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The structural and functional details of transmembrane proteins are vastly underexplored, mostly due to exper-
imental difficulties regarding their solubility and stability. Currently, the majority of transmembrane protein
structures are still unknown and this present a huge experimental and computational challenge. Nowadays,
thanks to X-ray crystallography or NMR spectroscopy over 3000 structures of membrane proteins have been
solved, among them only a few hundred unique ones. Due to the vast biological and pharmaceutical interest in
the elucidation of the structure and the functionalmechanismsof transmembraneproteins, several computation-
al methods have been developed to overcome the experimental gap. If combined with experimental data the
computational information enables rapid, low cost and successful predictions of the molecular structure of un-
solved proteins. The reliability of the predictions depends on the availability and accuracy of experimental data
associated with structural information. In this review, the following methods are proposed for in silico structure
elucidation: sequence-dependent predictions of transmembrane regions, predictions of transmembrane helix–
helix interactions, helix arrangements in membrane models, and testing their stability with molecular dynamics
simulations.We also demonstrate the usage of the computational methods listed above by proposing amodel for
the molecular structure of the transmembrane protein bilitranslocase. Bilitranslocase is bilirubin membrane
transporter, which shares similar tissue distribution and functional properties with some of the members of
the Organic Anion Transporter family and is the only member classified in the Bilirubin Transporter Family. Re-
garding its unique properties, bilitranslocase is a potentially interesting drug target.

© 2017 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and Structural
Biotechnology. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Transmembrane proteins play a crucial role in maintenance of nor-
mal cell functioning; acting as transporters and receptors, playing im-
portant roles in signaling pathways, the immune system, and energy
production in formof ATP [1]. Therefore, they are of great interest as tar-
gets in drug designing, especially for having a double role in pharmacol-
ogy: (i) indirect by influencing the absorption, distribution, metabolism
and excretion (ADME) of drugs, (ii) direct as targets in the inhibition/
overexpression of its primary function (the transport of molecules,
switching on/off receptors). The membrane proteins are estimated to
represent around a fourth of all genes and more than half of market
drugs have amode of action that targets membrane proteins [2]. Know-
ing the structures and functional mechanisms of more transmembrane
proteins could significantly influence drug development and hopefully
lead to better healthcare solutions.
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Although, the first 3D atomic structure of a membrane protein was
experimentally solved in 1984 [3], the majority of membrane protein
structures are currently unknown and thus present amajor experimen-
tal and computational challenge. In the last two years, statistics have
shown an impressive increase in solved membrane protein structures
by X-ray crystallography or NMR spectroscopy, but the number is still
low in comparison with the soluble proteins (~380 unique structures,
b1% of all known protein structures in PDB) [4]. The transmembrane
proteins are polytopic integral membrane proteins with one or more
chains that span the entire biological membrane. The major bottleneck
in resolving the tertiary/quaternary structures of transmembrane pro-
teins is the production of suitable stable crystals for X-ray diffraction
studies. In this regard, experts in protein crystallography are faced
with several technical difficulties in the synthesis, solubilization and
maintenance of a functional and stable form of the protein during the
crystallization process [5,6]. Since a considerable amount of effort is
invested in breaking these barriers, new methodologies are published
on a regular basis. For example, immanent crystallization screens have
recently resulted in the development of new scaffold strategies for en-
hancing the stability of membrane proteins in detergent solutions [7,
8]. Besides application of innovative methodological approaches the
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rapid emergence of genomics, proteomics and high-throughput tech-
nologies (automation, miniaturization, integration, third-generation
synchrotrons, electron microscopy) support the enhanced protein
structure determination rate [7,9]. With newly emerging methods, es-
pecially in atomic and cryo-electron microscopy, the information gaps
in 3D structural datasets (e.g. CryoEMmap) [10] will hopefully be filled
in the near future. At present, the coverage of membrane protein fold
space is relatively sparse and, therefore, the use of computational strat-
egies is even more demanding [11].

Providentially, given the current lack of experimental data, numer-
ous highly sophisticated computational approaches are available for
the elucidation of protein structures and functions [11–15]. The compu-
tational data-handling combined with existing experimental data in-
puts enable rapid, low-cost and successful approaches for the
prediction of unsolved protein structures. The need for the acquisition
of computational models can be directly demonstrated using a group
of transporters defined as the solute carrier superfamily. In this super-
family, more than 15,100 human genes are currently annotated as
transport proteins, but the X-ray structure only is resolved for 14 of
them [4]. In the solute carriers (SLC) superfamily, the family of organic
anion transporters (OAT) is the most dominant [16]. OAT members
are of interest as potential drug targets due to their uptake of cancer
drugs and also as tumor biomarkers [17–19]. In cases when we have
only data on tissue expression and ligand-based experiments without
synthesized protein and known gene annotation of protein, computa-
tional approaches are the only solutions to overcome the experimental
gap. In this context, our work will shed light on the in silico research
studies devoted to elucidating the three-dimensional (3D) structure of
the bilirubin membrane transporter bilitranslocase (BTL, Uniprot
O88750), which shares similar tissue distribution and functional prop-
ertieswith someof themembers of theOAT family and is the onlymem-
ber classified in the Bilirubin Transporter Family (BRT) in the
Transporter Classification Database (TCDB 2.A.65) [20]. As its name de-
termines, it is strongly involved in the bilirubin uptake from the blood
into the hepatocytes [21,22]. However, BTL is not responsible only for
the transport of bilirubin into the hepatic cells; the biochemical studies
performed so far reveal a much broader tissue expression (parietal cells
of the gastricmucosa, proximal renal tubule cells and the vascular endo-
thelium cells [23–27]), where BTL acts as an efficient influx device for a
wide variety of vitally important endogenous substrates and drugs
[28–30]. BTL is known to transport awide variety of poly-aromatic com-
pounds, but themost unique feature of BTL is the ability to transport nu-
cleotides, which, to the best of our knowledge, no other membrane
transporter is able to do [30]. These peculiarities make BTL a hot target
for future investigations, especially in the context of endogenous drug
delivery systems to intracellular targets. Consequently, there is an ur-
gent need for the elucidation of its 3Dmolecular structure and the clar-
ification of its substrate specificity, as well as its functional and
mechanistic significance. Several experimental studies have already fo-
cused on BTL, but its 3D structure and functionalmechanism still remain
unclear due to problems with its synthesis. BTL is a 38.22 kDa trans-
membrane protein with 340 amino acids translated from a 1026 bp
longmRNA sequence (GenBank: Y12178.1), whichwas isolated already
in 1978 from liver cytoplasm of Rattus norvegicus [31]. The BTL gene re-
mains unidentified until now. However, it is of interest that the mRNA
of BTL shares 94% homology (RNO30106 coding/coding overlapping
transcript in antiCODE database [32]) with antisense mRNA of cerulo-
plasmin, a plasma glycoprotein that has localized its functional
gene on human chromosome 3q21-q24 and pseudogene on
chromosome 8q21.13-q23 [27]. In spite of several efforts, the 3D
structure of BTL is not yet resolved and no sequence homology
with any other known membrane protein has been found [20].
Interestingly, BTL has a conserved bilirubin-binding motif, which
plays a central role in ligand binding and is similar to globular
alpha-phycocyanins [20], which are ancient biliproteins present
in cyanobacteria.
The aimof this review is to demonstrate the usage of various compu-
tational methods for the structural determination of transmembrane
proteins; examples are given for a case study of bilitranslocase. It
needs to be emphasized that the selected case study is of special impor-
tance, as it demonstrate how to tackle the challenges of membrane pro-
tein structure analysis while lacking a template-based homolog. The
structural studies include: sequence-dependent predictions of trans-
membrane regions, predictions of transmembrane helix–helix interac-
tions, their arrangement in membrane models and testing their
stability with molecular dynamics simulations.

2. Approaches for Predicting Protein Structures From Amino Acid
Sequences

Protein structure prediction tools are nowadays the standard toolkit
in life science research and a variety of in silico applications are available.
The computational programs for protein structure elucidation include
various statistical and supervised learning algorithmic techniques [13,
33] for solving the sequence-structure alignment and the identification
of structural units: the very regular local sub-structures (α-helixes and
β-sheets) in the secondary structure [34] and the protein domains (dis-
tinct and compact intra-chain units that could fold independently into
other chain parts) in the tertiary structure [35]. All the computational al-
gorithmswere developed on the assumption that different proteins fold
into similar 3D units because they have similar interaction patterns
among their residues and between the residues and the environment
[36].

Sequence-based tools for secondary and tertiary protein structure
prediction are an important and challenging field of research in struc-
tural bioinformatics. Over the last two decades, themethods for the pre-
diction of secondary structural elements in proteins have obviously
progressed. Nowadays, secondary structure predictionmethods are sel-
dom used alone, but are mostly used to provide constraints for the ter-
tiary structure prediction methods [11]. Consequently, the accurate
secondary structure identification, the ever-increasing size of the train-
ing sets and the optimized alignment methods have also improved the
sensitivity and usability of tertiary structure prediction methods [37].
The most widely used techniques for tertiary structure prediction are
homology modeling, fold recognition (protein threading), and de novo
(ab initio) protein structure prediction. The techniques vary in their
basic concepts; (i) the first two are based on fitting a protein sequence
to a structural template, requiring the identification of one or more ho-
mologs that the structure is based on (e.g. PROSPECT [38], RAPTOR [39],
pGenTHREADER [40], pro-sp3-TASSER [41], MODELER [42], I-TASSER
[43], iMembrane [44]), (ii) the third involves the use of simulated an-
nealing algorithms, which are based on the general principles that gov-
ern protein structure and energetics and therefore does not require a
template (e.g. ROSETTA [45], FRAGFOLD [46], PROTINFO [47], FILM
[48]). Each software tool has its specificities and advantages, and use
different energy functions and computational methods, but protein 3D
structures' building methods generally achieve relatively similar levels
of accuracy. Especially among template-based methods, accurate pre-
dictions were observed when sequence identity was above 30%. There-
fore, among the tertiary structure predictionmethods, it is interesting to
note the really outstanding popularity of homology modeling with
MODELER [42]. However, for TMprotein prediction Kelm et al. [49] pre-
sented the TM-specific homology-based tool MEDELLER and used per-
formance analyses to demonstrate that MEDELLER outperforms the
most popular homology modeling tool MODELER. The low usability of
ab initio techniques is reasonable because they are much more compu-
tationally intensive thus limited to smaller proteins and are less accu-
rate than template-based methods. Since template-based methods are
currently the most widely used computational approaches for protein
structure prediction [11], they are unfortunately still mostly applicable
for soluble proteins, for which several crystal structure templates are
available, while only few or no homologs of known structures exist for
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majority of TM protein families. In this regard, ab initio methods seem
more suitable for membrane protein structure predictions, but due to
the size restriction associatedwith these methods, they are nowmostly
used for building the non-homologous loop regions only [33]. Some ex-
ceptions exist, such as the methods FILM [48] and RosettaMembrane
[50], which were specially modified for TM proteins and are capable of
predicting TM structures in sizes up to 300 residues. Therefore, inmem-
brane protein structural bioinformatics, the topology prediction
methods dominate, as the accuracy of models built using template-
based methods is highly restricted by the availability of good structural
templates and near-perfect alignments [11]. The structure elucidation
of polytopic integral membrane proteins starts with especially sophisti-
cated tools for the topology prediction of TM regions. Several TM-
specific predictors are available for this step and will be further com-
pared in this review with a practical representation of use on the BTL
transporter. To date, the tertiary structure prediction of membrane pro-
teins remains a significant challenge, but the recent development of
methods specifically optimized to align membrane proteins (AlignMe
[51], MP-T [52], PRALINE™ [53], TM-Coffee [54]) enable promising
progress. Significant advances have been made in the last decade on
methods for predicting helix–helix interactions, but the methods for
the optimal packing of β-sheets are still in the development phase due
to the severe shortage of known structures and higher diversity in to-
pology [12].

However, amongmembrane protein families, some successful cases
of the use of template-based and ab initio methods have also been pre-
sented [49,50,55,56]. G protein-coupled receptors (GPCRs) [56] and SLC
transporters [37,55] are widely studied and already structurally re-
solved membrane proteins, therefore members of these groups can
now be modeled with an accuracy sufficient for virtual screening.
While, there is concern about the reliabilities of the structural models
of membrane proteins that were attempted using methods that are so-
phisticated for soluble proteins [49]. Themajor concerns and drawbacks
of such models are: (i) the models were built from template structures
with low sequence identity to the target sequence, (ii) the alignment
methods were based on statistical potentials derived from soluble pro-
teins and did not take into account the fact that membrane proteins
have different amino acid substitution preferences from their soluble
counterparts, (iii) unique properties like specific interhelical interac-
tions were not considered [11]. Recent studies demonstrate that if
such preferences were included, the alignments were improved and
consequently the membrane protein models were also improved [52,
55].

2.1. Sequence Dependent Predictions of Transmembrane Regions

The first step in transmembrane protein structure prediction is the
identification of the α- or β-TM regions. TM regions are, by concept,
all the peptide chains within the nonpolar region of the lipid bilayer.
The TM regions have in common the organization of chains into a pleth-
ora of predominantly hydrophobic residues that are energetically suit-
able for the hydrophobic membrane environment and have aromatic/
charged residues at the terminal positions, which are more suitable
for the membrane-water interface. The predictions of the TM regions
are based on inputs of amino acid sequences and can in general be
approached from two distinct perspectives: (i) pattern-based (hydro-
phobic or sequence pattern classification), (ii) homology-based (mak-
ing comparison to existing data of homologs). In the first concept, the
structural features are predicted based on algorithms using hydropho-
bicity scales or sequence similarity [31], therefore applicability is theo-
retically equal for homologs and non-homologs. The second concept is
based on algorithms, which besides sequence patterns also include evo-
lutionary information, so the probability of prediction is dependent on
or biased with the homology rate [13,33,57]. Interestingly, all integral
membrane proteins with currently known high-resolution structures
are strictly homomers and not mix assemblies of both TM structural
units. Therefore, membrane proteins are classified in two highly distinct
structural classes: bundles of α-helices or β-barrels [58]. In this regard,
the predictors for each class were diverged and developed separately to
achieve better precision in the predictions of the TM structural units.

Both types of predictors apply various methods based on different
algorithmic techniques, which can in general be categorized into three
classes: physicochemical methods, statistical methods and machine
learning methods [13,33,59]. Several physicochemical methods based
on hydrophobicity indexes [60–62] and several hydropathy analyses
that identify long stretches of hydrophobic residues are available for
the topology prediction of TM helices (KD [63], PRED-TMR [64], SOSUI
[65], TM Finder [66], TopPred2 [67]) or barrels (BBF [68], BOMP [69]).
These methods are successful at identifying the hydrophobic core of
TM regions, but cannot precisely determine the ends of TM residues,
therefore they are commonly corrected with the cutoff values for
membrane-spanning residues (values calibrated against known struc-
tures of membrane proteins) [70]. The propensity-based methods rely
on statistical analysis of the occurrence of certain residues in the sec-
ondary structures of known protein structures (e.g. for helices
(MEMSAT3 [71], SPLIT [72], TMpred [73]) and for barrels (Freeman–
Wimley approach [74])). The applicability of these methods is mostly
tempered due to the limited number of known atomic resolution struc-
tures of transmembrane proteins. The machine learning methods are
rapidly evolving and are based on learning algorithms like Support Vec-
tor Machines, Hidden Markov Models and Neural Networks. Regarding
various performance analyses, these methods are recognized as the
most advanced and accurate [57,59,75]. Some of them are able to pre-
dict at least three structural states: cytoplasmic region, TM region and
extracellular region. The basic principle of these methods is to train
based on a set of input/output pairs and to detect correlations that facil-
itate pattern recognition and then evaluate the prediction probabilities
(e.g. for helices HMMTOP [76], ENSEMBLE [77], Philius [78], TMHMM
[79], MEMSAT-SVM [59], TOPCONS [80], PredαTM [81] and for barrels
B2TMPRED [82], ConBBPRED [75], PRED-TMBB [83], TMBpro [84],
PredβTM [57], TMBHMM [85] etc.). Machine learning approaches are
best for solving problems in the absence of general theories when
there is a large amount of data with noisy patterns and are thus ideal
for use in the explication of protein complexity.

Due to the shortage of the high-resolution TM protein structures,
current computational methodologies probably do not yet cover all
the properties of the TM domains in the proteome. Therefore, currently
available algorithms are based on datasets that do not completely
sample the TM protein data space of living organisms. The lack of infor-
mation is especially substantial in the case of β-TM proteins. Neverthe-
less, the current predictors in most cases seems robust and relatively
accurate, but the performances are significantly overestimated [57,59].
Consequently, the tendency in structural bioinformatics is to develop al-
gorithms independent of explicitly resolved evolutionary information,
which are potentially capable of giving accurate TM region predictions
for the novel non-homologous membrane protein sequences. Even
more, besides identifying the TM regions, the interest in using predic-
tors for genome annotation is also increasing [57,59,86]. In spite of the
abundance of predictors, the researcher's intent is always to use the
most up to date methods based on all the currently available sequence
and structural data. Thus prediction methods are gradually evolving
by including the new protein structure information that becomes avail-
able [87]. However,with new experimental strategies, the availability of
high-resolution structures is rapidly increasing and, consequently, cov-
erage of the complete transmembrane protein space is approaching.

2.1.1. Accuracy Measurements and Performance Analyses of Secondary
Structure Predictors

Comparing the accuracy of different structure prediction methods is
not a univocal task due to a number of methodological challenges, such
as the use of different protein data sets or homologous proteins, various
secondary structure definitions, and various accuracy measures. For TM
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proteins in particular, these problems are of special relevance according
to a relatively limited high-resolution structure database, which often
leads to the overestimation of prediction accuracy [33]. Thus the best
strategy to improve prediction accuracy is to make a consensus predic-
tion based on compiling the prediction results from different methods
[75,81].

In general, measurements of the accuracy of predictors are based on
a comparison of the predicted and experimentally observed TM seg-
ments. Most of the measures are defined for a two-state classification
scheme (TM segment or not TM segment), which are further differenti-
ated based on per-residue and per-segment accuracy. Accuracy mea-
surements are evaluated using confusion matrix data, which include
the numbers of correct/incorrect predictions (true/false positive, true/
false negative) and are defined as accuracy, sensitivity, specificity, and
the Matthews correlation coefficient. Per-residue accuracy involves
evaluating the accuracy of prediction for particular residues (the per-
centage of residues predicted correctly in TM regions). Per-segment ac-
curacy is more commonly used and based on a comparison of predicted
versus experimentally observed TM segments in a data set and are de-
fined as per-segment sensitivity, positive predictive value and segment
overlap [88,89]. The sensitivity is the percentage calculated from the
number of correctly predicted TM regions divided by the number of ex-
perimentally observed TM regions in the data set. The precision is spec-
ified as a percentage of all the TM regions that are correctly predicted.
The segment overlap (SOV) is a measure of the similarity of the predict-
ed and experimentally observed TM segments [88].

In the case of α-TM region predictors, several performance analyses
have been implemented [57,89–91,87]. All have in common that the
simple predictors based on hydrophobicity scales perform fairly well
for the prediction of α-TM helices, but are less accurate than the algo-
rithms based on amino acid distribution preference, sequence align-
ments and evolutionary information. Overall, hydrophobicity-based
methods overestimate the TM helices, mostly because of the inability
to distinguish TM helices from signal peptides and hydrophobic regions
outside of membranes. To avoid these problems, some authors propose
firstly to use the predictionmethods that are effective in identifying sig-
nal peptides as a pre-filter [92], prior to analyzing with TM topology
predictors. Furthermore, some α-TM region predictors already contain
specialized sub-models for the recognition of signal peptides [78,59,
87,93]. The studies have shown that advanced machine learning
methods with complex algorithms usingmultiple sequence alignments
outperform hydrophobicity-based predictors, but have a tendency to
Table 1
The comparative performance of state-of-art freely available predictors for: α-transmembrane
regions - based on a benchmark dataset of 35 β-TM proteins [57].

α-transmembrane region predictors

Program SE PR Method Reference

DAS-TMfilter 79 76 HA & DAS Cserzo et al., 2004 [107]
HMMTOP 90 89 HMM Tusnády & Simon, 2001 [76]
MemBrain 83 87 NN Shen & Chou, 2008 [108]
MEMSAT3 91 82 NN Jones, 2007 [71]
OCTOPUS 90 89 NN Viklund & Elofsson, 2008 [95]
Philius 92 89 DBN Reynolds et al., 2008 [78]
Phobius 91 86 HMM Käll et al., 2004 [93]
PredαTM 92 90 SVM & NN Roy Choudhury et al., 2013 [91,103]
PRED-TMR 92 82 HA Pasquier et al., 1999 [64]
SCAMPI 90 89 HMM Bernsel et al., 2008 [96]
SOSUI 88 80 HA Hirokawa et al., 1998 [65]
SVMtm 90 80 SVM Yuan et al., 2004 [109]
SVMtop 90 89 SVM Lo et al., 2008 [110]
TMHMM 91 87 HMM Krogh et al., 2001 [79]
TMpred 87 87 SA Hofmann & Stoffel, 1993 [73]
TOPCONS 90 90 consensus Bernsel et al., 2009 [80]
TopPred II 86 88 HA Claros & von Heijne, 1994 [67]

HA - hydropathy analysis, SA – statistical analysis, DAS - Dense Alignment Surface, DBN - Dyna
SE (sensitivity) - % of all observed TM regions predicted correctly.
PR (precision) - % of all TM regions that are correctly predicted.
underestimate the TM helices [59]. Based on a benchmark analysis of
ten machine learning methods by Nugent and Jones [59], the
MEMSAT-SVM method was demonstrated as the most accurate one. In
another benchmark analysis, Tsirigos et al. [87] reported that the up-
dated version of TOPCONS, a consensus method that combines several
prediction methods, offers state-of-the-art performance. On the other
hand, an outstanding methodological exception is the PredαTM algo-
rithm based on an effective mathematical representation of a peptide
sequence. In this algorithm, the amino acid composition of TM regions
and sequence patterns are characterized by mathematical descriptors
derived from the amino acid adjacency matrix [81,91,94]. The recent
performance analysis of 17 state-of-art α-TM region predictors carried
out on 38 benchmark sequences including both single-spanning and
multi-spanningmembrane proteins from both prokaryotes and eukary-
otes is presented in Table 1. It is clear that some of the advanced
methods perform better than others. Those achieving the highest sensi-
tivity and precision are PredαTM [81,91], TOPCONS [80], HMMTOP [76],
Philius [78], OCTOPUS [95], SCAMPI [96] and SVMtop [97]. The
PredαTMpredictor [,91] is independent of any explicitly expressed evo-
lution information, thus has an added advantage over the aforemen-
tioned algorithms when predicting TM helices for proteins that show
very low or no sequence homology and it could also be useful in the
context of entire proteomes analysis. Nugent and Jones [59] also dem-
onstrated on a number of complete genomes that the MEMSAT-SVM
method can effectively discriminate between TM and globular proteins
and thus could be suited to the whole genome annotation of α-helical
TM proteins. Furthermore, Tsirigos et al. [86,87] examined the ability
of prediction methods to distinguish between membrane proteins and
soluble ones, and obtained the best performanceswith themethods uti-
lizing multiple sequence alignments like TOPCONS [87] and Phobius
[93]. The low agreement between predictions obtained using different
methods shows that the global properties of the membrane proteome
are still a hot matter of concern [86]. Therefore, for a relevant differenti-
ation between globular andmembrane proteins, it is suggested to apply
a consensus approach based on the analysis of results from various cur-
rently available predictors.

The old performance analyses for the prediction of β-TM regions [75,
98] showed that methods based on the Hidden Markov Model like
ProfTMB [80], HMM-B2TMR [81] and PRED-TMBB [68] were the best
in terms of SOV, per-residue and per-segment accuracy. Furthermore,
Bagos et al. [75] demonstrated that the consensus prediction method
ConBBPred performed significantly better than each individual available
regions - based on a benchmark dataset of 38 α-TM proteins [81,91], β-transmembrane

β-transmembrane region predictors

Program SE PR Method Reference

B2TMpred 83 42 NN Jacoboni et al., 2001 [82]
ConBBPred 56 86 consensus Bagos et al., 2005 [75]
PredβTM 84 73 SVM & NN Roy Choudhury et al., 2015 [57]
TBBpred 74 41 SVM & NN Natt et al., 2004 [98]
TMBETA-NET 72 46 NN Gromiha et al., 2005 [102]
TMBpro 75 70 NN Randall et al., 2008 [84]

mic Bayesian network.
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predictor. On the other hand, Freeman andWimeley [74] showed that a
good statistical approach can surpass the accuracy of machine learning
methods. However, due to the amphipathic nature of the β-TM regions,
the hydrophobicity was recognized as an inefficient discriminating fac-
tor and prediction accuracy was improved with the incorporation of
non-linear statistics and evolutionary profiles. For most algorithms,
the accuracy was overestimated regarding a limited benchmark set
and the probable inclusion of homolog proteins in the original models
dataset. The newest benchmarking analysis for β-TM predictors pre-
sented in Table 1 shows that themachine-learning-based PredβTMpre-
dictor currently outperforms all the state-of-art β-TM region prediction
methods [57]. Although, the consensus method ConBBPred, which
makes predictions by combining outputs from several algorithms
(PRED-TMBB [83], ProfTMB [99], HMM-B2TMR [100], etc.) achieves a
considerably high degree of precision, it radically fails in sensitivity,
being the lowest among all the compared methods. In general, the β-
TM proteins have little sequence identity, even if only the TM regions
are considered. Therefore, the PredβTM algorithm, which is indepen-
dent of any explicitly given evolutionary information [43], has an im-
portant advantage over most of the methods based on sequence
profile data like B2TMpred [82], TBBpred [101], TMBpro [74] and
TMBETA-NET [102]. Moreover, besides concerning the identification of
TM proteins, it can also be useful for gene annotation in gram-
negative bacterial genomes [57,74]. We can emphasize that the predic-
tion of β-TM regions still remains a difficult problem. The majority of
predictors have limited prediction accuracy due to the limited availabil-
ity of non-homologous β-TM protein structures [4] and the probability
of the existence of β-TM protein families that have not yet been
described.

2.1.2. Case Study: Step 1 – BTL TM Regions Prediction
BTL is a 340 amino acids long TM protein of an uncharacterized gene

and unknown 3D structure. Knowing only the mRNA amino acid se-
quence, Roy Choudhury et al. [81,91] made a prediction of the BTL TM
regions by testing 17 freely available α-TM region predictors. The anal-
ysis of the predictions resulted in the identification of four TM helices:
TM1 (24–45), TM2 (73–95), TM3 (221–238) and TM4 (258–277).
Only three algorithms (PredαTM, TMpred and TopPred II) predict all
four TM regions. The algorithms PRED-TMR,MemBrain and Philius pre-
dict the transmembrane regions TM1, TM2 and TM4. On the other hand,
the predictors HMMTOP, SCAMPI and TOPCONS predict the transmem-
brane regions TM1, TM3 and TM4. The rest of the algorithms only pre-
dicted the regions TM1 and TM4. Interestingly, the SOUSI predictor
Residue nu

TM2TM1

60 160110
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Fig. 1. The prediction of the bilitranslocase transmembrane regions. Hydropathy analyses of
represent hydropathicity and the red line represent amphipathicity. The columns represent th
using HMMTOP, PredαTM, SCAMPI, TMpred, TopPredII, TOPCONS; gray – extra region pre
transmembrane regions TM1, TM3 and TM4 are consistent with hydrophilic peaks, whil
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classifies BTL as a globular protein. The hydropathy sequence profile
shown in Fig. 1 can give an explanation why all the predictors reliably
identified the TM1 and TM4 regions, while the identification of TM2
and TM3 regions was more ambiguous. Furthermore, based on these
computational analyses of BTL secondary structure units, experiments
were designed and the ambiguous TM2 and TM3 helices were success-
fully confirmed using multidimensional NMR spectroscopy [104–106].

3. Determining the Structure of Assembly of the TM Regions

For the elucidation of themembrane protein structure and function-
al mechanism, knowing the exact assembly and arrangement of its
structural domains is crucial. The interactions between TM regions
play a critical role in the function, assembly and oligomerization of
membrane proteins. In these interactions, physical forces (e.g. polar
and aromatic interactions, salt bridges) among two or more helices or
strands are included [12,14]. The determination of the optimal packing
of the TM regions includes effective sampling strategy and the usage of
complex optimization algorithms following the principles from the laws
of quantum mechanics. Theoretically, the optimal arrangements have
the minimal free energy geometry [13]. In general, the simplified two-
stage protein foldingmodel ofmembrane proteins enhances the solving
of this complex folding problem by including the results from TM re-
gions predictors, which provide reliable information on the assembly
of secondary structure units. Further, with mathematical operations,
theminimal inter-unit interaction energy is calculated based on scoring
functions that represent the molecular determinants of helix–helix/
strand-strand interactions [12,14,111,112]. The representation of such
determinants is themost challengingpart and over the years, significant
progress has been made in the field of tertiary structure prediction for
helical TM proteins [113–115], while for β-TM proteins the identifica-
tion of molecular determinants is moderate [33,85,116].While the fold-
ing of globular proteins can be predicted using methods like homology
modeling and threading, suchmethods should be applied very carefully
and critically for the prediction of membrane protein folding, due to the
shortage of atomic resolution TM protein structures. The accuracy of
prediction is questionable if specific membrane preferences are not in-
cluded in the protocol [115,37,49]. Once the optimal packing is deter-
mined, the stability of the predicted arrangement in the lipid
environment could be further studied by using molecular dynamics
(MD) simulations [117]. The MD simulations can be computationally
expensive and thus the size of the simulated system should be reason-
ably limited or a multiscale approach used [117,118]. Regarding the
hydropathicity
amphipathicity

mber

TM3 TM4

310260210 360

the amino acid sequence using the Kyte-Doolittle scale (WHAT 2.0, [63]): the blue line
e position of the predicted transmembrane regions (helices): orange – regions predicted
dicted using PredαTM, TMpred, TopPredII, Philius, MemBrain, PRED-TMR [81,91]. The
e the detection of TM2 is indefinite due to the ambiguous hydropathy profile. (For
version of this article.)



237K. Venko et al. / Computational and Structural Biotechnology Journal 15 (2017) 232–242
case study protein, the details of practical examples of analyses of the
arrangement of the four helices of bilitranslocase is presented.

3.1. Predicting the TM Helix–Helix Interactions

So far, the knownmembrane proteins (ion channels, transporters
and receptors) in living organisms are mostly built of helices [119],
therefore substantial research is done on studying helix–helix inter-
actions [12,14,114,120] and less is known about strand-strand inter-
actions. The correct folding of polytopic membrane proteins firstly
involves individual helix–helix interactions and then multiple
helix-dimer interactions need to be controlled and aligned to result
in the final higher-ordered oligomeric structure. In contrast to solu-
ble proteins, our knowledge of the factors that control the oligomer-
ization of membrane helices is limited. Taking into account that the
membrane environment has unique chemical and physical proper-
ties, the rules applicable for interactions between soluble segments
are not necessarily valid within the membrane [121]. Of interest is
the recent extensive research by Zhang et al. [115] on helix–helix in-
teractome, which provides the first comparison of TM and water-
soluble helical pairs. Although both types of proteins have a similar
pair geometry, the interactions are different. The involvement of
larger charged residues and more interhelical hydrogen bonds are
observed in water-soluble structures [115]. Among the best known
TM helix dimerization factors are the conserved motifs GxxxG,
QxxS and WxxW [14,114,120], interhelical residue pairs/triplets
[122], polar clamp, and serine/leucine/glycine zippers [12–14]. Al-
though it was believed that TM helix–helix interactions are mostly
dominated by the rule of amino acid sequence motifs, experimental
evidence suggests that interactions between TM helices are much
more complex, resulting in an aromatic pattern (aromatic-XX-aro-
matic) [123] or interactions between TM sequences that do not con-
tain any recognizable motifs [14]. Cymer et al. [114] highlighted the
sequence context in their study, as well as lipid bilayer properties
that highly modulate the structure and stability of a helix dimer. Re-
cent studies have also revealed the particular physical properties of
lipids or membranes that play roles in the protein folding process
[124]. Most of the studies evaluate the helix–helix interactions by
molecular dynamics (MD) simulations [12], but also several in silico
methods exist for the prediction of pairwise helix–helix interactions
from the primary sequence. In general, they are generated using var-
ious machine-learning-based algorithms involving either residue
contacts (per-residue) or complete TM regions (per-segment) (e.g.
MemBrain [125], MEMPACK [126, PROFcon [127], SVMcon [128],
TMHcon [112], TMhit [113], TMhhcp [130], IMP [131]). However,
the tools available for the prediction of helix–helix interactions in
globular proteins [127,128] perform relatively poorly in TM proteins.
The reason is probably the differences between TM and globular in-
teraction motifs [14,114,115,121]. For example, the helix–helix in-
teraction prediction performance for five predictors (the TM
protein contact predictors MEMPACK, TMHcon and TMhit, and the
globular protein contact predictors PROFcon and SVMcon) was
assessed based on a data set of 74 sequences, which contained at
least two TM helices [106]. The TM proteins' specific predictors
TMhit and MEMPACK achieved the highest accuracy (N60%). These
predictors are not solely able to predict residue contacts and helix–
helix interactions, but can also present a modest estimation of the
lipid exposure and helical packing arrangement of TM proteins
[129]. For example, studies on archaerhodopsin [126] and
cytochrome C oxidase [129] revealed a high level of consensus
among the predicted interactions and the observed helical packing
arrangements derived from the crystal structure. Since such
predictors are only capable of constructing packing arrangements
of proteins with up to 13 TM helices [129], more advanced tools for
predicting the assemblies of proteins were developed, which are
further described in Section 3.2.
3.1.1. Case Study: Step 2 – the Prediction of TransmembraneHelix–Helix In-
teractions in BTL

The Integrative Modeling Platform (IMP) [131] was used to predict
the per-segment helix–helix interactions in BTL. The sequences of TM
regions with defined topologies predicted by the TM region predictors
served as the input. The rigid body representation for each TM region
was built based on Discrete Optimized Protein Energy (DOPE) [132]
using specified statistical potentials for TM proteins from SaliLab and
without considering the experimental NMR or MD data that are avail-
able. All possible TMhelix pairs were considered to predict the probable
interactions, because TM helices can interact in multiple ways [122].
Eachmember of a helix–helix pair was allowed to access all the permis-
sible combinations of rotational, translational and tilting movements.
The permitted range of tilting angles, diameter, excluded volume and
packing restraints for each TMhelix pair were based on theOrientations
of Proteins in Membranes (OPM) database [133], which lists the spatial
arrangements of alpha TM proteins with respect to the hydrocarbon
core of the lipid bilayer. The stability of the possible transmembrane
helix–helix interactions were optimized using the scoring function
based on interaction data of TM helices from the OPM database. It was
assumed that all the TM helices could interact with each other; there-
fore each helix–helix pair interaction was optimized and scored inde-
pendently. The highest scoring transmembrane pairs with scores
above a predefined threshold were considered to be interacting. The
four BTL predicted TM regions give rise to six possible helix–helix inter-
action pairs. Among them, the pairs TM2-TM3 and TM1-TM4 have the
lowest energy scores and therefore showed the most optimized config-
urations andwere reported to be interacting (Fig. 2) [106]. The TMhit al-
gorithm [113], which predicts per-residue helix–helix interactions, was
also applied. The TM2-TM3 and TM1-TM4 helix–helix pairs were found
to interact, and these are the same pairs as those previously predicted
by IMP. The existence of the TM2-TM3 pair in the SDSmicellar environ-
ment was also independently supported experimentally by NMR spec-
troscopy and FRET efficiency [106].

3.2. The Prediction of TM Assemblies

To elucidate protein functions the models of high order assemblies
are essential. Using current computational models, the determination
of the positions and orientations of all components can be unambigu-
ous, yet continuous improvements using the implementation of new
scoring functions are in progress [10,12,125]. However, such models
are hopefully valuable for directing experimental studies on TM pro-
teins where structural data is currently unavailable. Various prediction
methods that generate the pseudo-atomic models of the assembly are
available (e.g. MultiFit [10], RosettaMembrane [134], FRAGFOLD [46],
FILM3 [135], IMP [131]). Nowadays they are gradually increasing in
number due to the rise in availability of datasets from atomic- and
low-resolution (e.g. cryo-electron microscopy (cryo-EM) density
maps, small-angle-X-ray scattering (SAXS) profiles), genomic and pro-
teomic techniques. In general, the use of such tools is less user-
friendly due to the complex computational protocols and is not so ap-
propriate for beginners. For an accurate and careful performance, the
knowledge of an expert in structural bioinformatics is indispensably
needed.

The methods for predicting high order arrangements of TM regions
are based on the constraints of the interacting TM helix–helix pairs
and moderate helical packing arrangements identified in advance
using themethods described in the Section 3.1. This information is espe-
cially valuable for ab initiomodelingmethods [46,134,135], as it reduces
the conformational search space and computational requirements
[129]. In general, the probable arrangements of the predicted TMhelices
are determined with the identification of the most populated and ener-
getically favorable arrangement type. The arrangement with the most
favorable energy can be identified with an effective sampling strategy
defined in an optimization algorithm. Probably the most popular
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optimization algorithm is based on Monte Carlo simulations, which can
perform an optimized sampling of the protein search space [131]. The
algorithms include scoring functions, which are composed of restraints
and evaluate howwell amodel agrees with the information fromwhich
the restraintwas derived. Inmost cases the restraints encode bothwhat
is generally known about protein structures and what is known about a
particular structure of interest. Thus, a candidatemodelwith thehighest
score is consistent with all the input information. Normally, by increas-
ing the amount and quality of information included in restrains, the pre-
cision and accuracy of the resulting model increases [15].

In recent years, researchers realized that the detailed structural
characterization of complex proteins or macromolecular assemblies is
practically impossible to achieve using any single experimental or com-
putational method. Therefore, scientists were and are still searching for
a way to overcome this barrier. Until now, hybrid approaches that inte-
grate data from diverse experiments (e.g. X-ray crystallography, cryo-
EM, immuno-electron microscopy, NMR and FRET spectroscopy, SAXS,
immunoprecipitation, genetic and proteomic interactions) are highly
efficient and prospective [15]. For example, integrated approaches like
MultiFit [10] and IMP [131] can contribute to the structural characteri-
zation of biomolecules ranging in size and complexity from small pep-
tides to large macromolecular assemblies, by integrating data from
diverse experiments. MultiFit [10] is based on a protocol for the simul-
taneous fitting of high-resolution structures of components into a den-
sity map of the whole assembly. On the other hand, IMP [131] is even
more advanced and has scoring functions suitable for integrating vari-
ous types of experimentally obtained data like SAXS profiles, NMR spec-
troscopy, cryoEM and imunoEM images and density maps, proteomics
data, fingerprints or affinity purification. Numerous complex protein
structures have been successfully solved using this platform. The 26S
proteasome structure [136] was determined with the integration of
data from an electron microscopy map, proteomics data, and compara-
tive protein structure models. The structure of the bacterial type II pilus
was identified from NMR data and X-ray crystallographic structures of
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constituent proteins [137]. The value of IMP especially, is demonstrated
by solving the human RNA Polymerase II [138] and yeast nuclear pore
complex [139] with integrating information from multiple experimen-
tal and computational sources.

3.2.1. Case Study: Step 3 – the Prediction of BTL TM Regions Arrangement
In the case of predicting the arrangement of the TM regions of BTL,

the input parameters were the TM region sequences, topology, loop
connectivity, conformations from MD simulations [104,105], the pre-
dicted interactions in the pairs TM2-TM3 and TM1-TM4 [106], and the
filter parameters [121]. The discrete conformation space was defined
with restrictions, such as the transport channel diameter and the tilt
and depth of the TM helices [122,133]. The chosen value for the trans-
port channel diameter is dependent on the number of TM regions pres-
ent in BTL [133]. So defined initial configurations, were used as
constraints in the Monte Carlo simulations coupled with the DOMINO
algorithm in the MultFit toolkit [10]. The DOMINO algorithm applied
an approach to efficiently discover global optimal solutions within the
discrete sampling space [10]. The resulting subset solutions were then
combined to obtain the global solution. The distribution analysis illus-
trates that even though the highest scoring structure favors the TM1-
TM4-TM3-TM2 arrangement, the most frequently observed was the
TM1-TM2-TM4-TM3 arrangement type (shown in Fig. 2), which has
the predicted interacting TM helix pairs positioned diagonally opposite
each other [106].

3.3. Stability Predictions of TM Assemblies with Molecular Dynamics (MD)
Simulations

MD simulations can be used for stability predictions concerning the
TM regions in a lipid bilayer and even more, the internal motions and
conformational changes of the TM protein domains can be assessed
[118]. MD simulations have ever-increasing potential in the elucidation
of all biological dynamic systems by generating dynamic models that il-
lustrate contact interactions and internal motions that are playing a
functional role. In contrast to crystal structures, membrane proteins in
their native membrane environments are not static, but rather have a
variety of conformations [140]. Therefore, MD simulations allow the in
silico reconstitution of structures and theirmovements in a bilayer envi-
ronment. Bondar et al. [141] reported that the membrane protein con-
formational dynamics is associated with changes in the interhelical
hydrogen bonding. As hydrogen bond interactions can be extracted
from MD simulations, running MD simulations is crucial for under-
standing the H-bond dynamics and the stability of protein domains.
Various computational dynamics methods can be used to investigate
and study the dynamics of the biomolecular system [142]. Since mem-
brane systems are large in size, the atomistic simulations are generally
time-consuming, therefore the introduction of coarse-grained models
inMD simulations speeds up this process [117,143]. In general,method-
ologies are highly dependent upon setting the role of the solvent in pro-
tein dynamics and the availability of a suitable potential-energy
function to describe the energy landscape of the system with respect
to the relative coordinates of the constituent atoms, which represent
the structure of the studied system [117]. In this regard, the Lipidbook,
a public database for force-field parameters used in simulating biologi-
cal membrane systems [144], and the Course Grained Database (CGDB)
[143] can be useful. Significant progress has been made in the perfor-
mance of membrane protein MD simulations in recent years. For exam-
ple, important functional implications of TM protein interactions were
discovered in the KscA potassium channel [145], the MscL
mehanosensitive channel [146], the sugar transporter LacY [117], aqua-
porin [140], etc. [12]. In this way, specific residues that play important
structural and functional roles or influence selectivity have been charac-
terized [13,118,147,148]. Moreover, since a key element in the refine-
ment of 3D protein structure prediction is to incorporate reliable
structural information into the protocol, it is essential that various
prediction tools that enable the inclusion ofMDdata in the computation
of 3D structural models already exist [149,150,131]. Moreover, to make
MD simulations in bilayers easily available to interested stakeholders,
the MemProtMD software was recently developed. This is a completely
automated high-throughput computational pipeline for the insertion of
membrane protein structures into an atomic resolution model of the
membrane environment, and the results of simulations are publicly ac-
cessible in the MemProtMD database [151].

3.3.1. Case Study: Step 4 – MD Simulations of BTL TM Regions
The preparation of the system of BTL TM helices for MD simulation

was done using CHARMM, one of the popular molecular modeling
programs [152]. The lipid system was based on the standard
dipalmitoylphosphatidylcholine (DPPC); additional layers of water
molecules were added above and below the lipid bilayer to enable full
system solvation. The Monte Carlo simulations are commonly used for
generating a set of representative configurations under given thermo-
dynamic conditions such as temperature and volume [153]. Thus, they
were also performed in this study. Numerous 20 ns trajectories were
obtained using different force constraints; all the trajectorieswere accu-
rately analyzed to get the overall view. The stability of the TM regions
was confirmed, if the RMSD values and backbone torsion angles were
stable. In BTL, during the 20 ns long MD simulations, an overall stable
RMSD was observed for each helix. The analysis of the torsion angles
confirmed that the α-helical secondary structure of the TM2 and TM3
regions remained preserved in the membrane environment [104,105].
In addition, the formation of Proline-induced kinks was observed in
TM2-TM3 [106] and the authors suppose that this is crucial for the con-
formational change during BTL substrate transport. Kinks are well
known to have a functional role inmembrane proteins [147] and thede-
tailed research on TM helices showed that majority of kinks are associ-
ated with Pro residue [148].

4. Summary and Outlook

The interdisciplinary approach is essential in complex bio-molecular
studies, where experimentalists collaborate with computational chem-
ists, who analyze large quantities of existing data and may quickly pro-
vide structural and functional information that is fundamental to
guiding the further directions of investigation. Since the 3D structure
of transmembrane proteins in general aremostly unknown due to tech-
nical difficulties in experimental sample preparations, computational
approaches are the only way to elucidate the potential structural fea-
tures of these proteins. This is a very challenging task due to the gap
in the known atomic structures, which is especially notable in TM pro-
teins. Although a variety of computational methods for the in silico de-
termination of 3D protein structures are available, not all of them are
sufficiently applicable for membrane proteins. Themethods that are re-
ally sophisticated for membrane protein structure predictions are cur-
rently limited, but this field of research is of high interest and existing
methods are constantly being updated or new ones developed with in-
tegrated modifications for TM proteins. Currently, the use of various
template-based methods like comparative modeling and threading
was able and surprisingly efficient formembrane proteins that share se-
quence homology with structurally resolved proteins. But what can be
done in most of the cases when no structural membrane template
exist that can be reliably aligned to the selected target? The use of ab
initiomethods is one of the possible choices, but is nowadays still limit-
ed to small protein systems. In contrast, an interesting hybrid approach,
primarily used for the structural determination of macromolecular as-
semblies, is available for use in the structural characterization of mem-
brane proteins. This approach was demonstrated by a case of structural
elucidation of bilitranslocase, a transmembrane protein with a known
amino acid sequence but with no available information about its 3D
structure or structural homolog. The integration of diverse existing
data obtained from computational and experimental methods was the
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only way to make further progress in the elucidation of its structure.
Such data integration with its iterative series of satisfaction to the
input spatial restrains resulted in the 3D computationalmodel of TM re-
gion arrangement of BTL, which represents an optimal arrangement of
four membrane α-helices. The methodology based on integrative ap-
proaches canmaximize the accuracy and efficiency of structural charac-
terization using constraints from diverse experimental and
computational data. Thus, this methodology is recommended for the
challenging elucidation of TMprotein structures, when single computa-
tional and experimental methods are insufficient or not available. Final-
ly, we would like to draw attention to an alternative direction of
investigation of protein function when its' 3D structure is not known.
When the 3D structure of the protein or at least of close homologs is
not available, there are still somemethods for the investigation of func-
tions of such proteins based on structure-free approaches such as
pharmacophore and structure–activity modeling. The in silico ligand-
based models designed based on quantitative structure activity relation-
ships (QSAR) are one of very fewmethods that can be used in the absence
of the resolved3Dprotein structure. Once theQSARmodel is constructed, it
can offer valuable information on the structural features of substrates that
are of significance for their transport ability (e.g. drug absorption/excre-
tion). For example, despite of lack of structural data, such effective QSAR
models were also possible to develop for this case study protein BTL [29,
30,154]. However, this is completely new story for another review.
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