landscape genetics

Ecology Food, safety Effective dispersal

Measures use and relative

importance of habitat

variables

Measures how habitat

variables influence

genetic connectivity

Time Shorter time frame Longer time frame—

multiple generations

Seasonal Gene flow in populations

with small effective

population size (Ne)

reflects more recent

dispersal than

populations with large Ne

Space Structural connectivity Functional connectivity of

individuals and

populations across

landscapes

Broad-scale: Seasonal

home ranges within the

species or population

home ranges

Fine-scale: Habitat

selection within seasonal

home ranges

Assumptions RSF is proportional to the

probability of use

Pairwise genetic distance

is informative of gene

flow

Resource units are

sampled randomly and

independently

Genetic differentiation

results from habitat

heterogeneity, instead of

historic demographic

events (e.g., population

bottlenecks)

Resources are constant

throughout time period

of study

Availability of resources

does not vary

Gene flow reflects

movement of individuals

that successfully

reproduce (or their

gametes)

Organisms select

resources according to

how they will benefit

from them

If sex-biased dispersal is

not directly accounted

for, the assumption is

that patterns of gene

flow are similar for males

and females

Probability of selection is

related to habitat quality
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Thus, landscape genetics models provide information on

dispersal and gene flow across space (functional connectiv-

ity; Manel et al. 2003; Holderegger and Wagner 2008),

whereas RSFs measure the use and relative importance of

habitat variables (Manly et al. 2002) and provide informa-

tion on configuration of habitats (structural connectivity;

Tischendorf and Fahrig 2000; Brooks 2003; Holderegger

and Wagner 2008).

Recent research demonstrates a range of correlation

between gene flow and the landscape features identified in

RSFs or other habitat models, from positive (Epps et al.

2007; Wang et al. 2008; Shafer et al. 2012; Weckworth

et al. 2013), to little or no correlation (Braunisch et al.

2010; Wasserman et al. 2010; Reding et al. 2013). Here, we

integrated RSF and landscape resistance modeling

approaches to determine whether the relative probability of

habitat selection predicts gene flow in Dall’s sheep (Ovis

dalli dalli). Dall’s sheep are habitat specialists, which like

many alpine species in northern latitudes may be vulnera-

ble to climate change, thus characterizing seasonal habitats

and the degree of connectivity among them is essential for

long-term management.

Our RSF models included landscape variables hypothe-

sized to be of ecological importance to sheep fitness and

distribution and were developed using survey data over a

broad, heterogeneous landscape in southcentral Alaska

(Appendix S1). We used empirical data from the top RSF

model (the inverse value of the relative probability of habi-

tat selection for each landscape pixel) to parameterize resis-

tance surfaces representing our hypothesized relationships

between gene flow and landscape features. Using the same

suite of habitat covariates that were used to evaluate habitat

selection in Dall’s sheep, we constructed competing resis-

tance models of genetic distance and compared these mod-

els to the RSF model. Few studies employ this two-stage

approach wherein competing resistance models are con-

structed using empirical data and the top model is identi-

fied using model selection procedures and genetic distance

data (Zeller et al. 2012). We predicted that the same char-

acteristics that influence Dall’s sheep seasonal habitat selec-

tion also influence patterns of longer-term gene flow. We

further predicted that the top models would be more corre-

lated with genetic distance than either geographic distance

alone, or major landscape barriers which could impede

dispersal.

Methods

Study area

Wrangell-St. Elias National Park and Preserve (WRST) in

southcentral Alaska is an important region for Dall’s sheep,

encompassing approximately 28 000 km2 of contiguous

sheep habitat. There are an estimated 11 000–14 500 Dall’s

sheep in WRST (Schmidt and Rattenbury 2013), equivalent

to 15% of the subspecies’ population. The study area

extends geographically from maritime to interior habitats

across multiple mountain ranges (Fig. 1) and therefore

contains gradients of temperature (mean annual tempera-

ture = �10–18°C) and precipitation (mean annual precipi-

tation = 300–3000 mm). The Chugach Range in the

southern portion of the study area is mesic, the St. Elias

and Wrangell Ranges in the central portion of WRST rep-

resent a transitional climate zone, and the Nutzotin Range

is xeric. These mountain ranges are separated by potential

barriers to sheep dispersal such as large ice fields (e.g.,

≤120 km long, >40 km wide), glaciers (≤40 km long, 1–
10 km wide), major river valleys, and low-elevation

(<1000 m) forested areas (Fig. 1).

Genetic sample collections, genotyping, and genetic

distance

Sample collections are described in Roffler et al. (2014).

Briefly, we collected fresh feces in late summer 2007–2009
from randomly selected 50-km² grid cells throughout the

study area to distribute samples across the landscape. We

also collected muscle samples and harvest locations from

mature rams (≥3/4 curl) taken during hunting season (10

August–20 September), 2007–2009. Using extracted DNA,

we genotyped 301 sheep at 15 microsatellite loci, performed

standard tests of genetic variation and diversity, and

assessed spatial patterns of genetic structure (Roffler et al.

2014). We tested for departures from selective neutrality

using an FST outlier approach (Beaumont and Nichols

1996) and conservatively removed loci if they were consis-

tently flagged as outliers in pairwise population compar-

isons. Applying these genetic markers to this landscape

Figure 1 Collection locations of Dall’s sheep genetic samples (n = 301)

in Wrangell-St. Elias National Park and Preserve, Alaska, 2007–2009.
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genetics study, we calculated the pairwise genetic distance

between individuals bootstrapped 2000 times with MSA

v4.05 (Dieringer and Schl€otterer 2003) according to the

proportion of shared alleles (Dps; Bowcock et al. 1994).

Resource selection function models

We used empirical data to inform the construction of resis-

tance surfaces of gene flow by modeling Dall’s sheep habitat

resource selection (Appendix S1). In brief, we estimated

summer habitat selection of WRST sheep with RSFs (Boyce

et al. 2002; Manly et al. 2002) at the second-order scale

(landscape; Johnson 1980), and our design corresponded

to surveys with population level information about use and

availability within seasonal home ranges (Appendix S1).

Models included biotic and abiotic habitat covariates (to-

pographic, climatic, land cover, normalized difference veg-

etation index [NDVI]) that were previously reported to be

influential to Dall’s sheep distribution (Table S1). We com-

pared habitat at used and available sheep group locations

from summer aerial surveys during 1983 – 2011 with gen-

eralized logistic regression (Hosmer and Lemeshow 2000;

Appendix S1). We estimated the relative probability of use

with the exponential approximation of the logistic regres-

sion model (Manly et al. 2002; Lele and Keim 2006;

Appendix S1). To project landscape resistance spatially, we

first scaled the predicted values from the relative probabil-

ity of use model (eq. 1) between 0 and 1 (Johnson et al.

2004). We then calculated the inverse value of the scaled

predicted probabilities using ArcGIS Spatial Analyst Raster

Calculator in ArcMap 10.1 (ESRI, Redlands, CA, USA) at

the resolution of 120-m2 pixel (Fig. 2).

Landscape resistance surfaces

We used an individual-based, spatially explicit landscape

genetics approach to determine the best predictor for

genetic connectivity of individual Dall’s sheep. We devel-

oped resistance surfaces derived from the inverse of the

summer habitat selection RSF described above, of each

individual habitat covariate in the RSF model, and for

additional landscape variables hypothesized to affect Dall’s

sheep gene flow (see below and Table S1). We estimated

pairwise resistance distances between all pairs of individu-

als for each landscape variable using CIRCUITSCAPE v4.0

(McRae and Beier 2007), which applies principles of circuit

theory to assess connectivity across landscapes with

hypothesized levels of resistance or conductivity. Circuit

theory accommodates simultaneous modeling and ranking

of all possible pathways of connectivity, accounting for

varying levels of resistance due to path size. We conducted

CIRCUITSCAPE analyses in a pairwise mode, with individ-

ual locations set as focal nodes, and connections were

allowed between all eight surrounding cells of each pixel.

We represented pairwise geographic distance between all

individual sheep with a distance matrix (all cells in the

resistance surface = 1), which served as the null model (re-

ferred to henceforth as Euclidean distance) against which

the more complex landscape surfaces incorporating land-

scape heterogeneity were compared.

In addition to the habitat covariates included in the RSF

model, we hypothesized that October 1 snow cover, a vari-

able representing conditions affecting movements of sheep

at the onset of winter and prior to the rut, could influence

genetic connectivity (Table S1). Snow cover on October 1

was derived from daily gridded (500-m resolution) Terra

MODIS snow cover imagery (2001–2012) and algorithms

Figure 2 (A) Dall’s sheep locations 1983–2011 (n = 2587) used to

build the summer resource selection functions, and the predicted values

for probability of habitat use, (B) low-elevation valleys and ice forma-

tions tested as potential barriers to gene flow, (C) slope, (D) open- and

closed-canopy habitat categories, (E) mean annual precipitation (mm),

(F) mean peak annual NDVI value 2001–2011, (G) presence of snow on

October 1, Wrangell-St. Elias National Park and Preserve, Alaska.
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to determine the spatial extent of persistent snow (Zhu and

Lindsay 2013). We also represented geographic features

within the WRST landscape which have been shown to pre-

sent barriers to Dall’s sheep gene flow, primarily the Wran-

gell and St. Elias ice fields and glaciers, and the lower

Chitina River valley (Fig. 1), which aligned geographically

with Bayesian clusters of individual Dall’s sheep genotypes

(Roffler et al. 2014). Resistance layers were produced using

ArcGIS 10.1 by clipping each landscape covariate layer to

the study area. Using the Spatial Analyst Raster Calculator,

each 120-m2 pixel in each landscape covariate layer was

coded with a value of 1 if hypothesized to be low resistance

and >1 (e.g., 2–500, see below) if high resistance. Several

habitat covariates (peak NDVI, elevation, ruggedness,

slope, and precipitation) had a nonlinear relationship with

Dall’s sheep habitat selection (Appendix S1), and thus, we

expected they would also have nonlinear resistance rela-

tionship. We accommodated the landscape resistance

curves with mathematical functions reflecting RSF variable

shapes and coefficient values and reclassified the variable

raster data into resistance surfaces (Appendix S2).

Assigning resistance values to landscape features is chal-

lenging as the effects of different surfaces on the modeled

organisms’ dispersal, survival, and reproductive capacities

are generally unknown (Spear et al. 2010). To contend

with this issue, we used an optimization framework

(Tucker 2013) to select the optimal resistance for each

landscape variable independently over a wide range of

values (2–500) using partial Mantel tests to determine

whether genetic and landscape resistance matrix relation-

ships remained significant while controlling for the effects

of Euclidean distance (Smouse et al. 1986). Thus, each

landscape covariate resistance layer was scaled between

1–2 and 1–500, to represent this potential range of hypo-

thetical resistance values. To identify the resistance value

for each variable which maximized the relationship with

genetic distance (i.e., the optimum resistance value), we

ascertained the asymptote of the curve (rate of change

<5%) of the partial Mantel r (rpm) plotted against the

range of resistance values. While the use of partial Mantel

tests has been debated (Balkenhol et al. 2009; Legendre

and Fortin 2010), specifically the reliance on potentially

biased significance tests (Graves et al. 2013), partial Man-

tel tests are an appropriate tool for characterizing the data

distribution and shape of the landscape genetics relation-

ships (Legendre and Fortin 2010) and still offer valuable

initial tests especially when complemented with other

analyses (Cushman et al. 2013). Further, we did not rely

on partial Mantel significance tests in the optimization

procedure and considered significance test in tandem with

other analyses results for the landscape resistance model

evaluation. The importance of univariate and multivariate

optimization has been demonstrated (Shirk et al. 2010);

therefore, we used the optimized univariate resistance sur-

faces in the multivariate candidate model evaluation pro-

cess and to select a single optimal multivariate resistance

surface (Tucker 2013). Univariate and partial Mantel tests

were conducted using the Ecodist package (Goslee and

Urban 2007) in R (version 2.13.0; R Development Core

Team 2011).

Model selection and evaluation

We constructed a priori models using combinations of

the landscape resistance surfaces, and information theo-

retic criteria for model selection. We removed Euclidean

distance from resistance distances for each variable prior

to all model selection procedures because Euclidean dis-

tance is factored into effective resistance in CIRCUITS-

CAPE. We excluded significantly correlated landscape

variables indicated by a Pearson’s correlation of r ≥ 0.7

(Hosmer and Lemeshow 2000), or with variance inflation

factors (VIF) >10 in the global model and >5 in the final

candidate models (McCullough and Nelder 1989). We

standardized optimum resistances using a z-transforma-

tion so that parameter estimates for each variable would

be comparable.

We used multiple regression of distance matrices

(MRDM; Legendre et al. 1994) on the optimized distance

matrices to determine the relative importance of land-

scape resistance distances (explanatory variables) and

genetic distance (the dependent variable) between indi-

viduals. This method has been demonstrated to retain a

good balance between type 1 error and power and has

high levels of accuracy compared with other methods

(Balkenhol et al. 2009). We performed tests using 9999

permutations and 1000 iterations to obtain bootstrap

confidence intervals. We developed multiple candidate

models to determine the landscape resistance model best

supported by the genetic data. To evaluate relative model

performance, we also used linear regression and Akaike’s

information criterion (AICc) corrected for small sample

sizes and the associated AICc weights (wi) to select the

top model (Anderson and Burnham 2002). Although use

of information theory has been criticized due to potential

nonindependence of pairwise data, it has been used as a

means to rank multivariate models explaining genetic dis-

tance because the error is assumed to be equal for each

model, thus not affecting ranking ability (Garroway et al.

2008; Richardson 2012; Engler et al. 2014). However, as

this error may possibility affect confidence of assessing

model significance, we conservatively evaluated results of

multiple assessment methods in addition to AICc weights

for final model selection (described below). We excluded

models in the top set that contained uninformative

parameters (differed from the top model by 1 parameter
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and did not improve the AICc score by at least 2; Arnold

2010). We used 85% confidence intervals to eliminate

variables that overlapped zero, indicating that they were

also uninformative to the model (Arnold 2010).

We converted the top model into a composite multivari-

ate resistance surface using the resulting equation and

model parameter values in the ArcGIS Spatial Analyst Ras-

ter Calculator. We obtained the parameter estimates using

the untransformed variables to fit the top model. The

parameter coefficient estimate was then multiplied by the

resistance surface for each landscape variable, and each sep-

arate surface summed using Raster Calculator. This com-

posite multivariate surface was then used to determine

pairwise individual resistance distances with CIRCUITS-

CAPE. We then determined the correlation between genetic

distance and resistance distance of the following models:

(1) the top MRDM model, (2) the RSF model, and (3) the

isolation-by-distance (IBD) model (i.e., genetic distance

~Euclidean distance). The strength of correlation was

assessed with r and rpm and model fit assessed with R2. We

expected the multivariate resistance surface would have a

higher rpm than the univariate surfaces if the modeling

approach was effective.

To accept a model as explanatory of genetic distance, it

was necessary that the partial Mantel test (the relationship

between two matrices while controlling for the effects of a

third matrix) have a significant result, and simultaneously

the opposite test not be significant. For example, the corre-

lation of genetic distance and resistance distance while con-

trolling for Euclidean distance must be significant, while

the correlation of genetic distance and Euclidean distance

while controlling for resistance distance must not be signif-

icant (Cushman and Landguth 2010; Wasserman et al.

2010; Koen et al. 2011). This result would indicate that

landscape resistance is driving genetic distance rather than

IBD. This causal modeling has been demonstrated to differ-

entiate between hypothetical models (i.e., landscape resis-

tance and IBD) that are influential to the genetic distance

as opposed to merely correlated (Cushman and Landguth

2010). We compared results of multiple methods (rpm,

AICc, and R2 of MRDM model) to compensate for limita-

tions of either method used alone. All model selection

statistics were performed in R.

Some limitations of Mantel tests include nonindepen-

dence of the distance data structure and inability to esti-

mate the proportion of data variation explained by spatial

structures such as landscape variables (Legendre and Fortin

2010). In order to bolster our analyses, we used distance-

based Moran’s eigenvector maps (MEM; also referred to as

PCNM; Borcard and Legendre 2002) and multivariate

regression of genetic distance matrices and the landscape

resistance surfaces, implemented in the MEMGENE R

package (Galpern et al. 2014; Appendix S3). This approach

differs from Mantel distance regressions as the explanatory

variables are not transformed into distances. The creation

of the MEM orthogonal spatial variables (with zero correla-

tions) is accomplished through principal coordinate analy-

sis of a truncated geographic distance matrix among

sampling sites (Dray et al. 2006). The MEM eigenvectors

are then used as explanatory variables and the genetic dis-

tance matrix as the dependent variable to identify the spa-

tial component of genetic variation in the data. The

amount of genetic variation explained by spatial pattern of

each model was estimated as the adjusted coefficient of

determination R2 (adj R2).

Results

Genotyping and genetic distance

We obtained complete 15-locus genotypes of 301 sheep.

There was no pattern across loci or among sampling loca-

tions of deviations from Hardy–Weinberg proportions (10

of 105 tests, after Bonferroni correction), and no significant

linkage disequilibrium (P > 0.01). No loci fell outside the

99% confidence intervals when plotting total heterozygos-

ity against FST (Roffler et al. 2014); thus, none were consid-

ered to be outliers and all loci were included in analyses.

The number of alleles per locus ranged from 3.23 to 5.85

(mean = 4.66, SE = 0.373). The Mantel test demonstrated

a significant positive correlation between geographic versus

genetic distance (r = 0.28, P = 0.001), indicating a pattern

of isolation by distance in WRST Dall’s sheep.

Resource selection function models

The top summer RSF model (Table S2) indicated that

Dall’s sheep select rugged, steep, and mid-elevation terrain

(between low-elevation forest and tall shrub types and

high-level barren and persistent snow/ice types), intermedi-

ate levels of peak NDVI, and open habitat types

(Appendix S1). Internal validation of the RSF model

assessed through k-fold cross-validations demonstrated

high Spearman’s rank correlation coefficients averaged

from five partitions (rs = 0.997, P < 0.001), suggesting the

RSF is useful in predicting the relative probability of

resource selection by Dall’s sheep in WRST (Appendix S1).

Landscape resistance models

All landscape variables reached an asymptote of optimal

resistance values within the range of values tested and var-

ied from 5 to 100 (Table S1). After partialling out the Eucli-

dean distance in the univariate models, summer

precipitation, October 1 snow, peak NDVI and slope had

the strongest positive correlations with genetic distance

(Table 2). Additional suspected barriers to Dall’s sheep
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gene flow were not correlated with genetic distance (ice

fields and glaciers, rpm = �0.01; the lower Chitina River

valley, rpm = �0.11).

The best multivariate model included elevation and open

land cover in addition to 2 of the 4 univariate habitat vari-

ables that explained most of the genetic distance (peak

NDVI and slope; Table 3). Dall’s sheep gene flow was posi-

tively correlated with steep slopes, moderate values of peak

NDVI, and open-canopy habitat types and negatively cor-

related with mid-elevations and heavy annual precipitation.

The top model garnered all the support (wi = 1.00) once

the candidate model list was refined to exclude uninforma-

tive and collinear parameters (Table 4). None of the 85%

confidence intervals of the coefficients overlapped zero,

and each parameter estimate was significantly different

than expected by chance alone (Table 3).

Using the composite resistance surface derived from the

top model parameter estimates, we depicted an overall

model of resistance to Dall’s gene flow (Fig. 3). In addition

to ranking the highest in AICc model selection procedures

(Table 4a), this resistance model had the best model fit

(R2 = 0.131) in comparison with both the IBD and RSF

model (R2 = 0.077 and 0.069, respectively), although all

MRDR models had fairly low R2 values (Table 4a). As fur-

ther support, the partial Mantel test controlling for the

effects of Euclidean distance was significant (rpm = 0.23,

P = 0.001), while the reverse test (the effect of Euclidean

distance on genetic distance controlling for the top resis-

tance model) was not (rpm = �0.17, P = 1.000; Table 4b).

The IBD model performed poorly in the AICc model selec-

tion procedure (Table 4a) and was less correlated to

genetic distance than the composite top MRDM model

resistance (r = 0.28 and 0.31, respectively). These results

suggest that landscape resistance is a more important pre-

dictor of genetic distance than IBD.

We identified 22 positive MEM variables all of which

occurred on the largest end of the eigenvalue spectrum,

indicating that genetic variation is structured at the broad-

est spatial scales in our study area. We then compared the

proportion of spatial genetic variation explained by each of

the landscape resistance surfaces and the Euclidean distance

model. The MEM eigenvectors derived from spatial pat-

terns in the slope, annual precipitation, and peak NDVI

resistance surfaces explained the highest proportion of spa-

tial genetic variation (adj R2 = 0.195, P < 0.001; adj

R2 = 0.194, P < 0.001; adj R2 = 0.187, P < 0.001, respec-

tively). RSF was also highly ranked in the MEM models

(adj R2 = 0.191, P < 0.001). Open-canopy habitat types,

October 1 snow, and elevation explained relatively less vari-

ation, but were still significant (adj R2 = 0.144, P < 0.001;

adj R2 = 0.137, P < 0.001; adj R2 = 0.122, P < 0.001,

respectively). The Euclidean distance model had the highest

overall adjusted R2 value (adj R2 = 0.205, P < 0.001).

However, the ratio of the spatial genetic variation explained

by the resistance surface (Euclidean distance) and the varia-

tion explained by the sample locations (instead of patterns

in the model) was lower than for the slope, peak NDVI,

and RSF resistance surfaces, indicating a poorer model than

these landscape variables (Galpern et al. 2014). Many of

the habitat variables included in the RSF model were signif-

icant in univariate partial Mantel tests (peak NDVI, sum-

mer precipitation, slope; Table 2) and contributed to the

top resistance model (elevation, open land cover, peak

NDVI, annual mean precipitation, slope; Table 3); how-

ever, the RSF model itself was not significantly correlated

with Dall’s sheep gene flow (rpm = �0.06, P = 1.00) and

had little support in the AICc model selection (wi = 0.00,

Table 4). Some significant landscape variables included in

the RSF model did not contribute to the top resistance

model (e.g., rugged terrain), and summer precipitation was

eliminated due to high VIF values (>15 in final candidate

models), highlighting key differences underlying models

predicting habitat selection and genetic connectivity.

Comparing the RSF and the top resistance models after

partialling out the effects of geographic distance among

individual sheep, the magnitude and direction were similar

of the majority of the variables they had in common, with

peak NDVI, slope, and open habitat types having a rela-

tively high probability of selection and the strongest

Table 2. Partial Mantel test results of the top univariate models com-

paring matrices of individual Dall’s sheep genetic distance (Dps; Bow-

cock et al. 1994) and resistance distances (calculated using circuit

theory), controlling for the effect of Euclidean distance, Wrangell-St.

Elias National Park and Preserve, Alaska.

Landscape variable

Optimum

resistance

Partial

Mantel rpm P

October 1 snow 50 0.13 0.001

Peak NDVI 50 0.09 0.001

Summer precipitation 50 0.13 0.001

Slope 50 0.05 0.004

Table 3. Parameter estimates (b), standard error (SE), permuted P val-

ues (P; the proportion of randomized parameter estimates greater than

those based upon the original data), 85% confidence intervals (85%

CI), for top ranked model explaining Dall’s sheep gene flow, Wrangell-

St. Elias National Park and Preserve, Alaska.

b SE P 85% CI

Intercept 0.000 0.004 1.000 �0.006, 0.006

Elevation �0.149 0.008 <0.001 �0.161, �0.137

Open habitat types 0.125 0.008 <0.001 0.113, 0.136

Peak NDVI 0.280 0.011 <0.001 0.265, 0.295

Annual mean

precipitation

�0.232 0.006 <0.001 �0.241, �0.223

Slope 0.208 0.011 <0.001 0.193, 0.223
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association with genetic distance. Areas of high annual pre-

cipitation were habitats Dall’s sheep avoided and also had

high resistance to gene flow. Mid-range elevations (approx-

imately 1200–2000 m) were selected habitats in the RSF,

but had a negative correlation with gene flow.

Discussion

Using RSFs allowed us to rank important habitat covariates

which were constructive for building landscape genetics

models. Additionally, RSF coefficients provided empirical

and realistic values for resistance surface parameterization.

These values are useful for comparison to hypothetical

resistance surface values or those derived from expert opin-

ion, and tested with genetic data to select the most parsi-

monious model. In this analysis, the best supported

landscape resistance model for Dall’s sheep gene flow dif-

fered from the resistance surface derived from summer

habitat selection. While many of the RSF habitat variables

were significant in predicting gene flow and contributed to

the top model, the RSF model itself was not significantly

correlated with Dall’s sheep gene flow. Our results suggest

that certain habitat features Dall’s sheep selected during

summer (rugged terrain, mid-range elevation) did not

influence effective dispersal or gene flow. Because the two

methods assess different ecological functions at different

temporal and spatial scales, using them in combination

revealed key differences in home range and dispersal ecol-

ogy of Dall’s sheep which could be informative for guiding

management actions.

Ranking influences of genetic connectivity

Although both population- and individual-based analyses

identified the Wrangell and St. Elias ice fields and glaciers

and the lower Chitina River valley as partial barriers to gene

flow in sheep (Roffler et al. 2014), these large barriers were

less correlated with genetic distance than topographic

(steep slopes) and environmental features (open habitats,

peak NDVI, and annual precipitation), illustrating the

value of examining the influence of habitat components on

population connectivity. The top resistance model included

these landscape features and was a better predictor than

barriers of gene flow in Dall’s sheep.

An IBD genetic pattern was also previously detected in

Dall’s sheep (Roffler et al. 2014), attributed to the

Table 4. (a) Ranked models from the top 12 candidate list explaining landscape resistance to Dall’s sheep genetic distance (Dps; Bowcock et al.

1994), Wrangell-St. Elias National Park and Preserve, Alaska. Partial Mantel coefficients (rpm) and P values are shown for genetic distance and the top

multiple regression of distance matrices (MRDM) models controlling for the effects of Euclidean distance (ED), and Mantel (r) coefficients, and P val-

ues are shown for the isolation-by-distance (IBD) model. DAICc and Akaike weights (wi) for linear models and MRDM model fit (R2) are in ranked

order. (b) Mantel (r) coefficients and P values are shown for genetic distance and (1) the composite ecological resistance from the top MRDM model,

and (2) the resource selection function (RSF) model. Partial Mantel coefficients (rpm) and P values for genetic distance and resistance distance are also

shown controlling for the effects of the variable after the vertical bar.

r P rpm P DAICc wi R2

(a) Model*

elevation + open + p.NDVI + a.precip + slope 0.23 0.001 0 1 0.131

open + p.NDVI + s.precip + a.precip + slope + Oct.snow 0.01 0.384 110.28 0 0.129

p.NDVI + s.precip + a.precip + Oct.snow 0.01 0.394 197.68 0 0.128

elevation + open + rugged + slope + Oct.snow 0.01 0.460 1096.63 0 0.103

elevation + open + rugged + slope + Oct.snow + Chit + L.Chit + glacier 0.01 0.408 1458.93 0 0.11

elevation + rugged + slope + Chit + L.Chit + glacier �0.07 1.000 1664.23 0 0.099

p.NDVI + s.precip + slope + Oct.snow 0.12 0.001 1718.62 0 0.098

s.precip 0.13 0.001 2517.47 0 0.082

IBD 0.28 0.001 2745.24 0 0.08

p.NDVI 0.09 0.001 2786.52 0 0.076

slope 0.05 0.004 2803.13 0 0.076

RSF �0.06 1.000 3138.81 0 0.069

(b) Models

GD~top MRDM 0.31 0.001

GD~top MRDM│ED 0.23 0.001

GD~ED│top MRDM �0.17 1

GD~RSF 0.26 0.001

GD~RSF│ED �0.06 0.966

GD~ED│RSF 0.11 0.002

*Variables described in Table S1 (open = open land cover class; p. NDVI = peak normalized difference vegetation index; a. precip = mean annual

precipitation; s. precip = mean summer precipitation; Chit. = Chitina River Valley; L. Chit. = Lower Chitina River Valley).
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continuous nature of habitats in this region and relatively

high population abundance (effective population size). Our

landscape genetic results reveal that Dall’s sheep in WRST

can be characterized as having an IBD pattern; however,

landscape resistance played a larger role than IBD in influ-

encing genetic structure of the population. Dall’s sheep

populations in WRST exhibited weaker genetic structure

(lower pairwise population genetic differentiation based on

FST values) compared with populations with fragmented

habitat and that have experienced declines (Luikart and

Allendorf 1996; Valdez and Krausman 1999), suggesting

that connectivity of preferred habitat, even outside of the

breeding season, is relevant to maintaining genetic connec-

tivity across large, montane landscapes. Thus, landscape

characteristics in tandem with landscape configuration

played a role in influencing Dall’s sheep genetic connectiv-

ity.

Our optimization procedure was useful in parameteriz-

ing resistance surfaces, so we could rank landscape features

in terms of influencing genetic connectivity. Accounting

for uncertainty in the resistance values assigned to features

theorized to affect gene flow is a major and evolving topic

in landscape genetics (Spear et al. 2010). The optimization

method has been demonstrated to be beneficial for

identifying landscape features correlated with genetic con-

nectivity, especially when also combined with a model

selection approach (Wasserman et al. 2010; Tucker 2013).

A potential drawback to optimization is a resulting model

that is overfit, and therefore would perform poorly in pre-

dicting gene flow outside of the study area. We attempted

to avoid this problem using a hypothesis-driven framework

for selection of landscape and environmental variables for

which we hypothesized a priori to be of ecological impor-

tance to Dall’s sheep across their range (Anderson and

Burnham 2002; Richardson et al. 2016). This approach is

considered beneficial because ensuing models will have bet-

ter predictive power, which may be tested internally with a

subset of the data, or externally with independent data

(Hand et al. 2016; Richardson et al. 2016). Model testing

presents a fruitful avenue for future landscape genetic anal-

yses of this and other study systems.

Influence of home range and breeding ecology on

distribution

Similar to many vagile species, Dall’s sheep commonly

occupy different seasonal ranges, and selection of habitats

during those time periods could reflect different ecological

processes. Summer is the prime time of the year for north-

ern ungulates to maximize their nutritional condition, and

the late fall breeding season is when males and females

interact, remaining highly sexually segregated for the

remainder of the year (Geist 1971). It is, therefore, not sur-

prising that different habitat features are important during

different seasons. Rugged terrain was important in the

summer habitat model, illustrating that alpine ungulates

rely on escape terrain for predator avoidance, which is par-

ticularly important for females with offspring (Geist 1971).

When groups intermingle during the prerut and rut sea-

sons (October – early December), Dall’s sheep distribution

is likely influenced by availability of wind-blown areas free

of snow, due to ease of movement and access to forage.

Seasonal ranges of Dall’s sheep are interrelated as the

winter range is generally a contracted portion of the sum-

mer range (Hoefs and Cowan 1979), and thus, distribution

during the breeding season is influenced by the general

availability of habitat during the summer. Indeed, habitat

selection models showed that Dall’s sheep appear to be

selecting areas within their annual range representing

favorable conditions throughout the year (Appendix S1).

Sheep have strong fidelity to seasonal ranges (Geist 1971),

and although it is uncommon for sheep to make large

movements or to permanently disperse, those that do may

be more likely to travel across expanses of gentle topogra-

phy between areas of rugged terrain that they inhabit for

most of the year. A small number of such dispersers would

be sufficient to account for levels of gene flow observed in

Figure 3 The inverse of predicted values for Dall’s sheep summer

resource selection functions (A), and the best resistance surface based

on genetic data (B), Wrangell-St. Elias National Park and Preserve,

Alaska.
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this region (Roffler et al. 2014), and our resistance model

for gene flow reflects this longer-term process and habitat

types that promote functional connectivity.

Differences in home range and breeding ecology high-

light the influence of other factors on the distribution of

wildlife species throughout the year. For example, resis-

tance surfaces based on summer RSFs predicted genetic

relatedness in Alaskan mountain goats (Oreamnos ameri-

canus) better than habitat models reflecting the period of

the rut (Shafer et al. 2012). Differences were attributed to

social behavior patterns of ungulates during breeding sea-

son, when habitat becomes less important to males than

ensuring mating opportunities. Male mountain goats are

known to make movements between female groups during

the breeding season (Festa-Bianchet and Côt�e 2008), and

during this window of time, the habitat features important

on a daily basis such as food and escape terrain may have a

lower priority.

Indeed, high-quality habitat for survival and reproduc-

tion does not necessarily translate to high-quality dispersal

habitat. Species may be capable of dispersal through low-

quality seasonal habitat with high resistance values based

on indices of habitat suitability (Chetkiewicz and Boyce

2009; Creech et al. 2014). For example, a decrease in habi-

tat suitability did not equate to higher landscape resistance

measured by slower movement rates of cougars (Puma con-

color; Dickson et al. 2005) or a decreased gene flow in

capercaillie (Tetrao urogallus; Braunisch et al. 2010). More-

over, habitat use patterns within an organisms’ home range

will not necessarily reflect how landscape features influence

dispersal and migration as demonstrated for bobcats (Lynx

rufus; Reding et al. 2013), American marten (Martes ameri-

cana; Wasserman et al.2010), and roe deer (Capreolus

capreolus; Coulon et al. 2004). These studies underscore

that movement behavior and resource use should not be

confounded (Zeller et al. 2012)

Management and conservation implications

Maintaining functional connectivity in species is vital for

sustaining demographic and genetic processes and thus is

important for long-term population viability (Hanski and

Gilpin 1997; Rudnick et al. 2012). More accurate parame-

terization of landscape genetics models will enable identifi-

cation of important areas of habitat and population

connectivity that are vital to maintaining gene flow, hence

making it possible to target specific areas for conservation.

It is especially critical to understand how connectivity

could be impacted by landscape and climate change, and

the implications for persistence of natural populations.

Determining whether habitat characteristics that con-

tribute to higher resistance to movement and gene flow are

primarily biotic or abiotic will have significance for

designing models to predict the effects of climate change

on the geographic range and connectivity of natural popu-

lations, and the responses of populations to environmental

and landscape spatial heterogeneity over time (Rudnick

et al. 2012). Here, we show that landscape components that

are important for maintaining genetic connectivity among

Dall’s sheep are a combination of biotic (open habitats,

peak NDVI) and abiotic (slope, elevation, precipitation)

variables. Likewise, the best RSF model revealed biotic

(open habitats, peak NDVI) and abiotic (slope, rugged ter-

rain, elevation, precipitation) variables as the most

explanatory for resource selection. Most abiotic variables

are static in nature, and thus, the topographic component

of sheep habitat will not be altered due to climate change.

In particular, rugged terrain played a large role in predict-

ing the probability of sheep habitat use and slope in pre-

dicting gene flow. Therefore, changes in climate patterns

will likely have a relatively small effect on connectivity

between populations of sheep based on these habitat types,

which is favorable for long-term persistence.

While it is not exactly clear how habitat distributions

and configurations will shift over time as a result of chang-

ing climates, vegetation succession, and other ecological

processes predictions based on climate models indicate a

shift from open vegetation classes in alpine ecosystems to

an upward expansion in shrub communities both in eleva-

tion and in latitude (Myers-Smith et al. 2011). Thus, the

biotic covariates included in the habitat and landscape

genetics models such as open-canopy vegetation may

change over time. An increase in extent of woody shrubs

could result in reduction and fragmentation of low-eleva-

tion open habitat. Glaciers and persistent snow and ice at

higher elevations are simultaneously receding, permitting

an upward elevation shift in open vegetation, but will rep-

resent smaller habitat gains than is lost at low elevations.

Hence, the overall amount of habitat loss or gain will

depend on the rate of change of each habitat attribute.

These predicted outcomes highlight that the effects of

changing climate conditions on Dall’s sheep and other

northern ungulates will be complex, varying across spatial

and temporal scales.

Alpine species may be particularly susceptible if changing

climates result in a loss of functional connectivity and

increasing isolation in high-elevation habitats. Predicting

the effects of landscape change on gene flow is an impor-

tant planning tool, but modeling efforts must take into

account different ecological functions reflected in seasonal

habitat selection and long-term effective dispersal. Consid-

eration of landscape factors which influence both can help

ensure that resources are managed to meet the survival

needs of a species and to allow for long-term connectivity,

essential to effective conservation and management strate-

gies for wildlife populations.
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