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The highly infective coronavirus disease 19 (COVID-19) is caused by a novel strain of coron-
aviruses – the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) – discovered
in December 2019 in the city of Wuhan (Hubei Province, China). Remarkably, COVID-19 has
rapidly spread across all continents and turned into a public health emergency, which was
ultimately declared as a pandemic by the World Health Organization (WHO) in early 2020.
SARS-CoV-2 presents similar aspects to other members of the coronavirus family, mainly
regarding its genome, protein structure and intracellular mechanisms, that may translate
into mild (or even asymptomatic) to severe infectious conditions. Although the mechanistic
features underlying the COVID-19 progression have not been fully clarified, current evidence
have suggested that SARS-CoV-2 may primarily behave as other β-coronavirus members.
To better understand the development and transmission of COVID-19, unveiling the signal-
ing pathways that may be impacted by SARS-CoV-2 infection, at the molecular and cellular
levels, is of crucial importance. In this review, we present the main aspects related to the
origin, classification, etiology and clinical impact of SARS-CoV-2. Specifically, here we de-
scribe the potential mechanisms of cellular interaction and signaling pathways, elicited by
functional receptors, in major targeted tissues/organs from the respiratory, gastrointestinal
(GI), cardiovascular, renal, and nervous systems. Furthermore, the potential involvement of
these signaling pathways in evoking the onset and progression of COVID-19 symptoms
in these organ systems are presently discussed. A brief description of future perspectives
related to potential COVID-19 treatments is also highlighted.

The new coronavirus disease 19: SARS-CoV-2
Origin, classification, transmission and clinical features
Coronaviruses (CoVs), a family of viruses identified in humans in late 1960s [1,2], are considered relevant
pathogens that can infect a broad range of hosts, such as bats, rodents, civets, livestock and arabian camels
[3]. In humans, CoV infection may result into mild to severe cases conditions that impact the respira-
tory, gastrointestinal (GI) and/or central nervous system (CNS) systems [3–5]. Taking into consideration
their genomic and phylogenetic features, CoVs are single-stranded positive-sense RNA viruses, largely
enveloped in a lipid bilayer, that belong to the Corovaviridae family (Coronavirinae subfamily, Nidovi-
rales order). This virus family consists of four genera (α-, β-, γ- and δ-coronavirus), among of which
only α-coronaviruses and β-coronaviruses are capable of infecting mammals [3,5–12].
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For the last two centuries, no other severe acute respiratory syndrome (SARS) caused by the other six de-
scribed human coronaviruses [13], such as SARS-CoV [6,14] and Middle-East respiratory syndrome coron-
avirus (MERS-CoV) [7,15], has affected world population in such an unprecedented manner as the most recent
β-coronavirus SARS-CoV-2 [9,12,16,17].

First named as 2019 novel coronavirus (2019-nCoV), SARS-CoV-2 was discovered in December 2019 in Wuhan
(capital of Hubei Province, China), acting as an unknown pneumonia-causing agent. It has been credited that
SARS-CoV-2 originated from zoonotic transfer of bat coronaviruses, possibly through animals in this location
[9,12,18–20]. Since then, the coronavirus disease 19 (COVID-19) has rapidly spread across all continents, becom-
ing a public health emergency (pandemic) as announced by World Health Organization (WHO) in early 2020 [21].

Possible routes of SARS-CoV-2 viral transmission include direct and contact transmissions, such as human to
human interaction by droplet inhalation and/or contact with oral/nasal membranes, as well as nosocomial contami-
nation [11,22]. The main COVID-19 symptoms are fever and cough, but other conditions such as anosmia, cardiovas-
cular and GI disorders have been increasingly reported, thus suggesting the presence of multiple targets of infection
outside the respiratory tract [9,11,23]. Moreover, COVID-19 has been reported to be particularly more severe in pa-
tients with comorbidities unrelated to the respiratory tract, such as hypertension, diabetes and cardiovascular disease
[24–27].

Current literature have presented evidence for the potential ability of SARS-CoV-2 to primarily behave as other
coronavirus members, such as SARS-CoV and MERS-CoV, to further induce distinct human conditions, but the
mechanisms underlying the development of COVID-19 have been poorly elucidated. Therefore, unveiling the signal-
ing pathways elicited (or repressed) upon entry of SARS-CoV-2 into host cells can provide a better knowledge about
COVID-19 and also direct to potential pharmacological targets that may counterbalance some of the crucial patho-
logical marks due to this new coronavirus. In this review, we explore the current knowledge of SARS-CoV-2 infection
and transmission, focusing on the main aspects of cellular signaling pathways that are impacted by SARS-CoV-2 in
targeted organ systems.

Mechanisms of cellular interaction by angiotensin-converting enzyme 2
Similar to other β-coronaviruses, SARS-CoV-2 is mainly composed by four compartments with distinct roles in
the viral replication: membrane spike glycoprotein (S), membrane (M), envelope (E) and nucleocapsid (N) [5].
Additionally, SARS-CoV-2 present biological features that resemble other β-coronaviruses class members, espe-
cially SARS-CoV, such as genome, protein structure, infection mechanisms [mainly involving the interaction with
angiotensin-converting enzyme 2 (ACE2)] and tissue tropism [8,16,20,28,29].

The angiotensin-converting enzyme (ACE) homolog metallopeptidase ACE2 is widely expressed in the human
body, including renal, lymphoid and cardiovascular tissues as well as gastroinstestinal (duodenum, jejunum, ileum,
cecum and colon), respiratory and central nervous systems [30]. Hamming et al. (2004) have determined the distri-
bution of ACE2 protein by immunohistochemistry, which corroborated previous mRNA expression data. Moreover,
relevant immunolabeling identified ACE2 protein in alveolar epithelium cells and capillary endothelium of the lungs,
small intestine epithelia, blood vessels and capillaries of the skin, brain endothelium and renal glomerular epithelium
[31]. According to studies that elucidated (i) the synthesis of ACE2, (ii) the detection of ACE2 in organs targeted
by SARS-CoV-2 and (iii) the mechanisms associating ACE2 with the invasion/replication of coronaviruses, it has
demonstrated that ACE2 serves as a functional receptor of SARS-CoV and, particularly, SARS-CoV-2 (Figure 1)
[20,24,28,31,32].

The cellular entry of SARS-CoV-2 is mediated by a high affinity binding of the spike (S) protein to ACE2 and
the processing of transmembrane serine protease 2 (TMPRSS2) in the host cell surface to allow spike (S) priming
[28]. Taking into consideration the high similarity between SARS-CoV and SARS-CoV-2, in regard to sequence
conservation and structure of glycoproteins (Walls et al. 2020; Hoffmann et al. 2020,) and that SARS-CoV leads
to the down-regulation of ACE2 [33], a recent study has suggested that this particular interaction may also occur in
COVID-19 [34], thus promoting membrane fusion and SARS-CoV-2 entry into host cells. Hence, the co-expression
of TMPRSSs and ACE2 is a key factor that determines the entry of SARS-CoV-2 into host cells [16,28,35]. Still, com-
pared with SARS-CoV, it has been showed that the spike (S) protein from the SARS-CoV-2 binds to ACE2 with
∼ten-fold higher affinity, which can facilitate virus invasion in the cells and enable its spread to a variety of tissues
[36].

Interestingly, single cell transcriptomics has also shown that ACE2 expression is highly correlated with the ex-
pression of alanyl aminopeptidase (ANPEP) and dipeptidyl peptidase-4 (DPP4), known receptors for other human
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Figure 1. Putative tissues/organs infected by SARS-CoV-2 and related COVID-19 symptoms

(1) Viral entry depends on the binding of spike (S) viral envelope protein to ACE2 in the host cell surface. TMPRSS2, together with

other proteinases, processes S protein and allows viral endocytosis [28]. (2) The digestive system, heart, kidneys, respiratory system

and peripheral neurons are tissues/cells where SARS-CoV-2 might infect, generating different symptoms observable in COVID-19

patients [31,32,90,142,196,250–252]. (3) Upon tissue infection, neurons that innervate those tissues could potentially be invaded

by SARS-CoV-2 and infect the CNS by trans-synaptic route exchange (via peripheral nerves), thus promoting an interneuronal

transfer of SARS-CoV-2, similar to other coronaviruses [183,184]. Nevertheless, other potential routes for CNS infection have also

been hypothesized [166,176].

CoVs [37–39]. This result suggests that these peptidases may act as co-receptors or auxiliary SARS-CoV-2 recep-
tors [40]. Furthermore, the identification of the transmembrane glycoprotein CD147 [41] as well as the presence of
furin-like cleavage sites in the spike (S) protein (absent for other SARS-CoVs) [42] might be associated to viral–host
mechanisms of invasion and pathogenicity of COVID-19.

ACE2 is a key enzyme in the Renin–Angiotensin system (RAS) which plays a physiological role in regulating
renal–cardiovascular systems and the innate immunity [43,44]. In the RAS pathway, renin produced in the kidneys
cleaves Angiotensinogen from the liver, producing Angiotensin (Ang)-I. The latter is cleaved by ACE into Ang-II
(the substrate of ACE2) which binds to the Angiotensin II type 1 receptor (AT1R) and Angiotensin II type 2 receptor
(AT2R) [44,45]. Due to its relationship with ACE2, the RAS system appears to have a central role in SARS-CoV-2
infection (Figure 2).

ACE2 is up-regulated via interferon (IFN)-mediated gene expression [46], whereas SARS-CoV-2 induces ACE2
down-regulation in multiple tissues [35]. Even though it might seem beneficial, ACE2 inhibition leads to a more ex-
tensive conversion of Ang-I into Ang-II via ACE, which then binds to ATR1 receptors to further promote vascular per-
meability by JAK/STAT signaling pathway [47–49]. ACE2 is capable of converting Ang-I into angiotensin-(1-7), that
binds Mas receptors and leads to anti-fibrotic and anti-inflammatory effects in endothelial cells [49]. Moreover, IL-6,
IL-1β and IFN-γ have also been reported to inhibit ACE2 expression, thus changing the balance of Ang-2/Ang-(1-7)
in favor of inflammation and vascular permeability [33,50].

Cytokine storm and activation of signaling pathways after SARS-CoV-2
infection
A number of cytokines, including IL-6, IL-1β, tumor necrosis factor α (TNF-α) and IFN-γ, have been frequently re-
ported to be elevated in COVID-19 [9,51]. A putative systemic outcome due to this effect is known as cytokine release
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Figure 2. Canonical ACE2 pathway links multiple organ damage in COVID-19

SARS-CoV-2 infection down-regulates ACE2 expression and leads to the production of pro-inflammatory mediators, such as IL-6

[35]. Angiotensin-I (Ang-I) is converted into Ang-II by the ACE in the extracellular space. ACE2 is able to further cleave Ang-II to

Ang(1-7), which binds MasR receptors on the cell surface and promotes anti-inflammatory, vasodilation and anti-fibrotic effects

[35]. Since ACE2 is down-regulated during viral infection, this event will lead to the accumulation of Ang-II and binding to AT1R

receptors on cellular membrane. AT1R signals through JAK-STAT and induces fibrosis, pro-inflammatory gene expression and

vasoconstriction [48,251]. Multiple organs express ACE2 and are target for SARS-CoV-2. As they lose ACE2-mediated protection,

Ang-II signaling contributes to the pathological findings observed in COVID-19 patients, such as disseminated coagulopathy and

acute tissue damage [91].

syndrome (CRS), also called ‘cytokine storm’. CRS is believed to be a major cause of tissue damage in the pathophysi-
ology of COVID-19 [52]. CRS is characterized by an overactive immune response that results in an excessive systemic
increase in pro-inflammatory cytokines in response to external stimuli, autoimmune disease(s) and/or tumorigene-
sis [53]. CRS is a two-step process where the primary response is characterized by the activation of innate immunity
following viral infection in epithelial cells. Epithelial, innate immune and endothelial cells release several cytokines
to block the viral replication, while effector cells are recruited to remove infected cells. A secondary cytokine cascade
is induced downstream by the sustained release of primary cytokines or by immune cell signaling [54]. IL-6, the most
important CRS causative cytokine [55], was found to be increased in the serum of COVID-19 patients presenting
acute respiratory distress syndrome (ARDS) [56].

SARS-CoV-2 and the elicited cytokine storm activate distinct signaling pathways in infected cells/tissues. These
cascades are important for the disease development and, therefore, may serve as potential therapeutic targets (Figure
3). Certain cytokines whose levels are elevated in COVID-19 patients (i.e. IL-6, IL-1β and IFN-γ), are important ac-
tivators of the Janus kinase (JAK)/signal transducer of activators of transcription (STAT) JAK/STAT pathway and also
able to induce NF-kB signaling [57]. In particular, it has been shown that IL-6 may induce the expression of Ang-II,
which, in turn, also promotes the expression of IL-6 itself via JAK/STAT, creating a degenerative feedback loop [58].
JAK/STAT participates in the quick transmission of extracellular signals from cytokines, IFNs, colony-stimulating
factors and hormones, promoting changes in gene expression via STAT-related transcription factors [59]. Four JAKs
(JAK1/2/3 and TYK2) and seven STATs (STAT1/2/3/4/5a/5b/6) have been noted to impact this pathway, resulting
in differential biological outcomes. Upon receptor binding, JAK proteins are cross-phosphorylated and then recruit
STAT proteins, which will be further phosphorylated. Upon phosphorylation, STATs dimerize and translocate to the
nucleus, where they bind to specific DNA sequences and regulate gene expression [59].
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Figure 3. Signaling pathways involved in COVID-19 pathophysiology

Toll-like receptors (TLRs) 3 and TLR 7/8 recognize SARS-CoV-2 RNA and initiate the inflammatory cascade via type I and type II

IFN gene expression and NF-κB nuclear translocation [98,107]. Via NF-κB, the expression of multiple pro-inflammatory genes is

stimulated, including pro-IL-1β, pro-IL-18, TNF and IL-6 [62–64]. The virus is also recognized by cytoplasmic NLRP3, which forms,

together with ASC and caspase-1 (Casp-1), the inflammasome complex that will cleave and release mature forms of IL-1β and

IL-18 [122]. The cytokines IL-1β, IL-18 and TNF bind to specific receptors and promote further NF-κB nuclear translocation and

phosphorylation of p38 MAPK, which will lead to great expression of pro-inflammatory cytokines and chemokines [69,135]. IL-6, an

important player in COVID-19, binds IL-6R and gp130 receptors to activate JAK/STAT-3 pathway and then contribute to the CRS

observed in COVID-19 patients [88].

The nuclear factor-κB (NF-κB) family of transcription factors is responsible for a major overlay of inflammatory
signaling, thus enhancing the gene expression of multiple molecules that are also elicited by SARS-CoV-2 infection
[60,61]. Canonically, the pathway is triggered upon binding of ligands or antigens to cytokines receptors, toll-like
receptors (TLRs) or T-cell receptors [62]. Sequential phosphorylation events lead to the phosphorylation of IKKα
and IKKβ, which are crucial kinases involved in the phosphorylation of inhibitory IκB protein which is bound to
p50 and p65 NF-κB subunits. Phosphorylation of IκB tags this protein to ubiquination and proteasomal degradation,
thus releasing p50/p65 dimers to translocate into the nucleus and then bind to specific enhancer regions that mediate
the expression of κB-responsive genes [62–66].

Another intracellular signaling pathway, involving mitogen-activated protein kinases (MAPKs), plays a series of
roles in cell differentiation, proliferation and death in response to distinct environmental stimuli. In mammals,
MAPKs are involved in three major families: (i) the extracellular signal-regulated kinases (ERKs), (ii) the Jun
amino-terminal kinases (JNKs) and (iii) p38 MAPKs, also known as stress-activated protein kinases (SAPKs) [67].
Among them, the p38s have already been described to be involved in SARS-CoV infection and, therefore, suggested
as putative targets for COVID-19 treatment [68,69].

The p38 MAPK pathway is largely induced by pro-inflammatory factors and environmental stresses, which promi-
nently impact a subset of physiological events, such as immune response, as well as inflammatory processes [70].
Four variants of the p38 family (α, β, γ and δ) have been identified so far [71–74]. These protein variants present
distinct patterns of expression in cells/tissues, where p38α and p38β are ubiquitous while p38γ and p38δ are more
tissue-specific [75]. The p38 MAPK pathway consists of three main core protein kinases that act sequentially, thus
providing the specificity and diversity inherent to this signaling cascade [70,76]. This pathway may be activated by a
variety of extracellular stimulus including cellular stress, G-coupled protein receptors (GPCRs), growth factors, in-
flammatory cytokines, TGFβ and IL-1 [67]. In the canonical pathway, the main activators of MAP3K are (i) the apop-
tosis signal-regulating kinase (ASK), (ii) the dual-leucine-zipper-bearing kinase (DLK), (iii) the MAPK/ERK kinase

© 2020 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons
Attribution License 4.0 (CC BY-NC-ND).

2141



Clinical Science (2020) 134 2137–2160
https://doi.org/10.1042/CS20200904

kinase (MEKK), (iv) the mixed-lineage kinase 3 (MLK3) and (v) the TGF (transforming growth factor) β-activated
kinase 1 (TAK1) [70,77]. MAP3Ks are phosphorylated and then directly activate MAP2Ks. MKK3 and MKK6 are the
most common MAP2Ks responsible by activating p38 MAPKs, although MKK3 is not able to activate p38β [76–79].

Functionally, p38 can phosphorylate other protein kinases, such as MAP kinase activated protein kinase 2 (MK2),
as well as transcription factors (ATF1/2/6) and p53. In addition, p38 can regulate the transcription of genes encoding
a number of cytokines and cell surface receptors [80–82]. It has also been described that p38 may function into the
post-transcriptional regulation of inflammatory cytokines as well as in TNF-α and IL-1β translation [75,83,84]. In
this sense, activation of p38 pathway is fundamental to increase the yields of pro-inflammatory cytokines, such as
IL-6, TNF-α and IL-1β, which seem to play major roles in the cytokine storm produced by SARS-CoV-2 infection
[61,75]. Importantly, a cross-talk activation of NF-κB signaling is mediated by p38 MAPKs, which might potentiate
the production of pro-inflammatory cytokines [85].

In regard to antiviral defense, IL-6 secretion can disturb viral clearance and prolong infection via induction of
Th2 polarization and inhibition of Th1 CD4+ lymphocytes differentiation, thus impairing IFN-mediated antiviral
immunity [86]. IL-6 is also capable of inducing SOCS-1 expression via STAT3, which impairs STAT1 phosphoryla-
tion and, ultimately, decreases IFN-γ levels [86,87]. IL-6 binds to IL-6R and gp130 in both T helper 1 (Th1) CD4+

lymphocytes and NK cells in the lungs. Upon receptor binding, JAKs are recruited and phosphorylated to further
induce STAT-mediated transcription, leading to a prominent release of pro-inflammatory mediators [87]. IL-6 also
acts non-canonically by modulating a myriad of signaling cascades, ranging from MAPK to Notch pathways [88].
Taken together, we strongly believe that understanding the multitude of signaling routes affected by viral infections,
in a cell/tissue-specific manner, can be crucial for the comprehension of the pathobiology as well as the therapeutics
for COVID-19.

Major organ systems affected by SARS-CoV-2
Considering that ACE2 has been identified in the lungs, intestines, cardiovascular tissues, brain and kidneys [30],
these organs have been coincidentally targeted by SARS-CoV-2 to further activate intracellular signaling pathways
leading to CRS. Accordingly, symptoms related to all these systems have been reported in COVID-19 patients [9].

Respiratory system
The main clinical complication due to COVID-19, which also leads to a high fatality rate and affects ∼42% of the pa-
tients, refers to the ARDS [11]. ARDS is an aggressive lung condition (devoid of cardiovascular causes) which is char-
acterized by a ratio of partial pressure arterial oxygen versus the fraction of inspired oxygen (PaO2/FiO2 ratio) lower
than 300 mm Hg [89]. COVID-19 patients affected by ARDS develop a severe form of this condition (i.e. PaO2/FiO2
ratio < 100 mmHg) in 18.9% of the cases [90]. The main characteristics of ARDS include (i) severe pulmonary edema
due to increased vascular permeability and plasma leakage, and (ii) severe hypoxemia as a result of poor gas exchange
in the alveoli [89]. Pathophysiological features include (i) the infiltration and aberrantly enrichment of active immune
cells (especially neutrophils and mononuclear cells) and platelets, leading to a hyperinflammatory state (generating
vascular permeability and diffuse alveolar damage) and (ii) hypercoagulation, resulting in disseminated microvas-
cular coagulation [11,46,89,91]. In COVID-19-associated ARDS, the cytokine storm consisting of high serum levels
of IL-1β, TNF and IL-6 is possibly responsible by severe plasma leakage, vascular permeability and disseminated
coagulation and thrombosis [9,57].

The expression of the metallopeptidase ACE2, the main entry receptor of SARS-CoV-2 in airway epithelial cells, is
quite noticeable. In fact, expression of ACE2 can be detected in large and small bronchial epithelial cells, goblet/club
cells, alveolar type II cells and pulmonary endothelial cells [31,90,92,93]. These observations apparently put the lungs
as a main target system for SARS-CoV-2 infection.

According to human tests and animal models, the protective effects of ACE2 in lung diseases have been charac-
terized in chronic obstructive pulmonary disease (COPD) [94] and asthma, [95,96]. In this context, the imbalance
between ACE/ACE2 appears to favor inflammation and airway remodeling [49]. Therefore, a direct inhibition of
ACE2 must be sought with caution due to the potential side effects that may arise from increased Ang-2 levels.

The immune resident and epithelial cells of the lung are the logical first cells to encounter SARS-CoV-2 and, as
such, dictate the proliferation rate of the virus and the initiation of the inflammatory cascade. These cell types express
molecules capable of recognizing pathogen-associated molecular patterns (PAMPs), such as TLR 3 and TLR 7/8, that
can recognize viral nucleic acids and signal downstream to induce the expression of type I IFN genes [97,98]. TLR 3
and TLR7/8 overlay their activation through the adaptor proteins TRIF and MyD88, which lead the recruitment and
nuclear import of IFN regulatory factors (IRFs) 3/7 [99,100]. IRFs 3/7 act as transcription factors to induce expression
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Figure 4. Possible mechanisms that explain viral persistence and disease severity

(1) Upon viral infection, cells increase the secretion of IL-6, which will paracrinally induce the expression of SOCS-1 via STAT-3

transcription factors [88]. (2) SOCS-1 hampers IFN antiviral signaling, via STAT-1 DE phosphorylation. The inhibition of expression of

IFN genes leads to poor antiviral defense, and, as a consequence, reduced T-bet transcription, leading to defective Th1 polarization

of CD4+ T cells [86,87,110,253]. (3) Upon viral entry, p38 is phosphorylated and, thereafter, perform downstream phosphorylation

of target transcription factors, such as CREB, ATF-1 and AP-1. This effect leads to increased inflammatory gene expression and

pro-survival gene expression, which may prolong the viral permanence in the infected cell [136]. (4) Upon recognition of viral

particles and LPS from bacteria, TLR4-mediated signaling may lead to increased deleterious inflammation via NF-kB recruitment

and p38 phosphorylation [105,106]. TLR4 polymorphism might explain the differential susceptibility to ARDS in COVID-19 patients

[106].

of IFNs (subtypes α, β and γ), which are major inducers of antiviral response, thus paracrinally acting by receptors
that recruit JAKs and STAT1/2 [99]. The recruitment of TRIF and MyD88 by TLR 3 and TLR 7/8 also activates TRAF6
and TAK1, which results in downstream activation of the IKK complex, further phosphorylation and degradation of
IκB and, finally, enabling NF-kB nuclear translocation [101].

The great importance of NF-κB toward pro-inflammatory gene expression, particularly in the lungs, is highlighted
in a number of studies exploring models of coronavirus infection [102,103]. In mice infected with SARS-CoV, the
pharmacological inhibition of NF-kB can drive higher survival rates as well as reduced expression of TNF-α, CCL2
and CXCL2 in the lungs [104]. The NF-κB activation in Calu-3 human bronchial epithelial cells, in response to SARS
infection, can mediate an antiviral gene response after 48 h post infection, as indicated by the up-regulation of IFN
genes and pro-inflammatory cytokines and chemokines, including IL-6, IL-8 and TNF-α [103].

The relevance of TLRs to stimulate inflammation in the lungs has been well established [98,100]. During acute
lung injury, the presence of TLR4 in macrophages acts as a key factor mediating the severity of the inflammation as
well as tissue damage [105]. TLR4 polymorphisms have been also correlated to poor ARDS prognosis [106]. Many
viruses, such as influenza and rhinoviruses, rely on strategies to silently surpass TLR-based warning signal in the
airway epithelium, via inhibition of proteins such as RIG-1 and MDA5, components of TLR4 signaling and IRF-3,
to drive IFN production [97]. Interestingly, TLR3 or TL4 knockout (KO) mice are more susceptible to SARS-CoV
infection, while TRIF KO mice present greatly exacerbated inflammatory influx [107]. The lack of TRIF hampers IFN
expression and leads to clinical features that largely resemble severe ARDS patients [107].

Even though TLRs are crucial for correct viral defense, the constitutive TLR signaling, particularly due to TLR4
[108], might contribute to an excessive inflammation in COVID-19-associated ARDS (Figure 4). Studies involving
Ebola virus-like particles have shown that TLR4 also impairs protective antiviral cytokine production in fibroblasts
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via suppressor of cytokine signaling 3 (SOCS3), and could be involved in the disease initiation [109]. TLR4 polymor-
phism and dysregulation of associated pathway, could be potentially correlated with COVID-19-mediated suppres-
sion of IFN antiviral response in severe patients [110] and then contribute to excessive lung inflammation at later
stages.

Lung epithelial cells, fibroblasts and alveolar macrophages may respond to SARS-CoV infection via
NF-κB-mediated transcription of IL-6, IL-8 and TNF [111–113]. Cytokines that are commonly elevated in COVID-19
(such as TNF and IL-1β) can activate NF-κB-mediated gene expression in immune, bronchial epithelial and other
lung cells [114]. Therefore, a selective inhibition of NF-κB signaling may serve as an alternate approach to halt exces-
sive inflammation in the respiratory tract. The use of non-steroidal anti-inflammatory drugs or synthetic corticoids
in COVID-19 treatment is still under debate, since NF-kB inhibition must be taken with caution, due to its vital role
to elicit antiviral related gene expression [115]. Moreover, IL-6 may have pleiotropic effects since it can act differently
in several aspects of lung-related diseases. Upon signaling via STAT3, IL-6 has been shown to initiate and potentiate
the severity of inflammatory influx in the lungs in murine models of acute lung injury [116–118].

In a double-hit acute lung injury model, IL-6−/− mice have displayed reduced inflammatory influx in the bron-
choalveolar lavage but a higher protein concentration, suggesting that vascular leakage is potentially enhanced by
IL-6 depletion. This effect could be attributed to the interaction of IL-6 with other molecules in vivo, since in vitro
studies have indicated that IL-6 alone may increase permeability of endothelial cell cultures [119]. IL-6 levels are typ-
ically elevated in COPD and asthma, so it is thought that IL-6 may play a role in the evolution of these pathologies
[120]. Upon further data validation, IL-6 and STAT3 could serve as promising therapeutic options for preventing the
progressive severity of COVID-19-associated ARDS.

NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) is an intracellular protein that mainly serves as
danger-associated molecular patterns (DAMPs) and PAMPs sensor, sensing the environment for molecules that could
indicate peril and mechanistically assembling a complex with other proteins to form inflammasomes [121]. The
NLRP3 inflammasome formation is comprised of two steps: 1) priming via NF-kB or IRFs to induce production
of NLRP3 itself, as well as pro-IL-1β and pro-IL-18 and, 2) upon sensing danger-related molecules (for instance,
ATP, reactive oxygen species or Ca+2), NLRP3 binds to ASC and caspase-1, thus cleaving IL-1β and IL-18 to their
mature forms and contributing to the initiation of the inflammatory response [121].

The activation of NLRP3 inflammasome and the resulting production of pro-inflammatory molecules are key fac-
tors involved in the suppression of viral infections. NLRP3 can be assembled in response to PAMPs from viruses [122].
IL-1β can induce the production of IFNs and antiviral factors by activating IRF1/STAT1 signaling in fibroblasts and
endothelial cells [123], thus representing an important helper for virus elimination from the lungs. In vitro studies
have shown that the SARS-CoV open read frame (ORF) 8b is capable of activating NLPR3 inflammasomes. How-
ever, ORF8b may also promote cellular endoplasmic reticulum (ER) stress and induction of autophagy in epithelial
cells as well as pyroptosis-mediated cell death in macrophages [124]. Additionally, SARS ORF3a, which is critical for
SARS-CoV virulence, may also activate NLRP3 complex via ubiquitination of ASC, mediated by TRAF3 [125]. Of
note, this virus contains a SARS-unique domain (SUD) which is essential for the events of cytokine storm and lung
injury mediated by SARS [126]. SUD has been also detected in MERS-CoV and SARS-CoV-2. In SARS-CoV, it has
been demonstrated that SUD can also trigger NLRP3 production and lung inflammation by inducing CXCL10 [127].
Altogether, a controlled approach to modulate NLPR3 levels and activity could be used as a potential target against
ARDS in COVID-19 patients.

The deleterious role of MAPKs, especially due to the phosphorylation and activation of p38 and JNK, has been
demonstrated in different models of lung injury [128–130], as well as in human idiopathic pulmonary fibrosis [131]
and lung inflammation [132]. Indeed, ERK, JNK and p38 are involved in several aspects of COPD progression, in-
cluding mucus overproduction, immune infiltration, fibrosis and airway inflammation and remodeling [133,134].
Thus, pharmacological targeting of MAPKs in ARDS, particularly p38, could also be a promising approach, since
this kinase plays major roles in the up-regulation of various inflammatory-related molecules such as TNF, ICAM-1,
COX2 and TLR4 [135].

In vitro studies, using VERO E6 cells, have also demonstrated a pivotal role of MAPKs in the regulation of
SARS-CoV infection. In this context, p38 phosphorylation can potentially lead to downstream cascades and gene
expression that modulate cell death but also the persistence of viral infection [136]. Down-regulation of STAT3 levels
and recruitment of anti-apoptotic transcription factors (i.e. CREB and ATF-1) could induce cells to lower antiviral re-
sponse and then allow viral replication [137]. Nevertheless, the pro-inflammatory effects of p38 in cells that compose
the lung tissue cannot be ruled out.
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GI system
As observed in SARS and MERS diseases, the GI tract may also be infected by SARS-CoV-2, thus leading to digestive
symptoms such as diarrhea, loss of appetite, vomiting, nausea and abdominal pain [138–141]. The number of patients
showing any of these symptoms vary, ranging up to 35% patients afflicted by diarrhea in different populations in China
[140,142]. Nevertheless, GI manifestations seem to be less prevalent in COVID-19 than SARS and MERS [140].

Regardless of any GI symptoms [143], SARS-CoV-2 has been found in stool specimens and anal/rectal swab of
infected patients [142,144–146]. Hence, the possibility of fecal–oral transmission has been largely discussed, with no
definite conclusions so far [142,147]. Interestingly, stool samples have been tested positive for viral RNA even after its
extinction in the respiratory tract [142], thus indicating that patients should be possibly tested for rectal swabs before
discharge in order to retain any potential transmission of the disease [147]. This characteristic also raises attention to
the poor sanitary conditions in which some populations may be living, which could facilitate the spread of the virus
through contact with feces and/or virus dispersion in the air, albeit this topic is still very controversial [147–149].

Another point of discussion refers to the entrance of virus into the GI system. Some studies have suggested that
SARS-CoV-2 may reach the small bowel by mucociliary clearance from the airways, which would allow the patient
to ‘swallow’ the viruses [150,151]. On the other hand, the GI tract could act as the first entrance of SARS-CoV-2
in the human body, especially that many patients may present GI manifestations even before developing respiratory
symptoms [140,151,152]. Moreover, it has been assumed that the consumption of animal food from a public market
at Wuhan, was responsible by the appearance of the first case of COVID-19 in China [24]. In this case, the GI tract
could be the first point of entrance for SARS-CoV-2 [34], although this hypothesis has not been proved yet.

The systemic inflammatory response promoted by SARS-CoV-2 invasion (i.e. cytokine storm) may directly or
indirectly damage the digestive system and its resident microbiota, which could synergistically act with the viremia
to promote respective symptoms [153]. Considering that the intestine is also the largest immune-related organ in
the body, an inflammatory response elicited by coronaviruses is definitely relevant for this organ. Besides promoting
cellular damage, SARS-CoV-2 may promote changes in the composition and function of the digestive flora which,
at certain level, also impacts the respiratory tract by unbalancing the immune system in the airways mucosa. This
relationship, recognized as the gut–lung axis, may help explain the progression and outcome of the digestive and
respiratory symptoms in some COVID-19 patients [153,154].

The GI tract highly expresses the ACE2 receptor, which is fundamental for the internalization of the virus through
the host cellular membrane. ACE2 is expressed in GI compartments where viral nucleocapsid proteins have also
been located, which include the glandular cells of gastric, duodenal and rectal epithelia [142]. Furthermore, furin, a
serine protease that acts similar to TMPRSS2 by unbounding S1 and S2 domains of the viral spike (S), is abundant
in the small intestine enabling coronavirus infection [151]. In the luminal surface of intestinal epithelial cells, ACE2
is associated with the neutral amino acid transporter B0AT1, which is necessary for the amino acid traffic in the cell
[155]. Since SARS-CoV-2 engages ACE2 as an entry viral receptor, it might also interact with B0AT1 and then affect
the amino acid transportation in the gut [156].

Tryptophan is an essential amino acid required for the production of niacinamide, also known as vitamin B3 or
niacin [102]. According to experiments in vivo, it has been shown that ACE2 deficiency may lead to a substantial
decrease in tryptophan levels due to the inhibition of B0AT1 activity, which also results in an exacerbated inactivation
of mammalian target of rapamycin (mTOR) pathway in the gut [156,157]. The mTOR is considered the main target
of the PI3K-Akt pathway, acting through the formation of complexes mTORC1 and mTORC2. Usually, mTOR is
involved in monitoring nutrient and energy availability in the cell, promoting cell growth, proliferation and survival
as well as protein synthesis and transcription [158]. In the small intestine, mTOR pathway induces the antimicrobial
peptide expression, which is essential to regulate a series of functions of the gut microbiota. An altered microbiota
makes the intestine more prone to inflammation, eventually inducing cellular lesions, diarrhea and colitis [156]. The
reduced expression of ACE2 and B0AT1 in the intestine due to virus invasion, leading to low tryptophan availability,
represents a possible mechanism of how SARS-CoV-2 could lead to digestive symptoms in COVID-19 patients [151].

It has also been suggested that the co-infection of the GI tract and the CNS might be responsible for some of
the digestive manifestations. Pathological events including changes in the microbiota content, gut inflammation, and
alterations in the gut immune response (upon infection) could all trigger changes in the gut–brain axis and, therefore,
lead to symptoms such as nausea, dizziness and anorexia by affecting brain areas that regulate these functions [159].
Furthermore, the peripheral lymphatic system present in the GI tract may communicate to the lymphatic system in
the brain, thus enabling potential CNS infections [160,161]. Nevertheless, the mechanisms involved in most of these
SARS-CoV2-mediated events are still speculative, so more detailed research is required to help better understanding
the temporal and prognostic profiles of COVID-19.

© 2020 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons
Attribution License 4.0 (CC BY-NC-ND).

2145



Clinical Science (2020) 134 2137–2160
https://doi.org/10.1042/CS20200904

Nervous system
Patients tested positive for COVID-19 present clinical respiratory symptoms related to viral infection, which include
fever, cough and myalgia [9]. Consistent with other coronaviruses (SARS-CoV and MERS-CoV), SARS-CoV-2 has
also been associated to particular neurological manifestations [27,162]. Symptoms affecting both peripheral (PNS)
and CNS, nervous systems have been reported in ∼36% of COVID-19 patients, such as headache, acute cerebral
diseases, impaired consciousness, seizure, smell/taste impairment, muscle injury and neuralgia [27,163,164].

Although mechanistic analyses are still in progress, current literature strongly suggests the potential ability of coro-
naviruses to reach brain-related tissues and cause neurological damage [165]. However, an interesting aspect that
remains controversial is the presence of SARS-CoV-2 in the cerebrospinal fluid (CSF) of patients developing neuro-
logical symptoms, such as encephalitis/meningitis. Since some studies have reported the absence of virus in the CSF
while others have fully detected it, some concerns have been raised about any direct neuroinvasive potential of the
novel coronavirus, as also described for SARS-CoV and MERS-CoV [165–169]. Some authors have suggested that
the lack of SARS-CoV-2 in the CSF of COVID-19 patients could be mainly related to (i) the low sensitivity of the
techniques available, (ii) the reduced viral levels or (iii) clearance of SARS-CoV-2 in the CSF compartment [170].
Based on these current findings, further studies are still necessary to better elucidate this detection of SARS-CoV-2
in the CSF, especially in large cohorts of positive COVID-19 individuals.

According to the mechanisms of how other respiratory viruses as well as coronaviruses may affect the CNS, the-
ories have been proposed to better explain how SARS-CoV-2 may reach the CNS and thus lead to brain damage.
Baig et al. (2020) have described that SARS-CoV-2 may reach the CNS via bloodstream passing into the cerebral
circulation, reaching the cerebral capillary endothelium which expresses ACE2 [31]. The interaction between spike
(S) protein with the vascular ACE2 may lead to the release of virus particles by damaging the endothelial cells of the
blood–brain barrier [171]. This effect promotes the viral entry and the consequent activation of ACE2 receptors also
expressed in neurons, thus leading to local inflammation and demyelination [27,166,171]. Additionally, virus-driven
demyelination in the CNS has been described in several viral infections, including coronaviruses, in humans and
animal models [172–175]. Moreover, it has been also described that the hematogenous route provides the ability of
respiratory viruses to contaminate leukocytes and then promote the viral dissemination to the brain, whereas some
viruses may use peripheral nerves to get access to the CNS [171,176].

Other possibility that might explain the CNS contamination due to SARS-CoV-2 regards the neuronal retrograde
route, which is associated with the virus penetration upon nasal infection (using cribiform plate and olfactory bulb as
entry routes) [166,171,176]. Nasal infection may primarily lead to damage of the olfactory epithelium, which expresses
both ACE2 and TRPMSS2 [166,171,177–179]. The consequent damage on the olfactory endothelium is part of the
clinical symptoms presented by COVID-19 patients, particularly related to the PNS, such as anosmia or hyposmia
[27,166].

The third route that could promote the entry of SARS-CoV-2 virus into the brain regarding the glymphatic system,
a physiological route located in the CNS that shows perivascular tunnels consisting of astroglial cells, connected to the
cervical and olfactory lymphatic vessels, that enable the waste elimination and promote the wide distribution of several
compounds in the brain [10,160,176]. Moreover, brain damage may occur upon disturbance of the drainage system
due to viral infection, thus leading to the entrance of viruses into the CSF [176,180]. Interestingly, some positive
COVID-19 patients have been reported to present paranasal sinusitis with the presence of lymph endothelial cells
infected by SARS-CoV-2 [181,182]. This particular cell infection appears to be associated with the potential ability
to infect by coronaviruses.

Among the theories suggested for viral neuroinvasion (neuronal retrograde/hematogenous/glymplatic routes), the
one regarding synapse-connected route is also related to the trans-synaptic exchange of coronavirus particles from pe-
ripheral nerves (innervating infected target-tissues), by which the interneuronal transfer of SARS-CoV-2 may occur,
that in turn could reach and cause dysfunction of relevant homeostatic brainstem centers, as observed in COVID-19
[183,184].

Considering the presence of neurological manifestations (as described in previous studies), the indicative of brain
injury in postmortem analysis [185] and the controversial aspects of SARS-CoV-2 detection in CSF, a recent study
has presented neurochemical evidence of brain injury in severe positive COVID-19 patients [186]. By using two
classical blood-based biomarkers for CNS injury, the glial fibrillary acidic protein (GFAp) and neurofilament light
chain (NfL), it has been shown that moderate/severe COVID-19 patients present significantly higher plasma levels
of both biomarkers [186]. Despite the limitations (including further data validation), these data suggest the existence
of astrocytic activation/damage at the beginning of the disease (initial response/higher levels of GFAp), as well as
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neuronal damage at later stages of a severe condition (illness progression/higher levels of NfL) in COVID-19 patients
[186].

Nevertheless, despite the current advances in elucidating the mechanisms of SARS-CoV-2 invasion, the clini-
cal symptoms regarding nervous system and their similarity to the other members of the β-coronaviruses, little is
known about the nervous system signaling pathways affected in COVID-19. Based on the similarity with SARS-CoV,
SARS-CoV-2 can also promote ACE2 down-regulation due to the damage caused upon virus entry into the host cells
[35]. Some recent work has shown that decreased Angiotensin 1-7 levels (caused by loss activity of ACE2 in the con-
version of Ang-II into Ang 1-7) necessary to stimulate Mas receptor to further regulate p38 MAPK signaling pathway,
can promote increased tissue inflammation [69]. Since RAS has a relevant role in the regulation of brain homeostasis
functions, such as modulation of water balance and blood pressure [187], the possible increase in Ang-II levels may
be related to the development of severe cases presenting neurological manifestations (i.e. encephalitis and meningi-
tis), as well as in cardiac and lung injuries in some severe COVID-19 patients [27,69,171]. Moreover, some additional
evidence has indicated that the up-regulation of p38 MAPK may promote the virus cycle due to its relationship with
endocytic mechanisms [69,187]. In addition, since some COVID-19 patients also present apoptosis of endothelial
cells, these biological effects might be related to the elevated activity of MAPK signaling [69,180].

With regard to acute cerebral diseases, such as ischemic stroke and cerebral hemorrhage, which are detected in
positive COVID-19 patients [27], ACE2 may also play an important role, since has been associated with damage
along the brain endothelium (vascular injury) [171]. Moreover, COVID-19 patients with neurological manifestations
may develop immunosuppression and elevated levels of D-dimer (a marker for venous thromboembolism) which are
associated with a poor prognosis [27,188]. Interesting, patients with severe COVID-19 may also present a prominent
increase in cytokine release (hypercytokinemia) [9,189] that, in the context of the nervous system, can potentially
compromise its homeostasis [61]. This resulting cytokine environment has been previously reported in other systems
affected by viral diseases. Additional studies will be necessary to validate this hypothesis and to further elucidate the
putative mechanisms of disease progression in the context of the nervous system.

In addition to the neurological manifestations described for the CNS, the PNS also appears to be affected by
COVID-19, since patients have presented smell and/or taste impairments, as well as complications due to the large
amount of cytokines released systemically in the face of infection. Koralnik and Tyler [190] described that COVID-19
positive patients developed Guillain–Barre syndrome (GBS) after the onset of viral infection, as an immune mediated
complication of SARS-CoV-2. In addition, electrophysiological studies performed in these GSB/COVID-19 patients
have indicated a pattern compatible with demyelination process and axonal neuropathy, even without any positive
detection of SARS-CoV-2 by RT-PCR in the CSF [191]. Despite the low cohort patients analyzed in this study, the
authors highlight the necessity of better epidemiological data and further associations between immune diseases and
COVID-19, which can promote a better understanding regarding possible pathogenic mechanisms and therapies
[190].

Cardiovascular system
ACE2 is highly expressed in the cardiovascular (CV) system tissues, possibly playing a major role in the regulation of
the ACE2-Ang (1-7) signaling in proliferation, inflammation, vascular fibrosis and remodeling [44,192]. In healthy
subjects, the levels of ACE2 in the plasma are very low, in contrast with the high levels found in the plasma of CV
disease patients [193,194]. Thus, the CV system can be also affected by SARS-CoV-2 infection and, as such, it may
potentially be a key for illness severity. In fact, patients with CV conditions have presented a case fatality rate of 10.5%,
which is higher than the the overall COVID-19 cases (i.e. fatality rate of 2.3%) [195].

According to a clinical study that included 138 patients from Wuhan area, myocardial injury was identified in
∼7.2% of patients hospitalized and in 22% of patients requiring intensive care [152]. Troponin, a major regulatory
protein complex involved in muscle contraction, is typically released during myocardial damage, so the detection of
troponin levels in the serum have served as a sensitive and specific test for the diagnosis of CV diseases. According to
a report from the National Health Commission of China, ∼12% of patients hospitalized due to COVID-19, without
history of CV diseases, have presented elevated troponin levels and a high incidence of cardiac arrest during hospi-
talization, indicating that not only CV diseases could be a risk factor for COVID-19 but the presence of SARS-CoV-2
could also promote myocardial injury [196].

The impact of the CV diseases in severe COVID-19 patients has been clearly demonstrated by a recent study that
compared non-surviving and surviving COVID-19 patients [180], in which 52% of the deceased patients presented
heart failure, whereas only 12% of the survivors presented the same symptoms. Furthermore, 59% of the non-survival
cases (versus only 1% of the survivors) were affected by cardiac injury. Another study has shown that out of 68 patients
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who died from COVID-19, 13 had previous CV diseases while none of the 82 patients who survived presented a
history of CV condition [197].

Despite the evidence, it is still unclear why cardiovascular diseases are so prevalent among the fatalities from
COVID-19. One potential explanation relates to the ACE-mediated infection of cardiomyocytes, pericytes and fi-
broblasts, thus leading into myocardial injury (Hendren et al. 2020). Another hypothesis considers the impact of
cytokine storm, triggered by an imbalanced response of T-helper cells and elevated levels of intracellular calcium,
which can also promote extensive damage to myocardial cells [180,196].

According to the evaluation of 150 COVID-19 cases identified in Wuhan, the troponin levels in the serum of
non-surviving patients were higher than in patients who recovered from the disease. Moreover, the levels of myo-
globin, C-reactive protein, serum ferritin and IL-6 were also elevated in these cases, suggesting the presence of a
high inflammatory process, such as CRS [197]. Furthermore, plaque rupture, ischemia or vasospasm have also been
considered as potential causes of CV disease induced by a COVID-19 inflammatory response. Stress cardiomyopa-
thy can also be triggered by a pro-inflammatory state, which is favored during SARS-Cov-2 infection [198]. In such
cases, it is still challenging to infer whether the cytokine storm derived from the inflammatory processes may induce
myocarditis-related cardiac events (as a response from SARS-CoV-2 infection) or if these pathological conditions are
being exacerbated by a pre-existing CV disease.

Patients with CV disease appear to show elevated levels of certain cytokines, such as TNF-α and IL-6. An in vitro
study, utilizing human coronary endothelial cells, has shown that the activation of Ang-II and ACE2 can decrease
the induction of ICAM-1 by TNF-α. Despite the fact that further research in vivo still needs to be assessed, this
mechanism could be useful as a target toward the treatment of COVID-19 and CV disease patients, since it would
potentially alleviate an inflammatory response [199].

Most of the regulatory events involved in CV systems, including the rate and force of myocardial contraction,
cardiac hypertrophy and arterial resistance, are impacted by G-protein coupled receptors [200]. More specifically,
Ang-II, endothelin-1 and adrenergic receptors are capable of coordinating the regulation of vascular tone, heart rate
and contractility in cardiac myocytes, vascular smooth muscle cells (VSMCs) and endothelial cells. At the same time,
these receptors are also responsible for some pathological changes, such as excessive cardiac hypertrophy, atheroscle-
rosis and hypertension [201]. In cardiovascular cells, ERK1/2 pathway has been linked to the release of vasoactive
molecules from the endothelium [202] as well as to the contraction of VSMC in resistance vessels [203]. In the case
of endothelial cells, ERK1/2 phosphorylates an isoform of the effector molecule PLA2, which triggers a cascade that
generates a range of prostaglandins, including prostacyclin (PGI2). PGI2 is a vasodilator molecule that inhibits VSMC
proliferation and platelet reactivity [201]. Hence, the disruption of this pathway could lead to a subset of CV disorders,
including thrombosis, hypertension and atherosclerosis.

Another significant pathway which plays a role in CV diseases involves the p38 MAPKs. In cardiac tissue, p38
is expressed is several isoforms possessing different functions [204]. For instance, the activation of p38α induces
apoptosis in cardiac cells while the p38β activation induces cardiomyocyte hypertrophy [205]. Also some CV alter-
ations, such as ischemia and reperfusion, may distinctively impact this pathway, by activating p38α and inhibiting
p38β, according to in vitro studies [206]. The JAK/STAT pathway has also an important role in cardiac myocytes.
Evidence shows that the levels of phosphorylated JAK and STAT3 are associated with myocarditis and some types of
cardiopathy [207].

There has been a growing concern that the use of ACE inhibitors and/or angiotensin receptor blockers by patients
with CV-related pathologies could increase the expression of ACE2 and then elevate the patient susceptibility to
SARS-CoV-2 infection and propagation [208]. However, no clear clinical or scientific evidence of this effect has been
established. In fact, a number of arguments have been raised in regard to the use and cessation of these drugs during
COVID-19 treatment in these patients. Thus, given the lack of evidence of their benefit (or harm) for therapeutic
use in COVID-19, physicians should properly access patients’ concerns and evaluate their medical history in other
to keep or suspend the prescription for COVID-19 patients with CV conditions [198].

Renal system
The kidneys have also been indicated as major targets of SARS-CoV-2 infection. Although an early study has not
identified any cases of acute kidney injury (AKI) in a cohort of 116 COVID-19 patients from Wuhan area [209], clin-
ical reports have largely supported the association of SARS-CoV-2 infection with kidney conditions. According to a
large study including 701 COVID-19 patients, the most frequent finding related to kidney dysfunction was mild to
moderate proteinuria (43.9%), possibly due to the disruption of glomerular filtration, while 26.7% of patients exhib-
ited hematuria [210]. Interestingly, a retrospective study has shown that AKI was predominantly found in critically ill
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patients [211]. Another report focusing on 113 non-surviving COVID-19 patients pointed out that AKI was highly
associated with increased mortality [212]. Another study that reviewed records from 13 academic and community
hospitals in metropolitan New York, found that AKI was reported in 36.6% of the admitted COVID-19 patients, par-
ticularly in patients with respiratory failure who required mechanical ventilation (89% of the cases) [213]. Advanced
age and vascular dysfunction (CV disease and/or hypertension) were considered risk factors for AKI in the analyzed
population [213]. Autopsy findings have demonstrated prominent acute proximal tubular injury, peritubular erythro-
cyte aggregation and glomerular fibrin thrombi in the kidneys of Chinese COVID-19 patients [214]. Interestingly,
66% of these patients lacked clinical evidence of AKI, highlighting the possibility of some subclinical kidney injury
[214,215].

Several pathophysiological mechanisms have been proposed for the renal injuries observed in COVID-19, includ-
ing organ-crosstalk and systemic-wide effects. The lung–kidney cross-talk linking alveolar and tubular damage has
been previously described in ARDS, which may also be happening in the context of SARS-CoV-2 infection [216]. Ac-
cording to a retrospective study including 357 patients, AKI has been shown to be secondary to pneumonia in 68% of
ARDS patients [216]. The damage in the lung–kidney axis may be bidirectional, as shown by the association of IL-6
cytokine released in the serum due to injured renal tubular epithelium with higher alveolar-capillary permeability and
pulmonary hemorrhage [217]. Similarly, a heart–kidney cross-talk may also be considered as a contributor of AKI in
COVID-19 patients, since cardiomyopathy and acute viral myocarditis can equally contribute to renal hypoperfusion,
thus leading to a reduction in the glomerular filtration rate [218].

Systemic effects such as CRS have also been proposed for the etiology of AKI [218]. As previously mentioned, sus-
tained elevation of pro-inflammatory cytokines, like IL-6, IL-1β and TNF-α, in the circulation can induce extensive
endothelial dysfunction and disseminated intravascular coagulation, ultimately leading to multiple organ dysfunc-
tion syndrome (MODS) [219]. This condition can be directly responsible for renal damage. In fact, TNF-α has been
demonstrated to bind directly to TNF receptor-1 in renal tubular cells, triggering apoptosis [220]. Moreover, IL-6
has been extensively reported to be associated with the onset and severity of AKI in patients and animal models,
including ischemic AKI, nephrotoxin-induced AKI and sepsis-induced AKI, promoting renal injury via binding to
sIL6R and downstream signaling though STAT3 in tubular epithelial cells [221]. IL-6 also induces microcirculation
dysfunction and renal vascular permeability, while signaling for further cytokine secretion (IL-6, IL-8 and MCP-1)
by renal endothelial cells via the Protein Kinase C pathway [222]. It is worth considering that in a study with 1099
COVID-19 patients, septic shock was present in 6.4% of severe cases [223], raising the possibility that, for a subset
of patients, intrarenal inflammation may be partially responsible for the association of AKI to more severe cases of
COVID-19 [224].

While systemic effects leading to elevated cytokine release may play a role in the kidney damage, direct
SARS-CoV-2 infection has also been shown to be an important underlying cause of renal injury. Direct evidence
of SARS-CoV-2 infection in the renal system has been provided by autopsy reports identifying virus particles and
vacuoles characteristic of SARS-CoV-2 in the proximal tubular epithelium and podocytes, using electron microscopy
[214,225]. These reports support a direct pathophysiological mechanism for the kidney damage due to COVID-19,
following SARS-CoV-2 entry via ACE2 receptor [9]. A large transcriptomic study, using single-cell RNA sequenc-
ing in 15 normal kidney samples, has indicated a co-localization of ACE2 and TMPRSS genes in 19 individual cell
types. The highest co-localization was observed in podocytes and proximal straight tubule cells, corroborating pre-
vious clinical and histological findings [226]. Moreover, direct infection of SARS-CoV-2 via ACE2 has been demon-
strated in kidney-derived monkey cells (VERO) and kidney organoids derived from human embryonic stem cells
[227]. Notably, these organoids exhibited distinct tubular-like structures [detected by Lotus Tetraglobus lectin (LTL),
a marker of proximal tubular epithelial cells] as well as podocyte cells highly expressing ACE2. Importantly, direct
ACE2 binding to SARS-CoV-2 has been demonstrated by blocking viral infection with human recombinant soluble
ACE2 (hrsACE2), providing evidence that ACE2 blockers may act as a viable treatment during the early stages of the
disease [227].

In the context of therapeutics, some research groups have postulated that extracorporeal therapies for cytokine
removal from the blood may be a viable option to manage CRS and prevent kidney failure [218]. In fact, diverse
number of methods (e.g. direct hemoperfusion using a neutro-macroporous, sorbent renal replacement therapy,
coupled-plasma filtration adsorption) has focused on the extracorporeal blood filtration to remove the excess of
pro-inflammatory cytokines, especially to avoid AKI in the critically ill patients [55,218].
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Figure 5. Potential drug candidates for COVID-19 treatment

(1) Commercially available angiotensin-II receptor antagonists, such as losartan and derivates, could act by mitigating the delete-

rious effects of AT1R activation in COVID-19 [229]. Activation of such signaling cascade results in RAS up-regulation and leads to

pro-inflammatory and pro-fibrotic effects in infected tissues [43–45]. (2) Blockage of RAS can prevent tissue damage in COVID-19

patients [229]. (3) The use of ACE inhibitors may also contribute to decrease of the response of RAS system [229]. (4) Inhibitors

of serine protease such as TMPRSS2 may prevent the cleavage of S1 and S2 domains in the viral spike (S) protein, decreasing

the ability of SARS-CoV-2 to infect cells [28]. Interleukin-6 (IL-6) is one of the major cytokines involved in COVID-19 progression,

which leads to CRS and tissue damage due to severe inflammation [51]. The use of commercially available molecules, such as

the monoclonal antibody against the IL-6 receptor, (5) Tocilizumab [242] and (6) Baricitinib [246,247], an inhibitor of the JAK/STAT

pathway, can halt inflammation and mitigate deleterious effects related to IL-6. (7) Upon viral entry and denudation, viral RNA is

released and translated into immature precursor proteins by the host ribosome machinery. These precursor proteins are processed

by viral proteases and then form the mature replication complex RNA-dependent RNA polymerase (RdRp), which enables viral

RNA replication. Part of the expanded RNA is translated into structural proteins, such as envelope, spike and nucleocapsid that

will form and release novel virions [232,233]. The specific RdRp mediated RNA replication can be inhibited by selective drugs, such

as Remdesivir [235] and Favipiravir [239], rendering the virus unable to propagate and, consequently, halting the infection.

Future perspectives regarding COVID-19 treatment
No effective treatment for COVID-19 has been discovered so far. However, some significant efforts have been pursued
to find successful strategies that may control the spread of the pandemic. In this context, several clinical trials are
currently in progress [228]. In regard to potential treatments for SARS-CoV-2 infection, interfering at some specific
steps related the disease progression may be a common place for therapeutic intervention (Figure 5).

At first, an appropriate strategy could involve the blockage of the virus to interact with and invade host cells. Reg-
ulating molecules along the ACE2 pathway seems a promising approach, where RAS inhibitors have been proposed
to prevent CRS as well as the release of pro-inflammatory cytokines [229]. Currently, most of the proposed drugs for
COVID-19 treatment are (i) ACE inhibitors, (ii) blockers of Angiotensin II production, and (iii) blockers/antagonists
of AT1R (Angiotensin II target) such as Losartan and derivatives [229]. Interestingly, a non-canonical axis of the
renin–angiotensin pathway has been recently described, suggesting physiological roles for the metabolic products
of angiotensin I and II (angiotensin 1-7 and angiotensin 1-9, respectively), after ACE2 cleavage [45]. This signaling
axis also comprises ACE2, AT2R, the proto-oncogene Mas receptor and the Mas-related G protein-coupled receptor
member D (MRGPRD). These molecules counteract the effects of the classical renin-angiotensin system, thus acting
as putative therapeutic targets to regulate the increased activation of RAS in COVID-19 [229].
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Another possibility relates to the development of decoy ACE2 receptors for virus attachment, thus abrogating pu-
tative tissue invasion. A recombinant form of human ACE2 has already been developed and underwent clinical trial,
with promising results against ARDS [230]. Attempts to introduce point mutations in human ACE2 by Crispr-Cas9
system have also been pursued to weaken virus-ACE2 interaction, but related results still require peer-review [231].
Blocking the activity of specific serine proteases (for instance, TMPRSS and furin), which may promote the cleavage
of S1 and S2 domains in the viral spike (S) protein, could serve as an alternate route to prevent virus invasion and also
decrease NF-κB activation [28].

Remdesivir, a nucleotide analog that acts as RNA polymerase inhibitor, is capable of diminishing viral RNA syn-
thesis [232,233], particularly against SARS-CoV-2, and in vivo efficacy in animal models against the MERS-CoV
coronavirus. As a result, this drug has undergone clinical trials showing promising results [234–237]. According to
one double-blind, randomized, placebo-controlled trial, which encompassed a total of 1063 mild COVID-19 patients,
Remdesivir provided very positive effects by shortening the time to recovery [238]. Favipiravir is another example of
potential drug that can also inhibit viral replication in COVID-19 [239,240].

Other therapeutic approaches have also proposed the management of CRS [241]. The humanized anti-IL-6 mon-
oclonal antibody Tocilizumab has been empirically used in patients with severe COVID-19. Tocilizumab binds both
mIL-6R (membrane bound receptor for IL-6) and sIL-6R (soluble receptor for IL-6), inhibiting both JAK-STAT
and MAPK/NF-κB-IL-6 signaling pathways, which potentially prevent CRS-induced organ damage [242]. However,
Tocilizumab has also been shown to induce liver injury in, at least, one COVID-19 patient [243].

JAK inhibition has also been considered as a potential therapeutic approach for COVID-19, since a variety of
molecules (known to be elevated in COVID-19 patients) signal JAK/STAT pathways. Thus, JAK inhibitors have been
readily available and clinically validated [244,245]. Baricitinib is an inhibitor of JAK pathway which is currently used
for rheumatoid arthritis. Likewise, this drug is under clinical trial in COVID-19 since it may potentially reduce the
cytokine storm in infected tissues, particularly the lungs [59,246,247]. Nevertheless, concerns have arisen due to
potential side effects of such upstream inhibition, considering that JAK1 and JAK2 are activated by several molecules
and result in multiple biological outcomes, which might prevent the immune system to fight against virus invasion
[245,248].

Hence, a relative range of pharmacological approaches have been suggested [249]. Meanwhile, the development
of safe and effective drugs and treatments, including vaccination, has been time-consuming while the pandemic has
continuously progressed.

Conclusions
COVID-19 pandemic has brought health and economic impact to the modern society as never before. Globally,
people have suffered the consequences of the disease itself or from the prolonged social isolation established to con-
tain a chaotic SARS-CoV-2 spread. Therefore, understanding how this novel coronavirus interacts with cells in the
body as well as its effect in distinct body systems is mandatory to help humanity pursue new treatments. Increasing
amount of data have been generated in a daily basis, bringing advances in understanding the mechanisms of viral
invasion/replication, potential for virulence, tropism and relevance in several tissues affected by SARS-CoV-2. So
far, it has been possible to identify a virus-mediated activation of some major signaling pathways, such as NF-κB,
JAK-STAT and p38, which potentially elicit the cytokine storm event that appears to be the major cause of tissue
injuries. Accordingly, the use of drugs capable of inhibiting viral replication or decreasing the CRS, such as Remde-
sivir and Tocilizumab respectively, seems to be promising approach. Nevertheless, although our comprehension of
viral nature, infection and symptoms have rapidly evolved, the scientific community still has a lot to unravel from
COVID-19 biology. Importantly, the rapidness to produce and analyze new data and treatments should not incur in
precipitated or wrong conclusions, which could not only compromise the continuous advance of COVID-19 studies
but also put the credibility of science per se in check.
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