

Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active. Contents lists available at ScienceDirect

and mortality."

Biomedicine & Pharmacotherapy

journal homepage: www.elsevier.com/locate/biopha

Comment on "COVID-19 and diabetes: Association intensify risk factors for morbidity

Sharma et al. presented hemagglutinin esterase as a structural protein on the SARS-CoV-2 surface in a recent review article in Biomedicine & Pharmacotherapy [1]. However, evidence suggests that the SARS-CoV-2 genome lacks the HE gene [2–6]. In addition, the authors did not presented envelope protein in structure of SARS-CoV-2 in [1].

Although most beta coronaviruses recognize 9-O-acetyl-SAs, this has changed as a result of coronavirus evolution. The hemagglutinin esterase (HE) gene was horizontally adapted from an influenza C-specific HEF and transferred to a beta coronavirus lineage A (OC43-CoV, HKU1-CoV, and Bovine-CoV). Cross-species transmission and HE evolution both contribute to HE adaptation. This proves viral compatibility with host glycans [7]. Thus, studying emerging viruses like SARS-CoV-2 may help us better understand the viral evolution process.

COVID-19 is caused by SARS-CoV-2, a beta-coronavirus of lineage B. It encodes four structural proteins: [1] the spike-surface glycoprotein [2], the small envelope protein [3], the membrane glycoprotein, and [4] the nucleocapsid protein, as well as several nonstructural proteins; however, HE is encoded by other betacoronaviruses in lineage A, including HCoV-OC43, HCoV-HKU1, BCoV, and MHV [2,8].

In conclusion, evidence suggests that the SARS-CoV-2 genome lacks the HE gene, and thus HE cannot play a role in SARS-CoV-2 replication.

CRediT authorship contribution statement

Ahmad Hosseinzadeh adli: Conceptualization, Supervision. Sanaz Baghban Rahimi: Writing – review & editing.

Declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of data and materials

Not applicable.

Competing interests

The author reports no declarations of interest.

Funding

No funding.

Data Availability

No data was used for the research described in the article.

Acknowledgements

Not applicable.

References

- P. Sharma, T. Behl, N. Sharma, S. Singh, A.S. Grewal, A. Albarrati, et al., COVID-19 and diabetes: association intensify risk factors for morbidity and mortality, Biomed. Pharmacother. 151 (2022), 113089.
- [2] S. Kumar, R. Nyodu, V.K. Maurya, S.K. Saxena, Morphology, genome organization, replication, and pathogenesis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Coronavirus Disease 2019 (COVID-19), Springer, 2020, pp. 23–31.
- [3] T. Devasena, Nanotechnology-COVID-19 Interface, Springer, 2021.
- [4] M. Zandi, Severe acute respiratory syndrome-2 encodes hemagglutinin esterase? Rev. Med. Virol. (2021).
- [5] F.K. Yoshimoto, The proteins of severe acute respiratory syndrome coronavirus-2 (SARS CoV-2 or n-COV19), the cause of COVID-19, Protein J. 39 (3) (2020) 198–216.
- [6] C.B. Jackson, M. Farzan, B. Chen, H. Choe, Mechanisms of SARS-CoV-2 entry into cells, Nat. Rev. Mol. Cell Biol. 23 (1) (2022) 3–20.
- [7] C.-H. Kim, SARS-CoV-2 evolutionary adaptation toward host entry and recognition of receptor O-Acetyl sialylation in virus-host interaction, Int. J. Mol. Sci. 21 (12) (2020) 4549.
- [8] M.M. Kesheh, P. Hosseini, S. Soltani, M. Zandi, An overview on the seven pathogenic human coronaviruses, Rev. Med. Virol. 32 (2) (2022), e2282.

Ahmad Hosseinzadeh Adli^{a,b,*}, Sanaz Baghban Rahimi^c ^a Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran ^b Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran ^c Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran

* Corresponding author at: Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran. *E-mail address:* hoseinzade-a@goums.ac.ir (A. Hosseinzadeh Adli).

https://doi.org/10.1016/j.biopha.2022.113477

Received 19 June 2022; Received in revised form 17 July 2022; Accepted 24 July 2022

Available online 1 August 2022 0753-3322/© 2022 The Authors. Published by Elsevier Masson SAS. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).