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Abstract: Background: Stress hyperglycemia is common in trauma patients. Increasing injury severity
and hemorrhage trigger hepatic gluconeogenesis, glycogenolysis, peripheral and hepatic insulin
resistance. Consequently, we expect glucose levels to rise with injury severity in liver, kidney and
spleen injuries. In contrast, we hypothesized that in the most severe form of blunt liver injury, stress
hyperglycemia may be absent despite critical injury and hemorrhage. Methods: All patients with
documented liver, kidney or spleen injuries, treated at a university hospital between 2000 and 2020
were charted. Demographic, laboratory, radiological, surgical and other data were analyzed. Results:
A total of 772 patients were included. In liver (n = 456), spleen (n = 375) and kidney (n = 152) trauma,
an increase in injury severity past moderate to severe (according to the American Association for
the Surgery of Trauma, AAST III-IV) was associated with a concomitant rise in blood glucose levels
independent of the affected organ. While stress-induced hyperglycemia was even more pronounced
in the most severe forms (AAST V) of spleen (median 10.7 mmol/L, p < 0.0001) and kidney injuries
(median 10.6 mmol/L, p = 0.004), it was absent in AAST V liver injuries, where median blood glucose
level even fell (5.6 mmol/L, p < 0.0001). Conclusions: Absence of stress hyperglycemia on hospital
admission could be a sign of most severe liver injury (AAST V). Blood glucose should be considered
an additional diagnostic criterion for grading liver injury.

Keywords: stress hyperglycemia; liver injury; kidney injury; spleen injury; trauma; outcome; AAST;
blood glucose; diagnostic criterion; parenchymatous organs

1. Introduction

Stress hyperglycemia is common in trauma patients, and critical illness on hospital
admission and is often associated with poor outcome [1–7]. This stress hyperglycemia is
caused by neuroendocrine, inflammatory and metabolic responses to trauma-associated
stressors. Pain, anxiety and psychogenic stress may lead to activation of the sympathetic
nervous system and the hypothalamic–pituitary axis, increasing circulating catecholamines.
A traumatic brain injury may even lead to a sympathetic storm [8,9], thus further am-
plifying this neuroendocrine response. Another very strong trigger for a stress response
such as stress hyperglycemia is hemorrhage [10], which is mediated by baroreceptors
and multifactorially released cytokines [11]. Furthermore, tissue hypoxemia and injury,
endothelial damage and complement activation [12,13] kick off an avalanche of immune-
stimulating and -modulating chemokines, interleukins [14–16], damage-associated molec-
ular patterns (DAMPS) and multiple cell line activations [13,17]. Circulating and locally
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secreted tumor necrosis factor (TNF)α [18,19] and catecholamines [20] lead to hepatic
insulin resistance, which annuls glucose homeostasis. By triggering rampant hepatic gluco-
neogenesis and glycogenolysis both processes are decoupled from physiological feedback
mechanisms [21–23] and, additionally, are fed by free fatty acids released by catecholamines
from fat tissue, [24,25] but also from lactate and alanine of muscle tissue [25–27].

TNFα-associated hepatic insulin resistance is probably mediated by TNF receptors
by activating a kinase (c-Jun-NH2-terminal kinase), which in turn catalyzes serine phos-
phorylation of insulin receptor substrate 1 (IRS-1). This blocks the phosphatidylinositol
3-kinase (PI3K) and protein kinase B (AKT) pathway of intracellular metabolic effects of
insulin [28]. Catecholamine (epinephrine)-mediated insulin resistance is conveyed via 3′–
5′-cyclic adenosine monophosphate (cyclic AMP or cAMP) [29], activating protein kinase A
(PKA) [30]. On the one hand, phosphorylase kinase is activated, itself stimulating glycogen
phosphorylase and therefore leading to a disintegration of glycogen stores and release
of glucose [31,32]. On the other hand, PKA inhibits in parallel substrate flux through
phosphofructokinase-1 (PFK-1) (rate-limiting enzyme in glycolysis), thereby enhancing the
delivery of glucose by the liver [33,34]. Moreover, peripheral insulin resistance—mainly
of the muscles and probably by comparable mechanisms—limits glucose uptake and
metabolism [21,35].

Probably, the pathophysiological purpose of all these varying responses to trauma is to
shift energysubstrates tovitalorgans, initiate immunedefense, andrepairmechanisms [20–22,25,26,36],
which can therefore be seen as survival responses. Consequently, according to the literature,
hypoglycemia is a rare finding in trauma patients at hospital admission and is triggered
mainly by non-traumatic causes, such as anti-diabetic drug overdose, alcohol intoxication
or chronic liver disease [37,38]. To date, there has been no consistency in defining blood
glucose levels, for which reason this trial refrains from specifying any threshold values for
stress hyperglycemia.

Injury severity of parenchymatous organs, such as liver, kidney or spleen, is often
radiologically categorized according to the classification of the American Association
for the Surgery of Trauma, AAST [39,40], Table 1. In doing so, the extent of lacerations,
contusions or hematomas must be exactly measured. However, specifying proportions of
parenchymal disruption of one or both hepatic lobes to distinguish between liver injury
AAST IV and V may be very challenging. Active bleeding is included in AAST ≥ III
injuries of the liver and kidney and AAST ≥ IV injuries of the spleen [39,40]. AAST V
injuries of the liver are furthermore defined as major juxtahepatic venous injury (vena cava,
central major hepatic veins) or lacerations resulting in parenchymal disruption of more
than 75% of one hepatic lobe [39,40]. Assuming the liver is the primary origin of stress
hyperglycemia, it seems clear that such destructive liver injuries, partially even resulting in
devascularization (inflow or outflow), can impede hepatic glucose liberation provoked by
trauma or hemorrhage.

Consequently, it was hypothesized that parallel to injury severity and extent of hemor-
rhage in hepatic, renal or splenic injuries, blood glucose levels should increase and therefore
lead to significant stress hyperglycemia. However, it was also hypothesized that in the
case of most severe liver injuries (AAST V), defined as major devascularization (inflow or
outflow) and/or parenchymal disruption of more than 75% of one hepatic lobe, hepatic
gluconeogenesis and glycogenolysis may become insufficient, consequently leading to
absence of stress hyperglycemia. This may be a leading diagnostic mark.
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Table 1. Organ Injury Scale (OIS) of the American Association for Surgery of Trauma (AAST): 2018 revision.

AAST AIS Liver Spleen Kidney

I 2 Hematoma Subcapsular, <10%
surface area Subcapsular, <10% surface area

Subcapsular hematoma
and/or parenchymal

contusion without
laceration

Laceration Capsular tear, <1%
parenchymal depth

Capsular tear, <1%
parenchymal depth

II 2 Hematoma

Subcapsular, 10–50%
surface area,

intra-parenchymal, <10 cm
in diameter

Subcapsular, 10–50%
surface area

Intra-parenchymal, <5 cm
in diameter

Perirenal hematoma
confined to Gerota fascia

Laceration
Capsular tear, 1–3 cm
parenchymal depth,

<10 cm length
1–3 cm parenchymal depth

Renal parenchymal
laceration ≤1 cm depth

without urinary
extravasation

III 3 Hematoma

Subcapsular, >50% surface
area of ruptured subcapsular
or parenchymal hematoma;
intraparenchymal >10 cm

Subcapsular, >50% surface area
Ruptured subcapsular or

parenchymal hematoma ≥5 cm

Laceration Capsular tear, >3 cm
parenchymal depth

>3 cm parenchymal depth or
involving trabecular vessels

Renal parenchymal
laceration >1 cm depth

without collecting system
rupture or urinary

extravasation

Vascular
Vascular injury with active
bleeding contained within

liver parenchyma

Any injury in the presence
of a kidney vascular injury

or active bleeding contained
within Gerota fascia

IV 4 Laceration
Parenchymal disruption

involving 25–75% of hepatic
lobe or 1–3 segments

Parenchymal laceration
involving segmental or hilar

vessels producing >25%
devascularization

Parenchymal laceration
extending into urinary
collecting system with
urinary extravasation

Renal pelvis laceration
and/or complete

ureteropelvic disruption

Vascular

Vascular injury with active
bleeding breaching the liver

parenchyma into the
peritoneum

Any injury in the presence of a
splenic vascular injury or active

bleeding confined within
splenic capsule

Segmental renal vein or
artery injury

Active bleeding beyond
Gerota fascia into the
retroperitoneum or

peritoneum
Segmental or complete

kidney infarction(s) due to
vessel thrombosis without

active bleeding

V 5 Laceration
Parenchymal disruption

involving >75% of hepatic
lobe

Shattered spleen
Shattered kidney with loss
of identifiable parenchymal

renal anatomy

Vascular

Juxtavenous hepatic injuries;
i.e., retrohepatic vena

cava/central major hepatic
veins

Any injury in the presence of
splenic vascular injury with

active
bleeding extending beyond the

spleen into the peritoneum

Main renal artery or vein
laceration or avulsion of

hilum
Devascularized kidney with

active bleeding

Additional points: Advance one grade for multiple injuries up to Grade III. Vascular injury (i.e., pseudoaneurysm or AV fistula)
appears as a focal collection of vascular contrast that decreases in attenuation on delayed images. Active bleeding: focal or diffuse
collection of vascular contrast that increases in size or attenuation in a delayed phase. Details from [40,41].
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2. Materials and Methods

The study was reviewed and approved by the Ethics Committee of the Medical
University of Innsbruck (EK 1394/2020), and written informed consent was waived due to
the observational character of the study.

This single-center analysis of detailed medical information on hepatic, splenic and
renal injuries was performed by searching the local hospital information system (Kranken-
hausinformationssystem i.s.h.med PowerChart by Cerner Österreich GmbH, Vienna, Aus-
tria), which is prospectively maintained and auditable. A pre-existing register developed
over a 17-year period (2000–2016) for the analysis of treatment strategies and associated
outcomes in blunt liver, spleen and kidney injuries [41,42] was expanded up to 2020,
extended to include blood glucose values on hospital admission and re-analyzed with
different inclusion and exclusion criteria (Figure 1).
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Figure 1. CONSORT flow diagram of patient population.

All trauma patients with suspected blunt hepatic, splenic or renal injury, treated at
Innsbruck Medical University Hospital between 1 January 2000 and 31 August 2020 (inclu-
sion criteria) were analyzed regarding stress hyperglycemia as a function of injury severity.

Beside the above-mentioned inclusion criteria, the following exclusion criteria were
applied: missing blood glucose levels within the first hour following hospital admission,
insufficient documentation of radiologic findings or laboratory analyses regarding the scien-
tific question, admission more than 12 h beyond trauma, death on arrival and hemorrhages
due to innate malformations (Figure 1).

Patients transferred from district hospitals to our Level 1 trauma center after re-
ceiving diagnostics only and within the 12-h timeframe were also included. Patients
with diabetes mellitus were included. All patients underwent either selective abdomi-
nal/thoracic/cranial or whole body dual or triple phase computed tomography (CT) scans.
CT images were re-evaluated for trial purposes regarding injury grading by two trained
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radiologists using our picture archiving and communication system (AGFA IMPAX; AGFA
Health Care, Greenville, SC, USA).

Injury scoring was performed on the basis of the AAST classification for blunt liver,
spleen or kidney trauma in all patients who suffered injuries to at least one of these organs
and, additionally, in patients who suffered injuries to one of these organs but excluding
severe co-injuries classified as Abbreviated Injury Scale (AIS) 4–6 [43] in any other organ or
organ system. This was done to demonstrate the independent effects of particular organ
injuries on blood glucose levels.

Primary outcome parameter was the admission blood glucose level depending on
severity of injury (AAST I to V) to liver, spleen, and kidney. Secondary outcome parameters
were admission blood glucose levels additionally depending on the existence of diabetes
mellitus and severe co-injuries (AIS 4–6).

Descriptive statistical analysis was performed and reported proportions (%) and
medians with range due to non-normal distribution of data (Shapiro–Wilk test). Overall
distribution of blood glucose within the subgroups with and without co-injuries (AIS
4–6) as well as with and without diabetes mellitus was analyzed with the Kruskal–Wallis
test. Within-subgroup differences (e.g., between AAST IV and V) were analyzed with the
Mann–Whitney U test. Because of the small subgroups, two-tailed p values lower than
0.05 were accepted as significance level throughout the study. The confidence intervals
were defined as 95% CI, accordingly. Data analysis was performed with SPSS 26.0 (IBM
Corporation, Armonk, NY, USA).

3. Results
3.1. Study Population

During the study period, 879 patients presenting at our Level 1 trauma center with
suspected hepatic, splenic or renal injury were assessed for eligibility. Following application
of inclusion and exclusion criteria 772 patients, comprising 456 liver, 375 spleen and 152
kidney injuries, were ultimately included in the study; 189 patients had more than one
organ injured (Figure 1). Median age was 29 (1–89) years, 238 (31%) patients were female.
During hospitalization, 26 (3.4%) patients deceased (Table 2).

Compared to the 772 included patients, the 107 excluded patients had a comparable
median age (31 (interquartile range: 16–43) years) and gender distribution (31.8% female).
Of them, 50 (46.8%) suffered from hepatic, 45 (42.1%) from spleen, and six (6.6%) patients
from renal injury. In sum, 13 (12.1%) patients deceased during in-hospital stay. As depicted
in Figure 1, nine patients were excluded due to malformation, missing confirmation of the
suspected injury or no trauma. In sum, aside from an increased—mainly early—mortality
rate, the excluded population is comparable to the included population. Therefore, it was
concluded that the included population is representative and inclusion of the excluded
population would not have a significant impact on the presented results. Pancreatic injuries
were rare in this population. Merely eight patients suffered from concomitant pancreatic
injury: five pancreatic contusions were treated conservatively and three pancreatic ruptures
were in need of surgical intervention. One segment resection, one surgical closure of
the rupture and one complete pancreas resection were performed. Severe pancreatic
involvement was mainly concomitant to liver injuries. Blood glucose differed widely and
independently of the extent of pancreatic injury, namely from 5.05 to 24.81 mmol/L. Based
on the limited number of those affected, the authors could not conclude that pancreatic
injuries had a relevant impact on initial blood glucose in this patient population.
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Table 2. Study population characteristics, n = 772.

Characteristics Median/Number Range/Percent

Age 29 1–89
female/male 238/534 30.8/69.2
Body mass index (BMI) 23.0 13.1–43.2
Deceased 26 3.4
Hospital length of stay (d) 13 0–112
Blood glucose (mmol/L) 1 7.16 2.33–27.19 1

ISS 2 21 1–75
Accident mechanism

Accidents with skis, sleigh, or snowboard 301 39.0
Accident with motor vehicle 148 19.2
Accident with moped or motorbike 81 10.5
Accident with bike, scooter, skateboard 71 9.2
Fall > 3 m 67 8.7
Occupational injury 28 3.7
Unknown mechanism 19 2.5
Accident with large animal 18 2.3
Accident as pedestrian 14 1.8
Fall < 3 m 11 1.4
Accident with flex wing, parachute or similar 6 0.8
Fall down stairs 5 0.6
Brawl 3 0.4

Co-morbidities
Arterial hypertension 36 4.7
Other disease 35 4.5
Psychiatric disease 25 3.2
Allergy/atopic dermatitis 22 2.8
Neurologic disease 18 2.3
Cardiac insufficiency and other cardiac

diseases 16 2.1

Diabetes mellitus 13 1.7
Alcohol abuse 14 1.8
Adiposity 12 1.6
Endocrinologic disease 11 1.4
Malign disease 10 1.3
Chronic obstructive pulmonary disease 8 1.0
Renal insufficiency 8 1.0
Autoimmune disease 8 1.0
Metabolic disease 6 0.8
Coronary heart disease 5 0.6
Bronchial asthma 5 0.6

Laboratory findings 1

Hemoglobin mg/dL 121 34–187
Thrombocytes G/L 198 14–835
Leukocytes G/L 13.1 1.5–39.1
Lactate mg/dL 15.4 4–176
pH 7.367 6.882–7.642
Bicarbonate standardized mmol/L 22.1 8.3–27.0
Base excess mmol/L −2.0 −15.6–11.0
Potassium mmol/L 3.8 2.32–7.62
Anion gap mmol/L 21.8 8.3–27.0

1 Measured within first hour following admission; 2 Injury Severity Score [44].

3.2. Liver Injuries

We found 456 patients with liver injuries; they were classified as 80 patients with
AAST I, 125 patients with AAST II, 176 patients with AAST III, 64 patients with AAST IV,
and 11 patients with AAST V. Overall distribution of median blood glucose levels among
groups AAST I to V, differed highly significantly (Figure 2). Initial blood glucose levels
increased highly significantly from 6.58 mmol/L (4.50–24.64 mmol/L) in patients with
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AAST I injuries to 8.60 mmol/L (5.55–27.19 mmol/L) in patients with AAST IV injuries
(p < 0.0001). In patients with AAST V injuries, median initial blood glucose dropped to
5.77 mmol/L (2.33–7.83 mmol/L), which was significantly lower than in AAST I (p = 0.01)
and IV injuries (p < 0.0001) (Figure 2a).
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Figure 2. Rising blood glucose levels in parallel to severity of liver injury with lowest blood glucose levels in patients with
most severe liver injury (AAST V). Outliers of high blood glucose levels in less severe injuries (AAST I–III) were found
in patients with diabetes mellitus disease or severe co-injuries (AIS 4–6) (a–c). In patients without severe co-injuries and
without diabetes mellitus (d), the effect of injury severity and hemorrhage on blood glucose levels was demonstrated,
meaning the greater the severity of injury and the hemorrhage extent, the higher the stress hyperglycemia. In patients
with most severe liver injury (AAST V), stress hyperglycemia is absent. AAST: American Association for the Surgery of
Trauma [27,28]; AIS: Abbreviated Injury Scale [43].

Exclusion of patients with diabetes mellitus (n = 6) resulted in very similar results
(Figure 2b). Exclusion of patients with severe co-injuries (AIS 4–6, n = 200) (Figure 2c) and,
additionally, patients with diabetes mellitus (Figure 2d) demonstrated more clearly the
effects of injury severity on blood glucose levels (Table 3).



Diagnostics 2021, 11, 1667 8 of 15

Table 3. Blood glucose levels in mmol/L for liver, spleen and kidney injuries as function of injury severity with and without co-injuries AIS 4–6 and diabetes mellitus.

AAST I AAST II AAST III AAST IV AAST V p AAST I AAST II AAST III AAST IV AAST V p

Liver All patients with liver injuries Patients with liver injuries without co-injuries AIS 4–6

Median 6.58 6.88 6.94 8.60 5.77 <0.0001 6.16 6.22 6.41 8.96 5.58 <0.0001

Min-max 4.50–24.64 4.33–22.42 3.77–16.32 5.55–27.19 2.33–7.83 4.50–15.26 4.33–9.05 3.77–14.87 5.55–27.19 3.83–6.94

IQR 5.70–7.95 5.77–8.21 6.05–8.12 7.31–10.91 4.36–6.33 5.63–6.63 5.34–7.44 5.87–7.56 7.99–11.20 5.01–6.06

CI 95% 6.90–8.39 7.05–8.04 7.11–7.71 8.82–10.80 4.32–6.29 5.90–7.12 6.15–6.71 6.54–7.19 9.07–11.75 4.71–6.28

Patients with liver injuries without diabetes mellitus Patients with liver injuries without co-injuries AIS 4–6 without diabetes mellitus

Median 6.52 6.80 6.94 8.52 5.77 <0.0001 6.08 6.22 6.41 8.91 5.58 <0.0001

Min-max 4.50–24.64 4.33–22.42 3.77–16.32 5.55–27.19 2.33–7.83 4.50–7.77 4.33–9.05 3.77–14.87 5.55–27.19 3.83–6.94

IQR 5.67–7.83 5.77–8.21 6.05–8.13 7.17–10.75 4.36–6.33 5.58–6.59 5.37–7.44 5.87–7.56 7.88–11.07 5.01–6.06

CI 95% 6.77–8.24 7.04–8.04 7.11–7.71 8.59–10.36 4.42–6.19 5.85–6.40 6.14–6.70 6.54–7.19 8.75–11.15 4.71–6.28

Spleen All patients with spleen injuries Patients with spleen injuries without co-injuries AIS 4–6

Median 7.13 6.88 7.08 8.32 10.71 <0.0001 6.72 6.55 6.88 8.21 9.41 <0.0001

Min-max 4.83–24.81 3.88–24.25 4.83–13.10 5.05–22.42 5.61–18.48 4.83–9.43 4.83–21.48 4.83–10.32 5.05–13.65 5.61–12.43

IQR 5.90–8.57 5.80–8.69 6.10–8.03 6.94–9.55 9.16–12.43 5.83–7.49 5.72–7.38 5.88–7.44 6.91–9.42 7.42–11.17

CI 95% 6.98–8.39 7.17–8.58 6.96–7.46 8.23–9.92 9.74–12.16 6.34–7.28 6.18–7.97 6.58–7.07 7.96–8.61 8.09–10.40

Patients with spleen injuries without diabetes mellitus Patients with spleen injuries without co-injuries AIS AIS 4–6without diabetes mellitus

Median 6.99 6.88 7.10 8.32 10.60 <0.0001 6.66 6.49 6.88 8.21 9.41 <0.0001

Min-max 4.83–12.71 3.88–24.25 4.83–13.10 5.05–22.42 5.61–18.09 4.83–9.43 4.83–9.60 4.83–10.32 5.05–13.65 5.61–12.43

IQR 5.88–8.30 5.80–8.69 6.10–8.05 6.94–9.55 8.91–11.58 5.83–7.38 5.72–7.30 5.88–7.44 6.91–9.42 7.42–11.17

CI 95% 6.88–7.41 7.13–8.39 6.96–7.46 8.23–9.29 9.74–12.16 6.27–7.19 6.23–7.10 6.58–7.07 7.72–8.85 8.09–10.40

Kidney All patients with kidney injuries Patients with kidney injuries without co-injuries AIS 4–6

Median 6.49 8.21 7.60 8.02 9.60 0.006 6.02 7.44 6.94 8.10 9.10 0.0009

Min-max 5.27–11.16 4.94–24.81 5.11–24.25 5.44–19.59 8.88–18.48 5.27–9.60 5.94–11.99 5.11–12.54 6.05–19.59 8.88–10.60

IQR 5.88–8.27 6.44–11.16 6.55–8.88 6.94–9.84 8.94–10.48 5.66–7.21 6.33–7.88 5.88–7.60 6.98–10.05 8.99–9.85

CI 95% 6.52–7.85 7.35–11.27 7.26–9.24 7.87–9.36 8.29–13.73 5.87–7.30 6.67–8.16 6.45–7.81 7.82–9.80 8.66–10.39

Patients with kidney injuries without diabetes mellitus Patients with kidney injuries without co-injuries AIS 4–6without diabetes mellitus

Median 6.49 7.94 7.60 7.99 9.10 0.02 6.02 7.44 6.94 8.10 9.10 0.001

Min-max 5.27–11.16 4.94–22.42 5.11–24.25 5.44–13.62 8.88–10.60 5.27–9.60 5.94–11.99 5.11–12.54 6.05–11.54 8.88–10.60

IQR 5.88–8.27 6.44–11.04 6.55–8.88 6.94–9.60 8.88–10.10 5.66–7.21 6.33–7.88 5.88–7.60 6.97–9.91 8.99–9.85

CI 95% 6.52–7.85 8.14–10.62 7.26–9.24 7.77–8.99 7.06–11.97 5.87–7.30 6.67–8.16 6.45–7.81 7.76–9.06 8.66–10.39

CI: Confidence interval; range: minimum and maximum; IQR: interquartile range.
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Of 11 patients with AAST V injuries, only two deceased: one due to uncontrollable
bleeding of the liver and partial avulsion of the inferior vena cava, one due to uncontrollable
bleeding of the liver and multiple fractures to the pelvis. Of the nine surviving patients
with AAST V injury, only one required glucose administration to maintain physiological
blood glucose levels during the days subsequent to admission. This was a 13-year-old
child, who also needed repeated administration of coagulation factors. In all other patients,
blood glucose levels improved over time without additional glucose administration. In
patients with initially low or very low (hypoglycemic) blood glucose levels, blood glucose
levels recovered spontaneously to slightly increased blood glucose levels following severe
trauma. Apparently, the residual hepatic tissue was able to cover physiologic needs, but
needed several hours to adapt. Nevertheless, the relatively low blood glucose levels were
of high diagnostic importance.

3.3. Spleen Injuries

We found 375 patients with spleen injuries; they were graded as 62 patients with
AAST I, 83 patients with AAST II, 142 patients with AAST III, 59 patients with AAST
IV, and 29 patients with AAST V injuries. Overall distribution of median blood glucose
levels among groups AAST I to V differed highly significantly (Figure 3). Initial blood
glucose levels rose highly significantly from 7.13 mmol/L (4.83–24.81 mmol/L) in patients
with AAST I to 10.71 mmol/L (5.61–18.48 mmol/L) in patients with AAST V injuries.
Initial blood glucose in patients with AAST V injuries rose comparably; there was no
drop (Figure 3a). Exclusion of patients with diabetes mellitus (n = 6) resulted in very
similar results (Figure 3b). Exclusion of patients with severe co-injuries (AIS 4–6, n = 163)
(Figure 3c) and, additionally, patients with diabetes mellitus (Figure 3d) eliminated outliers
and demonstrated more clearly that initial blood glucose rose continuously with rising
severity of injury and blood loss. Blood glucose in patients with AAST IV and AAST V
injuries of the spleen differed highly significantly from that of patients with AAST I injuries
(Figure 3c,d, Table 3).

3.4. Kidney Injuries

Kidney injuries were far more seldom. Overall, 152 patients were analyzed; they were
graded as 21 patients with AAST I, 36 patients with AAST II, 41 patients with AAST III,
48 patients with AAST IV, and six patients with AAST V injuries. Overall distribution of
median blood glucose levels among groups AAST I to V differed significantly. Initial blood
glucose levels rose highly significantly from 6.49 mmol/L (5.27–11.16 mmol/L) in patients
with AAST I to 9.60 mmol/L (8.88–18.48 mmol/L) in patients with AAST V injuries. There
was no drop in median initial blood glucose in patients with AAST V injuries (Figure 4a).
Exclusion of patients with diabetes mellitus (n = 3) resulted in similar results (Figure 4b).
Exclusion of patients with severe co-injuries (AIS 4–6, n = 73) (Figure 4c) and patients
with diabetes mellitus (Figure 4d) demonstrated more clearly that initial blood glucose
rose continuously with rising severity of injury and blood loss. Blood glucose in patients
with AAST IV and AAST V injuries of the kidney differed highly significantly from that of
patients with AAST I injuries (Figure 4c,d, Table 3).
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Figure 3. Rising blood glucose levels parallel to injury severity and hemorrhage in splenic injuries. Outliers of very high
blood glucose levels in less severe injuries (AAST I-III) were found in patients with diabetes mellitus disease or severe
co-injuries (AIS 4–6) (a–c). In patients without severe co-injuries and without diabetes mellitus (d), the effect of injury
severity and hemorrhage on blood glucose levels was demonstrated more clearly, meaning the greater the severity of injury
and the hemorrhage extent, the higher the stress hyperglycemia including most severe splenic injuries (AAST V). AAST:
American Association for the Surgery of Trauma [27,28]; AIS: Abbreviated Injury Scale [43].

4. Discussion

The results of this single-center trial demonstrate that stress hyperglycemia develops
parallel to injury severity in patients with blunt spleen or kidney trauma. While consistent
results were obtained for blood glucose levels in blunt liver injuries up to AAST IV, stress
hyperglycemia was completely absent in the most severe cases of liver injury (AAST V),
which is demonstrated in this trial for the first time.

Both a pre-diagnosed diabetes mellitus and severe co-injuries (AIS 4–6) resulted in
outliers of high blood glucose levels in all grades of injury severity for all three analyzed
organ injuries (Figures 2–4). However, they had no impact on the main results. Therefore,
we did not exclude them from analysis as we felt they realistically represent the expectable
extent of clinical settings. Stress hyperglycemia is a common finding in any grade of trauma
severity and increases with rising severity [45–49]. This trial demonstrates that also in blunt,
single or combined injuries to parenchymatous organs, such as liver, spleen or kidney,
stress hyperglycemia accrues with the increasing extent of tissue damage and hemorrhage,
thereby proving the thesis of evolution of stress hyperglycemia following trauma as set
forth in the Introduction. The finding that severe co-injuries (AIS 4–6) and a pre-diagnosed
diabetes mellitus increase the extent of stress hyperglycemia in some patients is also in
accordance with the current literature: Rau as well as Kerby and colleagues demonstrated
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that stress-induced hyperglycemia exists parallel with diabetic hyperglycemia in trauma
patients, but is more associated with mortality [50–52].
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Figure 4. Rising blood glucose levels parallel to injury severity in renal injuries. Outliers of very high blood glucose levels
in less severe injuries (AAST I-III) were found in patients with diabetes mellitus disease or severe co-injuries (AIS 4–6) (a–c).
In patients without severe co-injuries and without diabetes mellitus (d), the effect of injury severity and hemorrhage on
blood glucose levels was demonstrated more clearly, meaning the greater the severity of injury and the hemorrhage extent,
the higher the stress hyperglycemia including most severe renal injuries (AAST V). AAST: American Association for the
Surgery of Trauma [27,28]; AIS: Abbreviated Injury Scale [43].

In the literature, the kidneys are also seen as a relevant source of blood glucose pro-
duction (up to 40% of circulating blood glucose) following epinephrine stimulation [53,54].
Although the body’s own catecholamines should be relevantly increased during severe
hemorrhage, which is a criterion for AASTV liver injury, blood glucose dropped in these
patients and was not increased by renal glucose delivery. Possible attempts to explain
this phenomenon include insufficient renal perfusion during hemorrhagic shock as well
as mere lack of time or substances (glutamine, glycerol, lactate) for sufficient renal glu-
cose production. In particular, circulating glutamine is mainly provided by the liver and,
therefore, in the event of AAST V injury of the liver, probably lacking.

This study has several limitations. The study did not differentiate between adults,
children and diabetics. We did not find significant differences between adults and children,
probably due to the low median age of analyzed patients. Pre-hospital vital parameters
were not sufficiently documented within the digitalized local hospital information system
during the initial decade of the study phase. Therefore, detailed calculation of trauma
scores was not possible. Further limitations of this study are the single-center and register
design as well as the small patient number in certain subgroups. Nevertheless, this large
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database of patients with blunt hepatic, splenic, and renal injuries sufficiently demonstrated
significant results, especially regarding median blood glucose drop in most severe liver
injuries (AAST V). Furthermore, we did not analyze lactatemia due to unreliability of
initial laboratory results on hospital admission [10]. Lactatemia is influenced by circulation,
production, metabolism and volume resuscitation as well as administration (Ringer’s
lactate), if applicable.

Therefore, initial laboratory results may fundamentally vary, not always reflecting
severity of injury and hemorrhage. In contrast, blood glucose levels on hospital admission
seem to be independent of pre-hospital fluid and volume administration and a reliable,
additional diagnostic tool for rapid evaluation of trauma patients including patients with
blunt abdominal trauma without collinearity to vital or laboratory parameters commonly
used for initial trauma assessment [10]. In the case of hyperglycemia, the extent correlates
with injury severity. However, in the case of a critically injured patient presenting with
low blood glucose levels, it should be clarified whether—in addition to most severe liver
injuries—anti-diabetic drug overdose, alcohol abuse, severe hypothermia or any other
reason for limited liver function could be causative [37,55,56]. Furthermore, to distinguish
between severe AAST IV and AAST V injuries of the liver—e.g., for scientific purposes—
which can be challenging for surgeon or radiologists, glucose measurement may be helpful.

Future prospective studies or registers should confirm the findings of this trial. More
studies on the evolution of stress hyperglycemia, its detailed effects on outcome of patients
with sepsis or trauma and potential treatment options to limit the well-described negative
outcome association are necessary.

5. Conclusions

Absence of stress hyperglycemia on hospital admission could be a sign of most severe
liver injury (AAST V). Blood glucose should be considered as an additional diagnostic
criterion for grading liver injury.
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