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Seven neurons memorizing 
sequences of alphabetical images 
via spike-timing dependent 
plasticity
Takayuki Osogami* & Makoto Otsuka*

An artificial neural network, such as a Boltzmann machine, can be trained with the Hebb rule so 
that it stores static patterns and retrieves a particular pattern when an associated cue is presented 
to it. Such a network, however, cannot effectively deal with dynamic patterns in the manner of 
living creatures. Here, we design a dynamic Boltzmann machine (DyBM) and a learning rule that 
has some of the properties of spike-timing dependent plasticity (STDP), which has been postulated 
for biological neural networks. We train a DyBM consisting of only seven neurons in a way that it 
memorizes the sequence of the bitmap patterns in an alphabetical image “SCIENCE” and its reverse 
sequence and retrieves either sequence when a partial sequence is presented as a cue. The DyBM is 
to STDP as the Boltzmann machine is to the Hebb rule.

Artificial neural networks have been studied as means of automatic pattern recognition1–3 for a long time, 
and the recent breakthrough of deep learning4–8 has brought them once again to the forefront of artificial 
intelligence studies. A characteristic of an artificial neural network is associative memory, which stores 
multiple patterns in such a way that a particular pattern can be retrieved when it is given a cue such as 
a partial pattern9–12. The Hebb rule13 is used to train artificial neural networks, including Perceptrons14, 
Hopfield networks10, and Boltzmann machines15. In particular, it incrementally decreases the energy 
of the patterns to be stored in a Boltzmann machine, which in turn increases the likelihood that the 
Boltzmann machine generates those patterns16,17.

The Hebb rule used for artificial neural networks, however, has a fundamental shortcoming as a learn-
ing rule of biological neural networks, because the concept of time is largely missing from it. Specifically, 
it is independent of the precise timing of the spikes of neurons. A postulate that extends the Hebb rule is 
spike-timing dependent plasticity, or STDP18–21, which states that a synapse is strengthened if the spike of 
a pre-synaptic neuron precedes the spike of a post-synaptic neuron (i.e., long term potentiation; LTP22,23), 
and the synapse is weakened if the temporal order is reversed (i.e., long term depression; LTD). The 
existence of STDP was experimentally confirmed around the end of the last century24–26.

Here, we provide underpinnings for STDP as a learning mechanism by training an artificial neural 
network via STDP in such a way that the trained network exhibits associative memory for sequential 
patterns. Specifically, we model the dynamics of a biological neural network with an artificial neural 
network, which we refer to as a dynamic Boltzmann machine (DyBM). We train the DyBM by using 
an online learning rule that has some of the properties of STDP such as LTP and LTD. We sequentially 
present patterns to it and update its learnable parameters every time a pattern is presented. The DyBM 
then retrieves a particular sequence when associated cues are presented.

The structural features that distinguish a DyBM from a Boltzmann machine are conduction delays 
and memory units, which are illustrated in Fig. 1. A neuron is connected to another in a way that a spike 
from a pre-synaptic neuron, i, travels along an axon and reaches a post-synaptic neuron, j, via a synapse 
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after a delay consisting of a constant period, di,j. In the DyBM, a first-in first-out (FIFO) queue causes 
this conduction delay. The FIFO queue stores the values of the pre-synaptic neuron for the last di,j −  1 
units of time. Each stored value is pushed one position toward the head of the queue when the time is 
incremented by one unit. The value of the pre-synaptic neuron is thus given to the post-synaptic neuron 
after the conduction delay. Moreover, the DyBM aggregates information about the spikes in the past into 
neural eligibility traces and synaptic eligibility traces27–29, which are stored in the memory units. The 
value of a neural eligibility trace increases when an associated neuron spikes and decreases otherwise. 
The value of a synaptic eligibility trace increases when the spike from a pre-synaptic neuron reaches a 
post-synaptic neuron and decreases otherwise. In the current study, we keep three eligibility traces with 
varying decay rates for each neuron and for each synapse. The use of varying decay rates is consistent 
with the approximation of the hyperbolic decay for long-term memory30–32.

Each neuron takes a binary value, 0 or 1, and the probability that a neuron takes the value 1 (i.e., 
it spikes) at any moment depends on the previous values of the neurons as well as the values of the 
learnable parameters of the DyBM. Each neuron is associated with a learnable parameter called bias. 
The strength of the synapse between a pre-synaptic neuron and a post-synaptic neuron is represented by 
learnable parameters called weights. In order to represent LTP and LTD, the DyBM has an LTP weight 
and an LTD weight. We use an online gradient ascent method33,34 so as to maximize the likelihood of 
given sequential patterns. The learnable parameters are updated only on the basis of the information that 
is available at the associated synapse or neuron, and there is no need to store the whole sequence for 
learning via backpropagation through time35–40.

Results
We trained a DyBM, consisting of seven neurons, in such a way that it could store multiple sequential 
patterns from alphabetical images. The DyBM would then retrieve a particular sequential pattern when 
part of it was presented as a cue, and it could also detect anomalies in a given sequence.

First, we trained the DyBM with a single sequence of patterns from an alphabetical image, in this case 
“SCIENCE,” which is a 7-bit by 35-bit monochrome bitmap image. Each set of seven vertically aligned 

Figure 1. A DyBM consists of a network of neurons and memory units. A pre-synaptic neuron is 
connected to a post-synaptic neuron via a FIFO queue. The spike from the pre-synaptic neuron reaches the 
post-synaptic neuron after a constant conduction delay. Each neuron has the memory unit for storing neural 
eligibility traces, which summarize the neuron’s activities in the past. A synaptic eligibility trace is associated 
with a synapse between a pre-synaptic neuron and a post-synaptic neuron, and summarizes the spikes that 
have arrived at the synapse, via the FIFO queue, from the pre-synaptic neuron.



www.nature.com/scientificreports/

3Scientific RepoRts | 5:14149 | DOi: 10.1038/srep14149

bits composed the pattern of the moment, and the sequence of 35 of these patterns composed the period 
(see Fig. 2e). We presented each pattern one at a time in sequence to the DyBM and updated its learnable 
parameters each time. We also updated the values of the eligibility traces and the FIFO queues each time 
a 7-bit pattern was presented. Each training period consisted of presenting one period of the sequence 
(i.e., presenting “SCIENCE” once). We repeated the training period multiple times.

To show the progress of training in Fig. 2, we let the DyBM generate a sequence, for two periods of 
the target sequence, before and after the training as well as after some intermediate steps. Before training 
began (see Fig.  2a), the DyBM generated a sequence that had nothing to do with the target sequence, 
because the initial values of the learnable parameters were independent of the target sequence. Here, 
we let the DyBM generate a sequence in a deterministic manner. At each moment, a neuron spiked if 
and only if the probability that the neuron spikes was greater than 0.5. This corresponds to making the 
temperature (see Supplementary Table S1a) of the DyBM infinitesimally small. Although the values of 
the learnable parameters were fixed when the DyBM was generating a sequence, the eligibility traces 
and the FIFO queues were updated on the basis of the generated sequence. The DyBM thus generated 
varying patterns during the two periods.

After 10 to 100,000 periods of training (see Fig. 2b–d), the DyBM generated a sequence whose first 
five 7-bit patterns composed part of “S.” Here, we let the DyBM start generating a sequence without 
refreshing the eligibility traces or the FIFO queues that were updated during the training. The sequence 
presented during the training thus served as a cue for generating the sequence shown in Fig. 2. Training 
the DyBM completed in 85 seconds after 130,000 periods (see Fig. 2e), at which point the DyBM gener-
ated the complete sequence of the target pattern.

Figure 3 illustrates how the learnable parameters of the DyBM were updated during the training. The 
seven vertically aligned circles in a box represent the seven neurons, which are arranged from the top to 
the bottom in the order corresponding to the 7-bit patterns. The color of the circles represents the value 
of the associated bias in accordance with the color map shown in Fig. 3f. The neurons corresponding to 
the red circles are more likely to spike than others if the other conditions are equivalent. The arrows in 
Fig. 3 represent the LTP weights. As the conduction delay from pre-synaptic neuron i to post-synaptic 
neuron j is denoted by di,j, we draw an arrow from the i-th circle in the column labeled − di,j to the j-th 

(a) Before training

(b) After 10 periods of training

(c) After 1,000 periods of training

(d) After 100,000 periods of training

(e) After 130,000 periods of training

Figure 2. The DyBM learned the target sequence. (a) Before training began, the DyBM generated a 
sequence that was determined by the initial values of the learnable parameters. (b–d) In each period of 
training, we presented one period of the target sequence once to the DyBM. The DyBM gradually learned 
the target sequence as the training progresses from 10 periods to 100,000 periods. (e) After 130,000 periods, 
the DyBM generated the complete sequence.
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circle in the box. The conduction delay was sampled independently from an integer uniform distribution 
between 1 and 9 (see Supplementary Table S2). The color of an arrow represents the value of the LTP 
weight in accordance with the color map in Fig. 3f. A post-synaptic neuron, j, that is connected with a 
red arrow from a pre-synaptic neuron, i, is more likely to spike than others, if the other conditions are 
equivalent, shortly after the spike from the pre-synaptic neuron reaches the post-synaptic neuron after 
the conduction delay di,j.

Before training began (see Fig. 3a), the learnable parameters were independent of the target sequence 
and sampled independently from the normal distribution with mean 0.0 and standard deviation 0.1. The 
DyBM gradually learned appropriate values of the bias and the LTP weight as the training progresses (see 
Fig. 3b–e). It also learned the LTD weight (see Supplementary Fig. S3).

Next, we show that the trained DyBM can detect anomalies41 in a sequence. We presented the 
sequence “SCIENSESCIENCE” to the DyBM that was trained to generate the sequence shown in Fig. 2e. 
This presented sequence has an anomaly in that the second “C” of the first instance of “SCIENCE” is 
replaced with “S.” We did not train the DyBM but did update the eligibility traces and FIFO queues, while 
showing it the anomalous sequence.

Figure  4 shows that the DyBM detected the anomaly in the sequence. The lower part of the figure 
shows the anomalous sequence. The plot in the upper part of Fig.  4 shows the negative log-likelihood 
(score of anomaly), predicted by the DyBM, for each of the 7-bit patterns in the anomalous sequence. 
The higher the negative log-likelihood of a 7-bit pattern is, the less likely it is that the DyBM generates 
that 7-bit pattern, given the preceding patterns. The predicted negative log-likelihood increased by orders 
of magnitude when the DyBM was presented with the first 7-bit pattern of the anomalous “S.” This 7-bit 
pattern itself is not an anomaly and appears elsewhere with a small negative log-likelihood. The negative 

(a) Before training (b) After 10 periods of training

(c) After 1,000 periods of training (d) After 100,000 periods of training

(e) After 130,000 periods of training (f) Color map

Figure 3. The DyBM updated the values of its learnable parameters during training with “SCIENCE.” 
The color of a circle in a box shows the bias of a neuron. The color of an arrow shows the LTP weight 
(ui,j,1 +  ui,j,2 +  ui,j,3 with the notations in Supplementary Table S1b) from a pre-synaptic neuron, i, to a post-
synaptic neuron, j. The conduction delay from neuron i to neuron j is denoted by di,j, and an arrow is drawn 
from the i-th circle in the column labeled − di,j to the j-th circle in the box. Here, the conduction delay 
is sampled independently from the uniform integer distribution with support [1, 9] (see Supplementary 
Table S2). (a) The initial values of the learnable parameters were sampled independently from the normal 
distribution with mean 0.0 and standard deviation 0.1. (b–e) Some of the learnable parameters were 
strengthened while others were weakened as the training progresses from 10 periods to 130,000 periods. The 
color map in (f) denotes the values of the learnable parameters.
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log-likelihood was indeed predicted to be small when the anomalous “S” is replaced with the normal “C.” 
The initial patterns of the second “SCIEN” were predicted to have a high negative log-likelihood because 
they anomalously follow “SE.”

Finally, we show that the DyBM can store multiple sequences and retrieve a particular sequence when 
an associated cue is presented to it. Here, we used two sequences, forward and reverse, from the alpha-
betical image “SCIENCE.” The forward sequence was “SCIENCE,” as in the previous experiments. The 
reverse sequence was created by reversing the order of the 7-bit patterns in the forward sequence, and 
thus is a sequential pattern from the mirror image of “SCIENCE.” We trained the DyBM by presenting it 
with one of the two sequences in each iteration until it correctly retrieved that sequence when a partial 
sequence was presented as a cue. The cue for the forward sequence (forward cue) was the sequential 
pattern “SCIEN.” The cue for the reverse sequence (reverse cue) was the sequential pattern of the mirror 
image of “IENCE.”

Figure 5 shows how the DyBM learned the target sequences as the training progresses. The left images 
are the cues presented to the DyBM, and the right images are the sequential patterns that the DyBM 
generated after the corresponding cues were presented. We did not train the DyBM but did update its 
eligibility traces and FIFO queues when it was presented with cues or when it was generating sequential 
patterns. Here, the values of the eligibility traces and the FIFO queues were reset to zero before a cue 
was presented. This corresponds to presenting a sequence of zeros or a sequential pattern of a blank 
image to the DyBM for a sufficiently long period. Before training began (Fig. 5a), the DyBM generated 
neither of the target sequences, because the initial values of its learnable parameters were independent 
of the target sequences.

In the first iteration of training, we kept presenting the forward sequence to the DyBM. After the first 
iteration, the DyBM generated the forward sequence when the forward cue was presented (the upper 
part of Fig.  5b). At this point, the DyBM has not learned the reverse sequence. When the DyBM was 
presented with the reverse cue, it generated a sequence that starts with a part of “E” (the lower part of 
Fig. 5b). This happened because “E” follows “I” in the forward sequence, and the reverse cue ends with 
the mirror image of “I,” which has vertical symmetry.

In the second iteration, we kept presenting the reverse sequence to the DyBM. After the second iter-
ation, the DyBM generated the reverse sequence when the reverse cue was presented (the lower part of 
Fig. 5c). However, this DyBM lost its memory about the forward sequence and did not retrieve it when 
the forward cue was presented (the upper part of Fig. 5c). After the second iteration, we presented the 
forward sequence to the DyBM in odd iterations and the reverse sequence in even iterations. Figure 5d 
shows the sequences generated by the DyBM after one million iterations. The DyBM generated the 
reverse sequence, which was presented in the last iteration of training, but not the forward sequence.

Training the DyBM completed in 223 minutes after 1,785,845 iterations, at which point the DyBM 
learned the forward sequence without losing its memory of the reverse sequence learned in the preceding 
iteration. Figure 5e shows that the completely trained DyBM correctly generated the target sequences in 
accordance with the cues. Figure 6 shows the number of periods needed in each iteration of the training 
in Fig. 5. The first iteration finished in 120,701 periods. Each iteration took at most 5,837 periods after 
1,000 iterations and at most 233 periods after 1,000,000 iterations. The DyBM learned a sequence quickly 
if it had already learned that sequence and forgotten it.

Additional results
The DyBM is limited neither to seven neurons nor to alphabetical images. Here, we apply the DyBM 
to additional two sequences. We use varying number of neurons, depending on the dimension of the 
bit-patterns. First, we trained the DyBM with the sequence that represents the motion picture of human 
evolution, illustrated in Supplementary Fig. S1f. Here, we used 20 neurons in the DyBM to learn this 
sequence of 20-bit patterns having the period of 41 units of time. Training completed in 19 seconds. 
Supplementary Fig. S1 shows the sequences that were generated by the trained DyBM. Second, we trained 

Figure 4. The DyBM trained with “SCIENCE” detected an anomaly in “SCIENSESCIENCE.” After 
training the DyBM for 130,000 periods, we presented the DyBM with the anomalous sequence shown at the 
bottom of the figure. The top part shows the negative log-likelihood, predicted by the DyBM, for each of the 
seven-bit patterns in the anomalous sequence.



www.nature.com/scientificreports/

6Scientific RepoRts | 5:14149 | DOi: 10.1038/srep14149

the DyBM with the sequence that represents a music, a simplified version of Ich bin ein Musikante, illus-
trated in Supplementary Fig. S2f. Here, we used 12 neurons in the DyBM, corresponding to 12 distinct 
notes. Training completed in 28 minutes. Supplementary Fig. S2 shows the sequences that were generated 
by the trained DyBM.

Discussion
The DyBM is trained by incrementally increasing the likelihood of the given dynamic patterns according 
to a learning rule that exhibits some of the properties of STDP. This training is analogous to training 
a conventional Boltzmann machine according to the Hebb rule such that the likelihood of the given 
static patterns is incrementally increased. Unlike the learning rules for the existing models that extend 
Boltzmann machines to deal with sequential patterns32,42–45, our learning rule exactly increases the like-
lihood without approximations. The recent success of artificial neural networks in a number of engi-
neering applications suggests that exact learning will be very useful46,47. The sequence of 7-bit patterns of 

(a) Before training

(b) After one iteration of training

(c) After 2 iterations of training

(d) After 1,000,000 iterations of training

(e) After 1,785,845 iterations of training

Figure 5. The DyBM learned two target sequences and retrieved a particular sequence when an 
associated cue was presented. The DyBM generated the right sequence after the left sequence was presented 
as a cue. (a) The DyBM did not generate the target sequences prior to training. (b) The DyBM learned 
the first target sequence “SCIENCE” in the first iteration and retrieved it when its partial sequence was 
presented as a cue. (c) After the second iteration, the DyBM retrieved the second target sequence of the 
mirror image of “SCIENCE” but not the first. (d) After one million iterations, the DyBM learned the second 
target sequence, while keeping a partial memory of the first. (e) The DyBM eventually retrieved one of the 
two target sequences, depending on the cue.
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the alphabetical image “SCIENCE” has a period of 35, which is significantly longer than the conduction 
delay, which ranges between 1 and 9. Learning this sequence involves finding a complex interaction 
among the neurons, FIFO queues, and eligibility traces by adjusting the values of the learnable param-
eters. A slight deviation in the learnable parameters from the appropriate values results in a failure to 
generate the target sequences, as is evident in Fig. 2 and Fig. 3.

Each learnable parameter of a DyBM can be updated only with information that is locally available 
in space and time, which is an important aspect of a learning rule of biological neurons48 and is also a 
desirable property when it comes to implementation as hardware. Specifically, the bias of a neuron is 
updated with the eligibility traces and FIFO queues associated with that neuron, its pre-synaptic neuron, 
or its post-synaptic neurons. The weight of a synapse is also updated with the information associated 
with its pre-synaptic neuron and its post-synaptic neuron. Although the DyBM learns the conditional 
probability distribution of the current patterns given the preceding patterns, it does not store all of the 
preceding patterns. Instead, the information about the preceding patterns is aggregated into the latest 
values of the eligibility traces and FIFO queues. The eligibility traces, either neural or synaptic, and the 
FIFO queues are also updated only with local information, i.e., whether or not a spike is generated or 
has arrived at an associated neuron.

Similar to standard recurrent neural networks40,49,50, the DyBM can be unfolded though time51,52. The 
unfolded DyBM is a Boltzmann machine having an infinite number of units, each representing the value 
of a neuron at a particular time. In particular, the units representing the most recent values of neurons 
are not connected to each other. The weights on connections share a finite number of values and are 
trained via discriminative learning53.

To date, STDP had limited success in engineering applications primarily because of the lack of suffi-
cient underpinnings. This situation is analogous to the history of the Hebb rule. Although the Hebb rule 
motivated early studies on artificial neural networks prior to the 1980’s14, it had limited success until it 
was given an underpinning in the form of the Hopfield network10 and the Boltzmann machine15–17. The 
DyBM does the same for STDP. In fact, the learning rule of the DyBM also exhibits a form of homeo-
static plasticity for keeping the spiking probability relatively constant54,55. The DyBM thus provides an 
underpinning for homeostatic STDP.

Methods
Here, we describe the details of the dynamic Boltzmann machine (DyBM), the learning rule for the 
DyBM, and the parameters of the DyBM used in the experiments.

Dynamic Boltzmann machine. A DyBM consists of a set of neurons having memory units and 
first-in-first-out (FIFO) queues. Let N be the number of neurons. Each neuron takes a binary value of 
either 0 or 1 at each moment. For ∈ ,j N[1 ], let x j

t[ ] be the value of the j-th neuron at time t.
A neuron, ∈ ,i N[1 ], may be connected to another neuron, ∈ ,j N[1 ], with a FIFO queue of length 

di,j −  1, where di,j is the axonal or synaptic delay of conductance, or conduction delay, from pre-synaptic 
neuron i to post-synaptic neuron j. Note that any neuron can be called a pre-synaptic neuron and a 
post-synaptic neuron, depending on the synapse under consideration. We assume di,j ≥  1. At each 
moment t, the tail of the FIFO queue holds −xi

t[ 1], and the head of the FIFO queue holds 

 − + ,xi
t d 1i j . As 

the time progresses by one unit, the value at the head of the FIFO queue is removed, the remaining values 
in the FIFO queues are pushed toward the head by one position, and a new value is inserted at the tail 
of the FIFO queue. We allow a neuron to be connected to itself via a FIFO queue.

Figure 6. The DyBM quickly learned or recalled a target sequence that it had forgotten in previous 
iterations. The figure plots the number of periods that the DyBM took to learn a target sequence in each 
iteration of training in Fig. 5 against the number of iterations that have been completed.
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Each neuron stores a fixed number, L, of neural eligibility traces. For ∈ , L[1 ] and ∈ ,j N[1 ], let 
γ ,
−
j
t[ 1] be the -th neural eligibility trace of the j-th neuron immediately before time t:
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−
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0 1  is the decay rate for the -th neural eligibility trace. That is, the neural eligibility trace 
is the weighted sum of the past values of that neuron, where the recent values have greater weights than 
older ones.

Each neuron also stores synaptic eligibility traces, where the number of the synaptic eligibility traces 
depends on the number of the neurons that are connected to that neuron. Namely, for each of the 
(pre-synaptic) neurons that are connected to a (post-synaptic) neuron j, the neuron j stores a fixed num-
ber, K, of synaptic eligibility traces. For ∈ ,k K[1 ], let α , ,

−
i j k

t[ 1] be the k-th synaptic eligibility trace of 
neuron j for pre-synaptic neuron i immediately before time t:
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where λ ∈ ( , )0 1k  is the decay rate for the k-th synaptic eligibility traces. That is, the synaptic eligibility 
trace is the weighted sum of the values that has reached that neuron, j, from a pre-synaptic neuron, i, 
after the conduction delay, di,j. Again, the recent values have greater weights than older ones.

The values of the eligibility traces stored at neuron j are updated locally at time t using the value of 
neuron j at time t and the values that have reached neuron j at time t from its pre-synaptic neurons. 
Specifically,

( )γ μ γ← + ( ), ,
−







x 3j
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j
t

j
t[ ] [ 1] [ ]

( )α λ α← + ( ), , , ,
− − ,x 4i j k

t
k i j k

t
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t d[ ] [ 1] i j

for ∈ , L[1 ] and ∈ ,k K[1 ], and for neurons i that are connected to j.
The DyBM has learnable parameters that are updated during training, in addition to the structural 

parameters (Supplementary Table S1a) and variables (Supplementary Table S1c), which have been intro-
duced in the preceding. The learnable parameters of the DyBM are the bias and weight (Supplementary 
Table S1b). Specifically, each neuron, j, is associated with a bias, bj. Each synapse, or each pair of neurons 
that are connected via a FIFO queue, is associated with the weight of long term potentiation (LTP weight) 
and the weight of long term depression (LTD weight). The LTP weight from a (pre-synaptic) neuron, i, 
to a (post-synaptic) neuron, j, is characterized with K parameters, ui,j,k for ∈ ,k K[1 ]. The k-th LTP 
weight corresponds to the k-th synaptic eligibility trace for ∈ ,k K[1 ]. The LTD weight from a 
(pre-synaptic) neuron, i, to a (post-synaptic) neuron, j, is characterized with L parameters, , ,vi j  for 
∈ , L[1 ]. The -th LTD weight corresponds to the -th neural eligibility trace for ∈ , L[1 ]. The learn-

able parameters are collectively denoted as θ.
We now define the energy of the DyBM, using the notations introduced in the preceding. Similar to 

the conventional Boltzmann machine15–17, the energy of the DyBM determines what patterns of values 
that the DyBM is more likely to generate. Contrary to the conventional Boltzmann machine, the energy 
associated with a pattern at a moment depends on the patterns that the DyBM has previously generated. 
Let ( )=

∈ ,
xx t

j
t

j N

[ ] [ ]

[1 ]
 be the vector of the values of the neurons at time t. Let = ( )−

<
x xt s

s t
[: 1] [ ]  be the 

sequence of the values of the DyBM before time t. The energy of the DyBM at time t depends not only 
on x[t], but also on x[:t−1], which is stored as eligibility traces in the DyBM. Let ( )θ

−E x xt t[ ] [: 1]  be the 
energy of the DyBM at time t. The lower the energy of the DyBM with particular values x[t], the more 
likely the DyBM takes those values.

The energy of the DyBM can be decomposed into the energies of the individual neurons at time t:
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The energy of neuron j at time t depends on the value it takes as follows:
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where we define
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The first term of the right side of equation (6) shows that, roughly speaking, a neuron having a large 
positive bias is likely to spike ( = )x 1j

t[ ]  at any time t, because its energy tends to be low when it spikes. 
More precisely, the energy of the neuron is determined by the balance among the four terms on the right 
side of equation (6).

The second term of the right side corresponds to LTP. Consider a pair of a pre-synaptic neuron, i, and 
a post-synaptic neuron, j, whose LTP weight, ui,j,k for ∈ ,k K[1 ], has a large positive value. Then j is likely 
to spike at time t, if the spikes from i have arrived shortly before time t, which makes α , ,

−
i j k

t[ 1] large for 
∈ ,k K[1 ].

The third term of the right side corresponds to LTD. LTD suggests that a post-synaptic neuron, j, is 
unlikely to spike shortly before a spike from a pre-synaptic neuron, i, reaches j. The corresponding LTD 
weight, , ,vi j  for ∈ , L[1 ], controls the strength of LTD for that synapse. The FIFO queue holds the 
spikes generated by i for the last di,j −  1 units of time, and those spikes reach j within a short period of 
at most di,j −  1 units of time. Here, β , ,

−
i j

t[ 1], as defined in equation (7), takes a positive value when the FIFO 
queue from neuron i to neuron j has spikes ( =x 1i

s[ ]  for some of ∈ − + , −,s t d t[ 1 1]i j ). The more 
spikes the FIFO queue has, and the closer to the head of the FIFO queue those spikes are, the larger the 
value of β , ,

−
i j

t[ 1] will be. Equation (6) suggests that the post-synaptic neuron, j, is unlikely to spike, when 
β , ,
−
i j

t[ 1] is large and the corresponding LTD weight, , ,vi j  for ∈ , L[1 ], has a large positive value.
The last term of the right side can also be considered LTD. The intuition is that the third term only 

considers the spikes that are going to reach the post-synaptic neuron within the period of conduction 
delay, while the last term considers the spikes that are going to arrive after the conduction delay. In the 
last term, neuron i plays the role of a post-synaptic neuron, and neuron j is a pre-synaptic neuron, con-
trary to their roles in the third term. The LTD weight is thus , ,v j i , rather than , ,vi j , for ∈ , L[1 ].

Consider a synapse from a pre-synaptic neuron, j, to a post-synaptic neuron, i, that has a large positive 
value of , ,v j i  for ∈ , L[1 ]. The neural eligibility trace, γ ,

−
i
t[ 1], stores information about the spikes that 

the post-synaptic neuron i generated before time t. Namely, the value of γ ,
−
i
t[ 1] is high when neuron i 

spikes shortly before time t. The post-synaptic neuron is unlikely to have spiked shortly before time t, if 
the pre-synaptic neuron spikes at time t, which will reach the post-synaptic neuron after the conduction 
delay. Specifically, if i spiked at time t −  δ and j spiked at time t, then that spike from j would reach i after 
the conduction delay, at time t +  dj,i, which is δ +  dj,i units of time after i spiked. LTD suggests that such 
a pair of spikes is unlikely to be generated when δ +  dj,i is small. The causality is, however, that the 
pre-synaptic neuron is unlikely to spike at time t (i.e., =x 1j

t[ ] ) if the post-synaptic neuron has recently 
spiked.

The probability that a neuron, j, takes a particular value, ∈ ,x {0 1}j
t[ ] , at time t depends on x[:t−1], 

through the values of the eligibility traces, and can be expressed as follows:

( )
( )

( )
( )
τ

τ
=

−

∑ − ( )
,

( )
θ

θ

θ
,

−

−
,

−

∈ ,
−

,
−





P x
E x

E x
x

x

x

exp

exp 8
j j

t t
j j

t t

x j
t

[ ] [: 1]

1 [ ] [: 1]

{0 1}
1 [: 1]

where τ is a parameter called temperature. The values of the neurons at time t are conditionally inde-
pendent of each other, given x[:t−1]. Then the probability that the DyBM takes x[t] at time t can be 
expressed as follows:

( )∏( ) = .
( )

θ θ
−

=
,

−P P xx x x
9

t t

j

N

j j
t t[ ] [: 1]

1

[ ] [: 1]

The corresponding log-likelihood is given by

( )∑( ) = .
( )

θ θ
−

=
,

−P P xx x xlog log
10

t t

j

N

j j
t t[ ] [: 1]

1

[ ] [: 1]

We generated the sequential patterns in Fig. 2 and Fig. 5 by using equation (8) with an infinitesimally 
small temperature. Specifically, we let τ →  0, so that equation (8) only takes 0 or 1. At each moment t, 
the values of the neurons, x j

t[ ] for ∈ ,j N[1 ], are deterministically generated. Those values are used to 
update the eligibility traces, before the values at the next moment, t +  1, are generated.

Figure  4 shows the magnitudes of the log-likelihood (or negative log-likelihood) calculated using 
equation  (10). The values, x j

t[ ] for ∈ ,j N[1 ], presented to the DyBM to calculate its log-likelihood at 
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time t are used to update the eligibility traces, before the values at the next moment, t +  1, are 
presented.

Learning rule. The probability distribution of the values that the DyBM generates depends on the 
values of the learnable parameters, θ, as is evident in equation (8). Below, we describe how to train those 
learnable parameters.

When the DyBM is presented with the values, x[t], at time t, we update its learnable parameters in the 
direction of increasing log-likelihood:

θ θ η← + ∇ ( ), ( )θ θ
−P x xlog 11t t[ ] [: 1]

where η is the learning rate. This in turn increases the log likelihood of the sequence of the values up 
to time t:

∑( ) = ( ).
( )

θ
≤

−p Px x xlog log
12

t

s t

s s[: ] [ ] [: 1]

During training, we keep the temperature at τ =  1.
Specifically, when the value, x j

t[ ], is presented to a neuron, j, its bias is updated as follows:

( )η← + − , ( )θ
b b x X 13j j j

t
j
t[ ] [ ]

where

= ( | ) ( )θ
θ,

−X P x1 14j
t

j
t[ ] [: 1]

denotes the expectation of the value that j generates at time t given the values of the parameters and 
variables of the DyBM immediately before that time. Namely, the bias is increased if the value presented 
to the neuron is greater than what is expected. Otherwise, the bias is decreased. The magnitude of the 
update is proportional to the difference between the presented value and the expected value. The learn-
ing rule for the bias is similar to the Hebb rule16,17 except that, here, the expression of expectation (14) 
depends on the past values of the neurons via equation (8). The term with the expectation has the role 
of homeostatic plasticity, which keeps the spiking probability relatively constant54,55. Analogous terms of 
homeostatic plasticity will appear in the following learning rule for the other parameters.

The LTP weight is increased or decreased analogously to a bias as follows:

( )η α← + − ( )θ
, , , , , ,

−u u x X 15i j k i j k j
t

j
t

i j k
t[ ] [ ] [ 1]

for each , ∈ ,i j N[1 ] and ∈ ,k K[1 ]. Now, the magnitude of the update is also proportional to the cor-
responding synaptic eligibility trace, α , ,

−
i j k

t[ 1]. The learning rule for the LTP weight takes a form that is 
analogous to the REINFORCE algorithm56, where η is called a learning rate factor, x j

t[ ] corresponds to 
reinforcement, 

θ
X j

t[ ]  corresponds to the reinforcement baseline, and α , ,
−

i j k
t[ 1] is called a characteristic 

eligibility, although the particular forms of individual factors are unique to the DyBM.
We can also express equation (15) as follows:

( )η α α← + − ( )θ
, , , , , ,

−
, ,
−u u x X 16i j k i j k i j k

t
j
t

i j k
t

j
t[ 1] [ ] [ 1] [ ]

Namely, the LTP weight is increased if the product of the presented value and the value of the synaptic 
eligibility trace is greater than what is expected. Otherwise, the LTP weight is decreased. Increasing ui,j,k 
results in increasing the probability that neuron j spikes particularly at the time s when α , ,i j k

s[ ]  is high. This 
is what we expect with LTP.

The LTD weight is increased or decreased, depending on two terms:

( ) ( )η β η γ← + − + − ( )θ θ, , , , , ,
−

,
−

 

 

v v X x X x 17i j i j j
t

j
t

i j
t

i
t

i
t

j
t[ ] [ ] [ 1] [ ] [ ] [ 1]

for each , ∈ ,i j N[1 ], and ∈ , L[1 ]. Again, we can express equation (17) equivalently as follows:

( ) ( )η β β η γ γ← + − + − , ( )θ θ
, , , , , ,

−
, ,
−

,
−

,
−

 

   

v v X x X x 18i j i j i j
t

j
t

i j
t

j
t

j
t

i
t

j
t

i
t[ 1] [ ] [ 1] [ ] [ 1] [ ] [ 1] [ ]

which can then be divided into two steps:
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( )η β β← + − ( )θ
, , , , , ,

−
, ,
−
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j
t[ 1] [ ] [ 1] [ ]

( )η γ γ← + − . ( )θ
, , , , ,

−
,
−

 

 

v v X x 20i j i j j
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i
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Equation (19) involves the product of β , ,
−
i j

t[ 1] and x j
t[ ], where we should recall that the value of β , ,

−
i j

t[ 1] in 
equation (7) depends on the spikes traveling from neuron i to neuron j. The LTD weight is increased if 
the expected value of this product is greater than the corresponding observed value. Increasing vi,j,l 
decreases the probability that neuron j spikes at time t when β , ,

−
i j

t[ 1] is high, which is what we expect with 
LTD. Equation  (20) involves the product of γ ,

−
j
t[ 1], the neural eligibility trace of neuron j, and xi

t[ ], the 
value of neuron i. The LTD weight is increased if the expected value of this product is greater than the 
corresponding observed value. Increasing vi,j,l decreases the probability that neuron i spikes at time s 
when γ ,j

s[ ] is high.
We trained the DyBM with the online gradient ascent method33 before letting it generate the sequen-

tial patterns shown in Fig. 2 and Fig. 5 and before presenting it with the anomalous sequence shown in 
Fig. 4. Specifically, after presenting the value, x[t], to the DyBM at time t, we update its bias according to 
equation (13), its LTP weight according to equation (15), and its LTD weight according to equations (19 
and 20). Before presenting the next value, x[t+1], to the DyBM, we also update the eligibility traces accord-
ing to equations (1 and 2) as well as the FIFO queues.

We initially set the learning rate at η =  1 and adjust it for each parameter as the training progresses, 
using AdaGrad34. Specifically, for m ≥  0, let ηm be the learning rate of a parameter, ξ ∈  θ, after ξ is updated 
m times. We update ξ according to

ξ ξ η← + Δ , ( )21m m

where Δ m is the corresponding derivative of the log-likelihood, equation  (10), with respect to ξ. For 
m ≥  1, we adjust ηm according to

η
η

=
∑ Δ

,
( )=

− 22
m

s
m

s

0

0
1 2

where we set η0 =  1. More precisely, the learning rates for the LTD weight are adjusted independently 
between equation (19) and equation (20) for each , ∈ ,i j N[1 ] and ∈ , L[1 ].

Parameters. Throughout the experiments, the N neurons were densely connected to each other, 
and the conduction delay was sampled from an integer uniform distribution between 1 and 9 (see 
Supplementary Table S2). In particular, each neuron was connected to itself via a FIFO queue. Each neu-
ron held L =  3 neural eligibility traces, whose decay rates were μ1 =  0.25, μ2 =  0.5, or μ3 =  0.75. A neuron 
also held K =  3 synaptic eligibility traces, whose decay rates were λ1 =  0.25, λ2 =  0.5, or λ3 =  0.75, for 
each of the N FIFO queues coming into that neuron. The values of these structural parameters were fixed.

Before training, we set the initial values of the variables (Supplementary Table S1c) to 0. This corre-
sponds to presenting a sequence of blank patterns, or zero vectors, for a sufficiently long period before 
the training. We sample the initial values of the learnable parameters (Supplementary Table S1b) inde-
pendently from a normal distribution with mean 0.0 and standard deviation 0.1.

We implemented the algorithm for training DyBMs in Java™ and executed it on a Java Virtual 
Machine with the default setting for the maximum heap size (2 GB) and ran it on a single thread of an 
Intel Xeon E5-2670 processor on a workstation equipped with Microsoft Windows 7 Professional edition.
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