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Abstract: Antibodies play an increasingly important role in both basic research and the 

pharmaceutical industry. Since their efficiency depends, in ultimate analysis, on their 

atomic interactions with an antigen, studying such interactions is important to understand 

how they function and, in the long run, to design new molecules with desired properties. 

Computational docking, the process of predicting the conformation of a complex from its 

separated components, is emerging as a fast and affordable technique for the structural 

characterization of antibody-antigen complexes. In this manuscript, we first describe the 

different computational strategies for the modeling of antibodies and docking of their 

complexes, and then predict the binding of two antibodies to the stalk region of influenza 

hemagglutinin, an important pharmaceutical target. The purpose is two-fold: on a general 

note, we want to illustrate the advantages and pitfalls of computational docking with a 

practical example, using different approaches and comparing the results to known 

experimental structures. On a more specific note, we want to assess if docking can be 

successful in characterizing the binding to the same influenza epitope of other antibodies 

with unknown structure, which has practical relevance for pharmaceutical and biological 

research. The paper clearly shows that some of the computational docking predictions can 

be very accurate, but the algorithm often fails to discriminate them from inaccurate 
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solutions. It is of paramount importance, therefore, to use rapidly obtained experimental 

data to validate the computational results. 

Keywords: antibody modeling; computational docking; influenza; hemagglutinin; 

antibody-antigen complexes 

 

1. Introduction 

Individuals that recover from the attack of a pathogen have antibodies (Abs) capable of detecting 

and neutralizing the same pathogen in a future encounter, usually conferring life-long protection from 

it. Detection and neutralization are initiated by the binding of these antibodies to antigens, often 

surface proteins, through specific atomic interactions between the antibody and the region of the 

antigen (Ag) that it recognizes (epitope). A better understanding of these interactions is expected to 

accelerate vaccine development, since most current vaccines are based on the generation of 

neutralizing antibody responses. If we understand the structural rules governing Ab-Ag interactions in 

a given virus, for instance, then we have the molecular basis to attempt to design and synthesize new 

epitopes to be used as vaccines, optimize the antibodies themselves for passive immunization or design 

new drugs mimicking the antibodies or their effect. 

In addition to pharmaceutical development, antibodies play an increasingly relevant role in basic 

research and industrial processes, where they are starting to be used as recognition elements sensitive 

to the presence of a given antigen. Designing and synthesizing new antibodies with desired properties 

would, therefore, have a profound impact, but we are very far away from being able to do that. Despite 

antibodies having been known and characterized for several decades [1,2], in fact, we still know 

remarkably little about their interactions. Given an antibody structure, for instance, we cannot even 

predict whether it can bind a protein, nucleic acid or sugar, let alone the specific antigen or 

conformational epitope that it recognizes. The study of Ab-Ag complexes should further our 

understanding of the general principles of recognition and, in the long run, gives us the basis for the 

successful design of new molecules or the rational optimization of existing ones. 

The best way to study atomic interaction is to obtain the three-dimensional structure of  

antibody-antigen complexes. Traditionally, this is achieved by experimental techniques like X-ray 

crystallography, an often long and laborious process with high failure rate. Thanks to advances in 

algorithms and processing power, however, we can now use computational techniques for the 

structural characterization of intermolecular complexes. Computational docking—the process of 

predicting the conformation of a complex starting from its separated components—provides a fast and 

inexpensive route to obtain structures, including those which are not suitable for experimental 

determination. Although computational docking is still in its infancy and marred by several limitations, 

there is no doubt that it will become more and more accurate, relevant and widespread in the  

coming years. 

Here we first illustrate the application of computational docking to the study of antibody-antigen 

interactions, and then highlight the strengths and weaknesses of the approach by predicting the binding 

of two different antibodies to hemagglutinin, the surface protein of influenza virus and an important 
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pharmaceutical target. Being able to accurately predict those structures, for which X-ray information is 

available, would strengthen our belief that computational techniques can be used to characterize the 

binding of new antibodies against the same epitope. 

1.1. Computational Docking 

Computational docking, a relatively new and constantly evolving technique, is the process of 

predicting the structure of a multi-molecular complex from the structures of its separated components. 

Its progress has been monitored since 2002 by the ―Critical Assessment of PRediction of Interactions‖ 

project (CAPRI) [3], a comparative evaluation of protein-protein docking algorithms on a set of known 

targets. Here we focus on docking of antibodies to protein antigens, which presents specific challenges 

but also has peculiar features exploitable to ease the calculations. 

In a typical docking protocol, the structures of the antigen and antibody are separated by 

approximately 25 Å and subsequently brought together by the chosen algorithm. The first necessary 

step, therefore, is obtaining the structures of the isolated antigen and antibody. The starting structure 

may be defined as follows:  

(i) ―Bound‖, if it originates from an experimental structure of the complex that needs to be docked. 

This is interesting when developing docking procedures but it is generally not biologically 

attractive, because computational docking is unlikely to add relevant information if an 

experimental structure is already available.  

(ii) ―Unbound‖, if it originates from an experimental structure of the molecule not bound to the 

partner that needs to be docked, i.e., either free or bound to a different partner. This is the most 

common scenario for antigens, especially since the number of available protein structures is 

increasing thanks to several structural genomics efforts. Structures of free antibodies, instead, are 

usually not available, nor they would be particularly useful since Abs are known to drastically 

change conformation upon binding [4].  

(iii) ―Modeled‖, if it has been predicted by homology modeling and/or other computational techniques 

like ab initio predictions or molecular dynamics. A thorough description of homology modeling 

for protein antigens is beyond the scope of this manuscript. Suffice to say that the results are 

remarkably accurate if the target protein has sequence similarity to a protein with known structure 

and that even ab initio predictions are starting to produce accurate results, albeit much less than 

homology modeling [5–7]. Antibody structures can be predicted with remarkable accuracy and 

precision as well; the process is relatively different from standard protein modeling and is covered 

in the next sections.  

1.2. Antibody Structure, Implications for Modeling 

Antibodies are large (~150 kDa), y-shaped molecules containing a so-called Fc region (Fragment, 

Crystallizable, it binds to various cell receptors and mediates a response of the immune system) and 

two Fab regions (Fragment, Antigen Binding). The latter are composed by one heavy and one light 

chain, each with a constant and a variable domain called FV (Figure 1). The FV is the only domain 

responsible for antigen binding and, therefore, the only one that needs to be considered for docking. It 
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is further subdivided in a framework region, highly conserved in both sequence and conformation, and 

six highly variable CDR loops (Complementarity Determining Region), three from each chain and 

often referred to as L1, L2, L3, H1, H2, and H3. 

Figure 1. Schematic (a) and cartoon (b) representation of a full antibody structure. 

Antigens bind to the tip of the VH and VL domains. 

 

Despite their high sequence variability, five of the six loops (all except H3) can assume just a small 

repertoire of main-chain conformations, called ―canonical structures‖ [5–7]. These conformations are 

determined by the length of the loops and by the presence of key residues at specific positions in the 

antibody sequence. The specific pattern of residues that determines each canonical structure forms a 

signature that can be recognized in the sequence of an antibody of unknown structure, allowing 

successful prediction of the canonical structure itself with high accuracy [8,9]. Uncertainties arise in 

the relatively rare cases when a loop is particularly long and/or does not follow canonical structures. 

The H3 loop does not appear to adopt canonical structures, instead, and predicting its conformation 

requires more sophisticated and less accurate approaches. 

The framework regions can also be reliably predicted since known structures with high sequence 

identity are often available. Due to the presence of conserved residues at the interface between the light 

and heavy chain, the relative geometry of these domains is also well preserved [10]. Correct 

assembling of the heavy and light chain is nonetheless critical for the accurate orientation of the 

antigen binding interface and errors may arise in the modeling. 

It is important to note that the rules and templates used for modeling are based on structures of 

antibodies bound to their antigen and are therefore accurate in the context of the bound conformation 

of an antibody. 

1.3. Antibody Modeling Based on Canonical Structures, the PIGS Server 

PIGS (Prediction of ImmunoGlobulin Structure [11]) is a web-based server for the automatic 

prediction of antibody structure [12] based on the canonical structure method [13]. The Web Antibody 

Modelling server, WAM [14], utilizes the same approach but offers less features and is generally less 

convenient to utilize.  
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In the canonical structure method, the sequence of each variable domain (VL and VH) of the 

antibody of unknown structure (target) is independently aligned with the corresponding variable 

domain sequences of all the immunoglobulins of known structure. For this step, standard database 

searching (e.g., BLAST) [15], and multiple sequence alignment (e.g., Clustalw) [16] programs can be 

used, but it is important to verify that residues at key structural positions are correctly aligned. The 

backbone structure of the framework is then modeled using the known structures with highest 

sequence identity as template. The rationale for this is that, in general, the higher the residue identity in 

the core of two proteins the more similar the conformation in this region [8] and, hence, the higher the 

quality of the model. Similarly, the conformation of the CDR loops is predicted using known templates 

with the same canonical loop conformation and high sequence identity. Different combinations of 

templates can be used as illustrated below.  

(i) Best heavy and light chains. Use the chains with highest sequence identity as templates. Since 

they come from different antibodies, the two chains need to be packed together by a least-squares 

fit of the residues conserved at the interface. This may introduce errors in the relative orientation 

of the two chains, with adverse consequences for the accurate modeling of the antigen binding site. 

(ii) Same canonical structures. Use a template whose CDR loops have the same canonical structures 

as the target even if a template with higher sequence identity exists for one or both chains. If 

framework and loops are taken from different templates, then the loops need to be grafted in, 

possibly introducing errors: the residues adjacent to the loop are superimposed to the framework 

by a weighted least-square fit of the main chain. 

(iii) Same antibody. Use the same antibody as template for both heavy and light chain, even if 

templates with higher sequence identity exist. This does not require optimization of the relative 

orientation of the two chains and thus avoids the errors illustrated earlier.  

(iv) Same antibody and canonical structures. The template is an antibody with the same canonical 

structures as the target and it is used to model both framework and the CDR loops. This option 

does not require optimization of framework orientation nor loop grafting and may offer more 

accurate results even if templates with higher sequence identity are available for one of the chains. 

The approach tends to fail, however, if the identity is too low. 

The conformation of five of the six CDR loops can be modeled as described but no canonical  

structure is known for the H3 loop. However, the so-called ―torso‖ region, i.e., the H3 residues closer  

to the framework, can still be predicted by similarity to antibodies sharing the same torso  

conformation [17–19]. The ―head‖ region of H3, instead, follows rules of standard protein hairpins and 

can be predicted by similarity to protein loops (not just antibodies) with high sequence identity, but the 

result is usually less accurate than for other CDR loops. 

The subsequent step consists in the modeling of the side chains conformations. At sites where the 

parent structure and the model have the same amino acid the conformation of the parent structure is 

retained. Otherwise, the side chain conformation is copied from antibodies with high sequence 

similarity or imported from standard rotamer libraries [20]. Finally, the model is refined by a few 

cycles of energy minimization to improve the stereochemistry, especially in those regions where 

segments of structures coming from different immunoglobulins have been joined, but not to 

significantly refine the models.  
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1.4. Antibody Modeling by Rosetta Antibody 

Rosetta Antibody [21] is a homology modeling program to predict antibody FV structures. It uses a 

simple energy function to simultaneously optimize the CDR loop backbone dihedral angles, the 

relative orientation of the light and heavy chains and the side chain conformations. The program can be 

downloaded and run on local computers or modeling requests can be submitted to a web 

server [22,23]. Rosetta Antibody first identifies the antibody templates with highest sequence identity 

for each framework and CDR loops; the loop templates are then grafted onto the framework and  

the full FV is assembled. This crude model is used as input for a second stage: a multi-start,  

Monte-Carlo-plus-minimization algorithm that generates two thousand candidate structures. H3 loop 

conformations are generated by assembling small peptide fragments [24] and sidechains are finally 

optimized via rotamer packing and energy minimization [25]. The CDR backbone torsion angles and 

relative orientation of light and heavy framework are also perturbed and minimized with a  

pseudo-energy function that includes van der Waals energy, orientation-dependent hydrogen 

bonding [26], implicit Gaussian salvation [27], side chain rotamer propensities [28] and a  

low-weighted distance-dependent dielectric electrostatic energy [29]. In the end, a scoring function is 

used to discriminate the 10 best antibody models that are offered as standard result. 

1.5. Other Procedures for Antibody Modeling 

Methods based on canonical structures are generally very effective but somehow limited by the lack 

of structural templates for a few loop conformations. Other methods model the CDR loops using 

templates selected by sequence identity (to other Abs or proteins in general) rather than by the 

presence of key residues as in the canonical structures method [30–32]. Alternative approaches have 

been used to model CDR loops with ab initio methods based on physicochemical principles [33–38], 

which have the advantage of not requiring any template and can thus be applied even if no suitable 

canonical structure is found. Their major limitation is that, due to our poor comprehension of the 

physicochemical principles governing protein structures, the pseudo-energy functions used to evaluate 

the different conformations often fail to distinguish a correct prediction. Another limitation is that 

ab initio methods tend to have higher computational costs than similarity-based approaches. As our 

understanding of protein structure and energy function increases, the combination of the canonical 

structure procedure with other more sophisticated computational approaches may offer improvements. 

1.6. The Docking Calculation 

Having chosen or generated the starting structures for antibody and antigen, the molecules are then 

brought together by the preferred algorithm. Computational docking must face two problems [39]:  

(1) Finding the correct solution, which is usually achieved by changing the relative position of the 

partners and repeating the calculation thousands of times; (2) discriminating the correct solution from 

the inaccurate ones by use of a so-called ―scoring function‖. Simply put, the scoring function rewards 

positive interaction between the docking partners (e.g., the formation of a hydrogen bond) and 

penalizes negative interactions (e.g., steric clashes). The assumption is that the correct biological 

structure is energetically favored and has, therefore, the lowest energy. Scoring functions, also referred 
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to as pseudo-energy, try to simulate this energy by accounting for biophysical considerations such as 

hydrophobic and electrostatic interactions, salt bridges, hydrogen bonds, etc, but also statistical and 

empirical considerations such as the degree of conserved residues at the interface. 

When searching for the correct binding orientation, the two (or more) molecules are allowed to 

move and the score is assessed after each step. Minimization protocols only retain conformations with 

a lower energy (better score) than the previous; other protocols (e.g., Monte-Carlo) may retain 

conformations with higher energy in an attempt to overcome local energy minima that do not 

correspond to the global minimum. The movement is stopped after a predefined number of steps or 

when the score does not improve further. The conformational parameters changed between each step 

vary in different docking algorithms, which may be divided in three general classes as described 

below: (i) only the relative position of the docking partner is changed; (ii) the relative position and  

the sidechain conformations are changed; (iii) the backbone conformation is altered in addition  

to the above. 

In the simplest case, the conformation of the starting structures is not altered at all during the 

docking process and the scoring function only needs to account for the intermolecular 

interactions [40,41]. This is called ―rigid body docking‖ and exploits the fact that biological interfaces 

have highly complementary shapes [42–45]. Needless to say, the approach works best if the starting 

structures are identical to the bound conformation; although this is not too common in biological 

complexes, good results can nonetheless be obtained in several cases. Various research groups have 

used this approach [46–52]; amongst them the program ZDock [53] has achieved good results in the 

CAPRI experiment [54–57]. 

RosettaDock  [58,59] has a first rigid body phase in which sidechains are removed, but in a second 

phase they are re-introduced and their orientation is optimized [60,61]. Since the sidechain 

conformation is dictated mainly by a limited number of allowed torsion angles, the task can be 

completed with reasonable success and limited computational requirements [51]. 

Accurately simulating the backbone movements that often happen upon formation of biological 

complexes remains a daunting task for docking, which has a very high failure rate when molecules 

undergo significant conformational changes upon binding. The degrees of freedom available to protein 

backbone, especially in loop regions, make it extremely difficult to sample and effectively score the 

sheer amount of possible stable conformations. Among the programs that incorporate backbone 

flexibility in the docking [62–64], HADDOCK [65,66] uses a rigid body phase followed by sidechain 

optimization to select the best scoring decoys, and then simulates backbone flexibility on a selected 

number of decoys (200 with the default options) in a final stage. It is not practical to run the final  

stage for all the thousands of initial decoys because of the high computational requirements, although  

this problem will become less significant with increase in computing power. Likewise, a recent  

update to RosettaDock adds the option of backbone minimization to the standard protocol with  

moderate success [58]. 

It is not clear which approach should work best when docking antibody-antigen complexes. It is 

conceivable that in vivo antibodies adapt to and are selected against existing antigen conformations, 

thus it might be tempting to believe that antigens should not experience drastic changes upon antibody 

binding. Rigid body docking might be best in this case, but first of all it is doubtful that proteins are 

not subjected to any conformational motion in solution, not even at the sidechain level, and 
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furthermore, there are examples in which antibodies provoke relatively large allosteric effects on the 

antigen [67]. The issue is slightly different for the antibody, instead: since antibody modeling uses 

bound conformations as templates, the conformational rearrangements experienced by the antibody 

upon binding can be ignored. It should be noted, however, that the canonical structures used for 

antibody modeling describe the backbone but not the sidechain conformations, which are probably best 

explored during the docking run. In conclusion, if one believes that the antibody model is accurate and 

that antigen binding loops are relatively rigid, then it should not be necessary to sample antibody 

backbone flexibility in the docking run. This assumption appears reasonable for the five CDR loops 

following canonical structural rules but it might fail for models of the H3 loop, which may be slightly 

inaccurate and/or might indeed be flexible in the biological context. Conversely, docking methods that 

vary the CDR loops’ conformation might introduce deviations from the canonical structure and 

decrease the accuracy.  

Although it is impossible to draw general rules, using rigid body approaches for the backbone but 

sampling different sidechain conformations might be a reasonable compromise. It might also prove 

useful to allow backbone movement for the H3 loop (and others when they do not follow canonical 

structures) while allowing only sidechain optimization of the remaining antigen binding loops. This 

behavior can also be approximated by generating multiple antibody models, presumably differing 

mainly in the H3 conformation, and using all of them as starting structures to be docked without 

backbone optimization, either as an ensemble [68] or serially. Besides requiring more computational 

time, this approach exacerbates the problem of providing a reliable scoring function: Errors are 

generated both by the inability to correctly assess intermolecular interactions and also by 

intramolecular differences amongst the various starting conformations. 

1.7. Exploiting the Peculiarities of Antibodies to Simplify the Docking Search 

Antibodies have a number of features that can be exploited to improve, speed up and simplify the 

docking search, much like the existence of canonical structures simplifies CDR loop modeling. The 

recently introduced SNUGDOCK [69,70], for instance, is geared towards antibodies and builds upon 

the RosettaDock protocol by adding simultaneous optimization of the antibody-antigen position, CDR 

loops conformation and heavy and light chain relative position. 

More generally, since we know that Abs interact with antigens through their antigen binding loops, 

there is no need to search for possible intermolecular contacts in the rest of the molecule. Typically, 

the antibody is initially positioned with its CDR loops facing the antigen and it is not allowed to 

deviate from this general orientation for the entire docking process. This not only increases the 

calculation speed but also generates much fewer possible models of the bound complex (decoys), 

easing the burden of scoring and analyzing the results. Constraints can also be introduced to reward the 

CDR residues for being at the interface, penalize them if they are not or penalize contacts between the 

rest of the antibody and the antigen. However, particular care must be exercised when introducing 

constraints or bonuses affecting the final score, since it is relatively easy to force an inaccurate solution 

or discard a valid, albeit slightly inaccurate one. For example, residues close to the CDR loops but not 

formally belonging to them can be at relatively close distance to the antigen, therefore rejecting any 

solution involving proximity of non CDR residues to the antigen would be inappropriate. Conversely, 
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in the known experimental structures not every CDR residues interact with the antigen and forcing 

them to do so during docking would be a mistake. 

2. Results and Discussion 

Although an extensive benchmarking of modeling approaches goes beyond the scope of this 

manuscript, we used computational docking to predict the structures of two antibody-antigen 

complexes recently determined by X-ray crystallography, with the aim of illustrating the potentials, 

pitfalls and opportunities of antibody modeling and docking. 

Most of the antibodies capable of neutralizing influenza virus bind to the highly variable ―globular 

head‖ region of hemagglutinin, which covers the viral surface. Due to this variability, however, their 

efficacy is limited to few viral strains and to the narrow timeframe before the virus changes its 

sequence to prevent antibody binding (anti-flu seasonal vaccines are usually changed every four years 

for this reason) [71–74]. Two independent research groups have recently described antibodies against 

the highly conserved ―stalk‖ region of hemagglutinin [75,76]; remarkably, X-ray structures show that 

they bind to an almost identical epitope utilizing very similar intermolecular contacts, for instance 

between aromatic residues of the Ab and a conserved hydrophobic patch on the antigen. Antibodies 

against the stalk have potentially broad reactivity, since the region is conserved in different viral 

strains, and the virus is not likely to develop resistance against them because of its inability to mutate 

that part of the molecule. As a consequence, the stalk is pharmaceutically attractive and generating 

more antibodies targeted against this very region is a worthwhile effort: any computational strategy 

capable of rapidly and reliably characterizing the binding properties of such new antibodies would be a 

valuable research tool. 

2.1. Modeling Antibodies against Influenza Virus Hemagglutinin 

In this work, we used PIGS and the Rosetta Antibody server to predict the structure of antibody F10 

(PDB code 3FKU) and CR6261 (PDB code 3GBM) [75,76], results are summarized in Table 1 and 

cartoon representations of antibodies are shown in Figure 2. The ―same antibody and canonical 

structure‖ approach (see description in Section 1.3) of the PIGS server is expected to offer the best 

results, but no viable template with high sequence identity is available. When the ―same antibody‖ 

method is chosen, PIGS returns accurate results: the RMSD to the experimental structure is about 1 Å 

for CR6261, either for the whole antibody or individual loops, and 1.3 Å for F10. Choosing the 

individual chains with highest identity as templates (―best heavy and light chains‖ approach described 

above) brings the RMSD of CR6261 to 1.7 Å, still accurate but somehow less precise than before. 

Curiously, the most problematic loop is H2 and not H3 as it usually happens. Finally, the ―same 

canonical structures‖ approach yields the worst model, with RMSD of 2.1 Å (2.4 Å in the least 

accurate loops). In the case of F10, the last two approaches return models with unacceptable steric 

clashes and highly unusual features that are consequently discarded, while choosing templates with 

lower sequence identity gives results worse than the ―same antibody‖ option and not further analyzed. 

Even if no benchmarking is available, the authors’ recommendation to use the ―same antibody‖ 

approach is in agreement with our general experience and with these particular antibodies. 
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In contrast to PIGS, Rosetta Antibody does not offer a choice of different modeling methods but, 

starting from the same templates, returns 10 different models for each target antibody. We refer to 

them as PIGS or Rosetta1-10 according to the modeling program used and to their relative score,  

i.e., Rosetta1 is the best scoring model, Rosetta2 the second best scoring and so forth. The best models 

for CR6261 (e.g., Rosetta2 and Rosetta5 in Table 1) are as accurate as those predicted by PIGS, with 

RMSD slightly higher but not significantly so; the worst model has RMSD of 1.9 Å (2.5 Å for the H3 

loop), still an accurate result. Similar considerations are true for F10, with RMSD of 1.7 Å (2.0 Å for 

H3) for the best model and 2.6 Å (3.4 Å for H3) for the worst one.  

There is no way to assess which of the 10 Rosetta models is best in a blind experiment, when the 

antibody structure is not known. The model with the best score, thus preferred by the algorithm, is not 

the most accurate, neither in this example nor in our general experience but, in a worst-case scenario, 

even selecting the worst generated model would be acceptable. The issue is not overly important as far 

as docking is concerned, as it will be shown later, and the ensemble of different models might actually 

represent a conformational flexibility relevant in the biological context. 

In summary, all the antibody modeling methods offer satisfactory and, in some cases, surprisingly 

precise results. Despite the lack of known canonical structures, even the H3 loop conformation can be 

reliably predicted. 

Table 1. Backbone RMSD values (in Å) between the modeled antibodies and the 

corresponding X-ray structure. Rosetta and PIGS models are indicated as discussed in the 

main text. Lc and Hc indicate the light and heavy chain, respectively. The length, in 

residues, of the 6 CDR loops is indicated in brackets. All generated models are accurate. 

 RMSD (Å) C Only 

CR6261 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 

PIGS 

same 

Ab 

PIGS 

same 

CanSt 

PIGS 

Best HcLc 

Hc + Lc 1.2 1.1 1.4 1.3 1.1 1.9 1.5 1.1 1.5 1.6 1.0 2.1 1.7 

Lc 1.0 0.9 1.2 1.1 0.9 1.6 1.3 0.9 1.2 1.3 0.9 1.9 1.7 

Hc 1.4 1.2 1.6 1.5 1.3 2.2 1.7 1.2 1.7 1.8 1.1 2.5 1.7 

CDR (all) 1.5 1.3 1.6 2.0 1.3 2.3 2.8 1.8 1.7 1.9 1.1 2.3 1.8 

CDR 

(Lc) 
1.2 1.0 1.3 1.8 1.1 1.8 1.4 1.7 1.4 1.5 1.0 2.0 1.7 

CDR 

(Hc) 
1.5 1.3 1.7 1.6 1.4 2.4 1.9 1.3 1.8 2.0 1.2 2.4 1.8 

L1 (12) 1.2 1.0 1.3 1.5 1.1 1.9 1.5 1.4 1.4 1.5 1.0 2.0 1.7 

L2 (4) 1.2 1.1 1.4 1.4 1.1 1.9 1.5 1.3 1.4 1.6 1.0 2.1 1.7 

L3 (8) 1.2 1.1 1.3 1.5 1.1 1.9 1.5 1.3 1.4 1.5 1.0 2.0 1.7 

H1 (9) 1.3 1.2 1.5 1.4 1.2 1.9 1.6 1.2 1.5 1.6 1.1 2.1 1.8 

H2 (5) 1.2 1.1 1.4 1.3 1.1 1.9 1.5 1.1 1.4 1.6 1.0 2.4 2.1 

H3 (9) 1.5 1.3 1.7 1.6 1.3 2.5 1.9 1.3 1.8 2.0 1.1 2.4 1.7 
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Table 1. Cont. 

F10 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 

PIGS 

same 

Ab 

PIGS 

same 

CanSt 

PIGS 

Best HcLc 

Hc + Lc 2.1 1.9 1.8 1.7 2.0 1.9 2.0 2.6 2.1 2.3 1.3 - - 

Lc 2.1 1.9 1.7 1.7 2.0 1.9 2.0 2.6 2.1 2.3 1.3 - - 

Hc 2.5 2.1 1.9 1.8 2.3 2.1 2.2 3.1 2.3 2.7 1.2 - - 

CDR 

(all) 
2.5 2.5 2.0 1.9 2.4 2.3 2.3 3.1 2.5 2.8 1.5 - - 

CDR 

(Lc) 
2.1 2.2 1.7 1.6 2.0 1.9 1.9 2.5 2.0 2.3 1.3 - - 

CDR 

(Hc) 
2.6 2.3 2.1 2.0 2.5 2.4 2.4 3.2 2.5 2.9 1.5 - - 

L1 (11) 2.1 2.1 1.7 1.7 2.0 1.9 1.9 2.6 2.1 2.3 1.3 - - 

L2 (4) 2.1 2.0 1.7 1.7 2.0 1.9 1.9 2.6 2.1 2.3 1.3 - - 

L3 (7) 2.1 2.0 1.7 1.6 2.0 1.9 1.9 2.6 2.1 2.3 1.3 - - 

H1 (8) 2.1 1.9 1.8 1.7 2.0 1.9 1.9 2.6 2.1 2.3 1.3 - - 

H2 (4) 2.1 1.9 1.7 1.7 2.0 1.9 1.9 2.6 2.1 2.3 1.3 - - 

H3 (12) 2.7 2.3 2.1 2.0 2.6 2.4 2.4 3.4 2.6 3.0 1.4 - - 

Figure 2. Cartoon representation of antibodies CR6261 (left) and F10 (right). Only the 

CDR loops are shown at the top, not drawn to scale. The H3 loop is colored green for the 

X-ray structure, violet for the best PIGS model and yellow for the Rosetta models. 
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2.2. Docking Antibodies against Influenza Virus Hemagglutinin 

We used three different programs and approaches to predict the binding interaction of antibodies 

F10 and CR6261 with the stalk region of influenza hemagglutinin. Several combinations of different 

starting structures were explored in order to evaluate the docking performance in all possible  

scenarios. In this manuscript, ―model‖ refers to a starting structure while ―decoy‖ is used to indicate a  

docking result. 

The antigen starting structure was taken from the X-ray structure of the respective complex (bound, 

PDB codes 3FKU and 3GBM), taken from the X-ray structure of free influenza hemagglutinin 

(unbound, PDB code 3FK0) or predicted by homology modeling (model) using the I-Tasser  

web server  [77,78]. The structures are rather similar to each other, with pair wise RMSD below  

1.6 Å (Table 2).  

Table 2. Backbone RMSD values (in Å) between the various starting structures of 

hemagglutinin used for docking. 

 Bound R6261 Bound F10 Unbound Model CR6261 Model F10 

Bound CR6261  0.6 1.0 1.4 0.9 

Bound F10 0.6  1.1 1.3 1.6 

Unbound 1.0 1.1  1.0 1.1 

Model CR6261 1.4 1.3 1.0  0.6 

Model F10 0.9 1.6 1.1 0.6  

The antibody starting structures were either taken from the X-ray structure of the complex (bound) 

or modeled as described above; 10 models were generated by the RosettaAntibody server and one by 

PIGS for each of F10 and CR6261. We independently docked all the 11 models with the intent of 

assessing which one is best for docking, but also with the belief that their ensemble represents the 

biologically relevant dynamic motions available to inherently flexible protein loops. 

We initially tested a rigid body only approach with the program ZDock but no acceptable solution 

(RMSD to the X-ray structure lower than 20 Å) was found in the top 20 scoring decoys when docking 

either a bound-bound or bound-Rosetta1 combination. Given the negative result in the best conditions 

for rigid body docking (bound-bound starting structures) the approach was not further evaluated. 

RosettaDock was used, instead, to test the performance of a protocol including both rigid body 

docking and sidechain optimization. Here we assess the accuracy of a decoy by measuring its spatial 

distance (RMSD) to the available X-ray structure; other indicators, like the number and type of 

intermolecular contacts, do not alter our considerations and are not described for simplicity. We 

classify a decoy as ―highly accurate‖ if it has RMSD below or equal to 1 Å, ―accurate‖ if the RMSD is 

between 1 Å and 5 Å, ―acceptable‖ with RMSD between 5 Å and 10 Å and ―poor‖ if the RMSD is 

between 10 Å and 20 Å. Unless otherwise stated, all RMSD values indicated in this section are 

calculated between a docking decoy and the corresponding X-ray structure and reported for the six 

CDR loops because they are most representative of the binding interface. Complete results are 

summarized in Table 3 and 4 and detailed results are shown in Supplementary Tables 1 and 2. 
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Table 3. Backbone RMSD values (in Å) between the predicted decoys and the 

corresponding X-ray structure for CR6261. RMSD values of the most accurate decoy for 

any combination of starting structures are shown. The columns indicate the starting 

structure used for hemagglutinin and each row represents a starting antibody structure 

indicated as described in the main text. Highly accurate solutions are in green, accurate in 

yellow and acceptable in orange. 

 
Bound Unbound Model 

R1 1.9 4.9 2.0 

R2 3.0 4.2 1.3 

R3 2.5 3.7 1.4 

R4 2.4 3.7 2.1 

R5 2.1 3.2 1.8 

R6 1.6 3.8 1.5 

R7 1.0 3.9 1.8 

R8 2.6 3.6 2.6 

R9 2.4 3.7 1.2 

R10 2.1 4.1 1.6 

PIGS 5.8 6.9 6.8 

Bound 2.0 1.9 1.1 

Table 4. Backbone RMSD values (in Å) between the predicted decoys and the 

corresponding X-ray structure for F10. RMSD values of the most accurate decoy for any 

combination of starting structures are shown. The columns indicate the starting structure 

used for hemagglutinin and each row represents a starting antibody structure indicated as 

described in the main text. Highly accurate solutions are in green, accurate in yellow and 

acceptable in orange. 

 

Bound Unbound Model 

R1 0.9 0.8 1.3 

R2 1.3 1.2 1.6 

R3 1.0 1.0 1.7 

R4 0.8 1.8 1.6 

R5 1.0 1.2 0.9 

R6 0.6 1.3 2.0 

R7 1.3 0.9 0.9 

R8 1.6 0.5 0.8 

R9 1.0 2.0 0.5 

R10 0.9 1.4 2.5 

PIGS 0.7 1.2 0.4 

Bound 0.3 2.1 1.5 

The most accurate decoy generated for a bound-bound situation has a RMSD of 2.0 Å for CR6261 

and an amazing 0.3 Å for F10. Curiously, the accuracy decreases for F10 when using an unbound or 

homology modeled antigen structure in combination with a bound antibody structure, as expected, but 
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increases for CR6261 (1.9 Å and 1.1 Å, respectively). It is not evident why starting with a homology 

modeled antigen should give a result closer to the bound structure than starting with the bound 

structure itself, but it should be noted that the differences are relatively small and well within the 

uncertainty implicit in many X-ray structures. 

Docking the antibody model generated by PIGS to either a bound, unbound or modeled antigen 

gives highly accurate or accurate results for F10 (RMSD between 0.4 Å and 1.2 Å) but only acceptable 

results for CR6261 (RMSD between 5.8 Å and 6.9 Å), even if the two starting models are equally 

accurate (i.e., more similar to the bound conformation). Also, docking a homology model of 

hemagglutinin to PIGS F10 is apparently better than docking a bound antigen, but it might be unwise 

to emphasize the small difference (0.4 Å versus 0.7 Å). 

Equally good results are obtained when docking the 10 Rosetta models of F10 to bound, unbound or 

modeled hemagglutinin. The most accurate decoys have RMSD of 0.5 Å while even the worst 

combinations of starting structures have RMSD below 2.0 Å. Docking Rosetta models of CR6261 with 

any antigen provides accurate results, as well. The RMSD is higher when using an unbound antigen, 

which would be understandable if the unbound and bound conformations were significantly different 

but this is not actually the case. The best results are obtained, somehow unintuitively, with a homology 

modeled antigen. The Rosetta antibody models of CR6261 are just as accurate as PIGS (similarity to 

the bound antibody conformation), yet they consistently give more accurate docked decoys. Once 

more, it seems that the accuracy of the starting structure is not directly correlated to the accuracy of the 

docking result. 

Furthermore, no correlation can be found when comparing the results of the same Rosetta model 

docked to different starting antigens. Rosetta6 of F10, for instance, gives the best result when docked 

to a bound antigen (0.6 Å) but the RMSD drops to 1.3 Å and 2.0 Å for unbound and modeled antigen, 

whereas other models (Rosetta8 and Rosetta9) have 0.5 Å in those cases. Similar considerations are 

true for CR6261.  

It is very difficult, if not impossible, to predict which antibody model should be used for docking in 

a blind experiment. Different models perform differently when docked to different starting antigens, 

and the highest scoring antibody model, the one preferred by the Rosetta Antibody algorithm, never 

gives the best docking results. 

As a final test we used the program HADDOCK, which includes a flexible backbone step in the 

docking protocol, to repeat all the docking calculations performed with RosettaDock. Using the bound 

conformation as starting structure for both hemagglutinin and antibody gives acceptable decoys with 

RMSD of 5.6 Å for F10 and poor decoys (RMSD 10.5 Å) for CR6261. The result is considerably less 

accurate than RosettaDock and things do not improve when an unbound or model antigen structure is 

docked to a bound conformation of the antibody. This may not be too surprising considering that 

HADDOCK changes the backbone conformation during docking, thus forfeiting any benefit of starting 

from a bound conformer.  

HADDOCK fails to identify the binding site when docking the PIGS model of F10 (RMSD larger 

than 30 Å) and offers acceptable solutions for CR6261 (RMSD above 6.8 Å). Docking the Rosetta 

Antibody models shows a similar trend: the majority of combinations of starting structures fail to 

identify the correct binding site and the few that do have a RMSD of 5 Å or more to the corresponding 

X-ray structure. It should be noted that the most accurate decoys have a rather good RMSD for the 
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heavy chain (0.9 Å in the best cases) but the light chain is not predicted as accurately (RMSD of 8.0 Å 

or more). Visual inspection of these decoys shows that HADDOCK finds the correct position for the 

heavy chain, which makes most of the contacts to the antigen, but moves the light chain away from the 

heavy, possibly in an attempt to reduce inter-chain steric clashes. The resulting antibody conformation 

differs significantly from the experimentally determined one.  

It should be noted that we used HADDOCK with the default options available on the web server. 

Preventing the program from changing the relative position of the heavy and light chain, thus retaining 

the conformation predicted by the antibody modeling programs, might actually be a better strategy. 

2.3. Selecting the Most Accurate Solution: the Scoring Problem 

So far we have assessed the quality of the predicted complexes by comparing them to the available 

X-ray structures. This would not be possible, obviously, in a biological research scenario when no 

experimental information is available (and if it was, computational docking would be pointless). In 

such a case, the best solutions would have to be chosen according to a scoring function, either external 

or associated with the program used for docking.  

The simplest option is to accept the best scoring decoy amongst the thousands generated in a typical 

calculation. In our Rosetta simulations, the best scorer decoy is also the most accurate (similarity to the 

X-ray structure) in six out of the 36 possible combinations of starting structures for CR6261, and in 

seven out of 36 for F10 (supplementary Tables 1 and 2; Figure 3); none of these, however, is the best 

possible decoy. For example, the top scorer decoy is also the most accurate for the bound-Rosetta10 

combination (RMSD 2.1 Å), but the seventh scoring decoy of the bound-Rosetta7 combination has 

RMSD of 1.0 Å, the best for any CR6261 docking simulation. Even more troublesome is the fact that 

the best scoring decoy is remarkably wrong for some combinations of starting structures, with RMSD 

up to 50 Å. The best scorer of Rosetta9 docked to a modeled antigen gives a poor decoy with 16.6 Å 

RMSD, for instance, but the second best scoring is highly accurate (0.5 Å RMSD). 

Although the scoring function is effective in some situations, it is clear that representing  

the docking solution as an ensemble of the best scoring decoy for each combination of starting 

structures would not be appropriate (Figure 3c,d). Selecting the best scorer of a single starting 

combination would be even worse, since we cannot know a priori which starting combination offers 

the best results. 

In a slightly different scoring approach, all the decoys are clustered so that similar structures are 

grouped together; each cluster is then assigned the score of the best scoring decoy within the cluster 

itself. Finally, the most populated among the five (or whatever is deemed appropriate) best scoring 

clusters is considered to be the correct docking solution. The assumption is that if the algorithm finds 

the same good scoring conformation several times, then it might be the best available solution. 

Although this is correct in some cases, it does not appear to be a valid criterion in most of our 

calculations: when docking F10 Rosetta4 to a bound antigen, for example, the two most populated and 

best scoring clusters have 10.8 Å and 23.0 Å RMSD, whereas a scarcely populated cluster outside the 

top 10 scorers has an accurate 1.1 Å RMSD. 
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Figure 3. (a) Rank of the most accurate decoy (1 is the best scoring decoy, 2 the second 

best scoring and so forth) for each starting structure combination; (b) Rank of the most 

accurate decoy, presented as a percentage of all the possible starting combinations used; for 

example, the most accurate decoy is also the top scoring in 18% of the cases. RMSD (in Å) 

for the most accurate (orange and red) and best scoring (blue and cyan) decoy for  

CR6261 (c) and F10 (d). The best scorers are often considerably less accurate then the 

most accurate decoys, so choosing them as final docking solution would not be ideal. All 

data refer to the RosettaDock calculations. 

 

Similar considerations suggest that the presence of a ―scoring funnel‖ is indicative of an accurate 

computational docking solution. A scoring funnel happens when the algorithm repeatedly finds decoys 

with similar structure and score significantly better than most others decoys. In practice it is a highly 

populated cluster whose score is significantly better than any other cluster. However, it is not 

uncommon for the same starting structures to yield two (or more) different scoring funnels: clearly, not 

all of them can be correct. Although the authors of Rosetta warn about this problem, it is not 

uncommon for non-experienced users to rely heavily on the presence of any funnel as an indication of 

an accurate result. 

The program FunHunt [79,80] attempts to distinguish between accurate and inaccurate funnels on 

the basis of several criteria such as, among others, the number of intermolecular contacts or the 

average conservation of interface residues. Unfortunately, applying it to some of our hemagglutinin 

results showed no significant improvement. 
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2.4. Discussion 

The importance of antibodies is growing constantly in a number of fields, from the pharmaceutical 

and biosensor industry to basic research. Their mechanism of action depends, in ultimate analysis, on 

their atomic interactions with the antigen. Studying and characterizing such interactions is important to 

understand why antibodies are so effective and to design new molecules with improved properties; 

identifying the antigen binding site (epitope) is also important for patent claims. Until recently, 

determining an X-ray structure was the only way to obtain detailed structural information on the 

antibody-antigen interface. Computational docking, however, is emerging as a fast, attractive and 

affordable alternative to achieve the same result with reasonable accuracy. 

When faced with the task of predicting the structure of an unknown antibody-antigen complex, the 

first important choice is selecting the starting structures to be docked. The antigen conformation can be 

obtained from an experimental structure of the free protein or from homology modeling. Although it is 

difficult to draw general rules and much would depend on the quality of the available structures, both 

alternatives promise to be sufficient for several interesting targets because more and more 

experimental structures, to be used directly or as a template for modeling, are available due to an 

increasing number of structural genomics consortia.  

Experimental structures of free antibodies are usually not available, nor would they be very useful 

since antibodies are known to drastically change conformation upon binding; their starting structures, 

therefore, need to be predicted in virtually every case. The H3 loop, which shows the most 

conformational variability in antibody structure, is the most problematic part, but luckily all modeling 

methods offer accurate and often precise results for the vast majority of antibodies. The already rare 

events when no reliable antibody template can be found should become even less frequent as the 

number of available experimental structures increases. 

When modeling F10 and CR6261, two antibodies against the stalk of influenza hemagglutinin, it is 

intriguing that simply copying the conformation of existing templates with the canonical structure 

method (PIGS) offers better results than optimizing several parameters as Rosetta Antibody does. 

PIGS is also much faster and results are obtained in a matter of seconds whereas Rosetta Antibody 

requires about one day on local computers and several days or weeks on the dedicated web server 

(speed can improve if the queue on the web server diminishes or if larger computer clusters are used 

locally). Of course we cannot draw general conclusions without benchmarking a large set of models 

with known experimental structure, but the above appears true in our experience not limited to the two 

antibodies illustrated here. It is important to note, however, that Rosetta Antibody chooses templates in 

a way comparable to the ―best heavy and light chain‖ method of PIGS and provides more accurate 

results than this PIGS option. The optimization run by Rosetta Antibody, in other words, seems to be 

effective. Both approaches are beaten, however, by using the same antibody as template for both 

chains, an option offered by PIGS but not Rosetta Antibody. It would be interesting to see the results 

of the Rosetta Antibody protocol applied to a template chosen with the ―same antibody‖ criteria. 

Regardless of the chosen modeling method, the structure of F10 and CR6261 can be predicted 

within approximately 2 Å of the available experimental structure: a precision comparable to the 

intrinsic uncertainty of some X-ray structures. Although finding the best possible model might have 

academic value, even selecting the worst one would provide an accurate prediction. However, we 
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strongly believe that an ensemble of different models, in contrast to a single model, is a more accurate 

representation of the multiple conformations available to inherently flexible protein loops.  

The issue of selecting the very best models is even less significant if they have to be used for 

docking. Using different starting structures may adversely affect the calculations, as illustrated by the 

fact that the RMSD of our CR6261 complexes varies between 1.2 Å and 6.9 Å for different starting 

structures, but there is no apparent correlation between the accuracy of the starting structure (similarity 

to the bound experimental structure) and the accuracy of the final docking solution. This is particularly 

striking in the case of F10, where docking results are equally accurate even if the H3 loop is flat in the 

X-ray structure as in some of the models but faces outward, with a significantly different 

conformation, in others (Figure 2d). On one hand, this suggests that effectively sampling the 

intermolecular space is actually more important than choosing a very precise starting model, but on the 

other hand, it means that it is impossible to predict a priori which starting structure would provide the 

best docking results. One might randomly choose a single starting structure knowing that even the 

worst result may be satisfactory, but docking multiple conformations (starting structures) might offer 

an attractive alternative. It must be stressed that we did not perform any comprehensive analysis on a 

benchmark set [81] and only discuss the example of F10 and CR6261, but the above considerations 

agree with ours, and others, general experience on the matter.  

If choosing different antibody modeling methods has no predictable effect on the calculations, the 

same is not true for different docking protocols. Although we did not perform exhaustive testing,  

we have remarkably little success when using a rigid body docking algorithm (ZDock) with F10  

and CR6261.  

Results are distinctively better when testing a program that optimizes the backbone conformation 

during docking (HADDOCK), but still fail to predict the correct binding interface for the majority of 

the cases (RMSD to the experimental structure higher than 20 Å). Although the result might seem 

disappointing, it should be noted that HADDOCK was designed as a data-driven docking program 

relying heavily on the use of experimental constraints to drive the calculations and that it does not 

utilize special features to account for antibody peculiarities. We would expect better results if such 

features were implemented on the dedicated web server. When HADDOCK finds the correct binding 

site for F10 or CR6261, however, the accuracy is relatively high for the heavy chain but considerably 

lower for the light chain. Apparently, the position of the heavy chain is constrained by the antigen but 

the light chain makes few contacts and is free to move around; optimizing the backbone conformation 

results in a widening of the gap between the antibody heavy and light chain, possibly in an attempt to 

relieve steric clashes. Better results might be obtained by locking the relative orientation of the two 

chains so that they do not deviate from the predicted antibody structure, either through inter-chain 

constraints or considering the two chains as a single, rigid molecule as RosettaDock does.  

RosettaDock optimizes the sidechain but not backbone conformations during docking and provides 

highly accurate or accurate predictions of the complex between F10 and influenza hemagglutinin with 

every combination of starting structures. This is less true for CR6261, but even the least accurate 

predictions (RMSD around 6 Å) correctly identify the general binding site. We had excellent results 

with RosettaDock when studying antibody-antigen complexes unrelated to influenza, as well.  

It should be noted that here we describe the results of a so-called ―local search‖, in which the 

antibody is manually positioned around the correct epitope at the beginning of the docking procedure 
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and then only a local, but still relatively large, region around the epitope is explored. This obviously 

requires some information about the binding site, in absence of which a ―global search‖ around the 

whole molecule is required. Such a global search requires a much larger number of decoys and, 

consequently, higher computational resources, but in our experience the final result is comparable to a 

local search. 

Overall, when performing computational docking it seems useful to simultaneously modify the 

sidechain conformations of the antigen and antibody so that they can adapt to each other, whereas 

optimizing the backbone conformation might disrupt the predicted bound conformation for the antibody 

and deteriorate the accuracy of the results. Flexible docking methods will undoubtedly gain popularity 

as they improve but at this time it might not be necessary to use them for antibody-antigen complexes. 

The fact that antibody-antigen docking can obtain highly accurate and surprisingly precise results 

(RMSD of 0.4 Å in the best cases) is a testament to the excellent work of the researchers in the field 

and bodes well for the future. What is still severely missing, however, is the ability to recognize the 

good solutions amongst the thousands generated in a typical docking run. If no experimental structural 

information is available (and, of course, docking would be pointless if the experimental result was 

known), one has to rely on a semi-empirical algorithm called ―scoring function‖.  

In our RosettaDock calculations, the top scoring decoy, thus deemed the most accurate by the 

algorithm, has an RMSD between 2 Å and 52 Å in the various combinations of starting structures 

tested (Figure 3c,d). Some RMSD values might have been even larger if a global search was 

performed. Clearly, selecting a docking solution simply on the basis of the scoring function would be a 

mistake and using clustering or other strategies described above would be equally wrong. Further 

analysis of the scores gives reasons to be optimistic for the future, however: one of the top three 

scoring decoys has the most accurate RMSD in 23 out of the 72 combinations of starting structures that 

we tested with RosettaDock; the number rises to 36% if the top five scores are considered, 57% for the 

top 10 and 75% for the top 20 (Figure 3b). 

If we may be a little provocative, these numbers should be considered a very good result by those 

interested in the technical side of docking, but they cannot be acceptable in a biological context. 

Having a 75% chance of finding an accurate solution in the top 20 scores is a testament to the validity 

of the scoring function, but having a 25% chance of predicting the wrong epitope can be devastating 

when formulating a biological hypothesis.  

The shortcomings of the scoring function have a further implication. When asked to dock any two 

molecules, the computer will bring them together and find a binding solution. Since the algorithm 

cannot assess if such solution is correct, it follows that it cannot predict if the two molecules are 

actually supposed to bind in vivo, either. In other words, docking should be limited to partners shown 

to bind from experimental evidence. 

The long-term objective is clear: improving the reliability of scoring functions; but in the short-term 

we believe that the best, and very necessary, strategy is to utilize rapidly obtained experimental data to 

filter out the inaccurate docking decoys. Such experimental data can be incorporated in the docking 

protocol as constraints or, more simply, applied as a filter at the end. 

For instance, an important constraint implicit in antibody-antigen calculations is that the antibody 

must interact with its antigen binding loops. Another approach that we recently proposed uses NMR 

epitope mapping to select the docking solutions that best agree with the experimentally determined 
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epitope [82]; the advantage is that extensive and precise information can be rapidly obtained for the 

entire epitope, the disadvantage is that a large amount of purified antibody is required. Alternatively, 

escape mutants (genetic mutations that prevent antibody neutralization) can be used to identify 

residues necessary for antibody binding in a viral antigen; site directed mutagenesis can be performed 

on a non-viral antigen with the same objective. The main disadvantage is that information is usually 

obtained on a very limited number of residues, not representative of the entire epitope; another 

problem is that such mutations are likely to be at the interface, since they are required for binding, but 

are not necessarily so, given the possibility of allosteric effects. Finally, cross-competition experiments 

are quick, cost effective and powerful experimental methods that can complement antibody-antigen 

docking. If an antibody with known experimental structure is available, as it is the case for the stalk of 

influenza hemagglutinin, then it is possible to conduct a simple ELISA experiment to discover if it 

prevents binding of other antibodies, thus indicating that they share the same epitope [83,84]. The 

obvious disadvantage is that the strategy is only viable if an apt X-ray structure is available; other 

problems arise due to allosteric effects or because the Fc region may cause steric hindrance and 

prevent binding of other antibodies even if the epitope is different. Using cross-competition data 

against the known F10 and CR6261 antibodies to validate the computational docking results is the 

most promising approach in the specific case of antibodies against the stalk of influenza hemagglutinin.  

3. Experimental Section 

3.1. Antibody Modeling 

Antibodies were modeled with the programs PIGS and Rosetta Antibody, using antibodies not 

related to influenza virus as templates. The PDB codes of the templates for CR6261 are as follows 

(sequence identity is indicated in parentheses). PIGS: 1RZF for both heavy (63.93% identity) and light 

chain (78.07%). Rosetta Antibody: 1RZI for the heavy-chain framework (85.07%) and 1Q1J for the 

light chain (96.72%); 1Q1J for L1 (91.67), 1Q1J for L2 (100%), and 1Q1J for L3 (same length, no 

identity); 1RZI forH1 (80%), 1RHH for H2 (76.47%), and 1AP2 for H3 (same length, no identity). The 

PDB codes of the templates for F10 follow. PIGS: 1RZF for both chains (sequence identity 59.29% for 

the light chain and 62.6% for the heavy chain). Rosetta Antibody: 1RZG for the heavy-chain 

framework (71.68%) and 1RZF for the light chain (64.36%); 1BJM for L1 (same length, no identity), 

1RZF for L2 (83.33%), and 1RZF for L3 (90.91%); 1RZG forH1 (62.50%), 1RHH for H2 (76.47%), 

and 1FAI for H3 (same length, no identity). 

3.2. Docking 

Hemagglutinin forms trimers on the viral surface and in the available X-ray structures; only the 

monomeric unit was used for docking to alleviate the computational load. Similarly, only the FV 

variable domain of the antibodies was docked. The starting structures were visually oriented with the 

Ab CDR loops facing hemagglutinin and then separated by 25 Å. Since the docking procedure 

explores a relative large area around the starting position, very careful initial positioning of the 

docking partners is not required. When using RosettaDock 2.3 the structures were perturbed with 3-8-8 

movements (perturbation along the line of centers, in angstroms-perturbation in the plane perpendicular 
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to the line of centers, in angstroms-rotational perturbation, in degrees) and approximately 5000 decoys 

were generated for each docking run as previously described [82]. The ZDOCK and HADDOCK 

calculations were performed on the dedicated web servers with default parameters. In HADDOCK, a 

single Ab residue was constrained to be at the interface (―active residue‖ as required) whereas the rest 

of the CDR loops were indicated as possible interface residues (―passive residue‖ as indicated  

by HADDOCK). Clustering analysis of the RosettaDock results was conducted with both a 5 Å  

and 10 Å cut-off.  

3.3. RMSD Calculations 

Backbone RMSD values, calculated with the program ProFit [85] are shown throughout the 

manuscript. When comparing antigen structures or complexes, the hemagglutinin structures were 

superimposed and RMSD values were obtained for the subset of residues indicated in the various cases 

(e.g., H3 loop). The heavy and light chains were superimposed when comparing free Abs. 

4. Conclusions  

Computational docking of antibody-antigen complexes can today achieve excellent results, 

certainly better than just a few years ago. A pessimist would state that this is true only for the best 

cases, but to us this is a clear indication of the progress and potentiality of the technique, which can 

only improve with algorithms and computing power as well as increase in the number of users. It is 

just as clear, however, that the computational predictions need to be validated, and possibly driven, by 

rapidly obtained experimental data. Such data is readily available in the form of cross-competition 

experiments for antibodies binding to the stalk of influenza hemagglutinin, so we are confident that 

docking can be a reliable strategy to characterize new antibodies against this very important 

pharmaceutical target. 

It is possible that scoring functions will eventually become sufficiently reliable for docking to be 

used independently, although we believe that experimental validation will always be necessary. In our 

mind, there is little doubt, however, that experimentally validated computational docking will become 

an accepted branch of structural biology in the coming years.  
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