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Abstract: Molecularly Imprinted Polymers (MIPs) are polymeric networks capable of recognizing
determined analytes. Among other methods, non-covalent imprinting has become the most popular
synthesis strategy for Molecular Imprinting Technology (MIT). While MIPs are widely used in various
scientific fields, one of their most challenging applications lies within pharmaceutical chemistry,
namely in therapeutics or various medical therapies. Many studies focus on using hydrogel MIPs in
transdermal drug delivery, as the most valuable feature of hydrogels in their application in drug de-
livery systems that allow controlled diffusion and amplification of the microscopic events. Hydrogels
have many advantages over other imprinting materials, such as milder synthesis conditions at lower
temperatures or the increase in the availability of biological templates like DNA, protein, and nucleic
acid. Moreover, one of the most desirable controlled drug delivery applications is the development of
stimuli-responsive hydrogels that can modulate the release in response to changes in pH, temperature,
ionic strength, or others. The most important feature of these systems is that they can be designed
to operate within a particular human body area due to the possibility of adapting to well-known
environmental conditions. Therefore, molecularly imprinted hydrogels play an important role in the
development of modern drug delivery systems.

Keywords: Molecular Imprinted Polymers (MIP); Molecular Imprinting Technology (MIT); hydrogels;
transdermal drug delivery

1. Introduction

Molecular Imprinted Polymers (MIPs) are polymeric systems that possess a unique
property to recognize a specific molecule or group of structurally related molecules. MIPs
selective recognition’s property is determined during the preparation of polymer using
a template molecule together with appropriate monomers in a solvent. MIPs are prepared
in the presence of template molecules that can be subsequently removed, which determine
MIP’s cavity selectivity for a specific template or compounds structurally related to this
template [1,2]. Created tailor-made sites gain the property to selectively recognize the
template molecule’s size, shape, and functional groups.

The first reported molecular imprinting concept was proposed in 1931 by Polyakov [3]
as “unusual adsorption properties of silica particles prepared using a novel synthesis
procedure”. The mentioned “unusual adsorption properties” have been reported using
numerous polymers, which have been subsequently named as molecularly imprinted
polymers—MIPs.

There are three methods to form molecular imprinting. The first one is a covalent
method based on reversible covalent bonds, introduced by Wulff in 1995 [4], the second is
a method proposed by Mosbach in 1994 [5], which is based on non-covalent interactions
between templates-imprinted molecules- and functional monomers and the last one is semi-
covalent, reported by Whitcombe et al. [6], in which subsequent rebinding by non-covalent
bond can be created after a covalently bounded template is removed (Figure 1) [6,7].
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Figure 1. Schematic representation of covalent and non-covalent mechanisms of molecularly im-
printed procedures. 

The covalent imprinting method is based on creating a covalent bond between the 
template and the appropriate monomer. Then, during polymerization, the covalent link-
age is cleaved, and subsequently, the template is removed from the MIP matrix. Rebind-
ing of the previously removed template causes reappearance of the same covalent linkage. 
Since the formation of identical rebinding linkages requires rapidly reversible covalent 
interactions between templates and appropriate monomers, the number of suitable tem-
plates for covalent imprinting is limited. Additionally, the robust nature of the covalent 
interactions and consequent slow dissociation and binding makes it hard to reach ther-
modynamic equilibrium. The second method, non-covalent imprinting, has no such re-
strictions and is the most frequently used due to its simplicity [8]. By using an appropriate 
solvent, the formed various interactions such as hydrogen bonds, π-π and ionic interac-
tions, van der Waals forces, etc., generate template-monomer complexes. After removing 
the template from the MIP matrix, the interactions can be easily recreated. The removed 
template can be rebound via the same non-covalent interactions as before polymerization. 
Therefore, the range of applicative compounds which can be imprinted via non-covalent 
imprinting is expanded, and non-covalent imprinting has become the most popular and 
general synthesis strategy for Molecular Imprinting Technology (MIT). The third type of 
imprinting method is semi-covalent, defined as subsequent rebinding by non-covalent 
bond after a covalently bounded template is removed. This semi-covalent approach was 
firstly reported by Whitcombe et al. [6] and offered an intermediate alternative in which 
the template is bound covalently to functional monomer since the template rebinding is 
based on non-covalent interactions. Semi-covalent bond can be characterized by the high 
affinity of covalent binding and mild operation conditions of non-covalent rebinding. The 
schematic diagram of non-covalent imprinting mechanisms is presented in Figure 2 [7]. 

Figure 1. Schematic representation of covalent and non-covalent mechanisms of molecularly
imprinted procedures.

The covalent imprinting method is based on creating a covalent bond between the
template and the appropriate monomer. Then, during polymerization, the covalent linkage
is cleaved, and subsequently, the template is removed from the MIP matrix. Rebinding of
the previously removed template causes reappearance of the same covalent linkage. Since
the formation of identical rebinding linkages requires rapidly reversible covalent interac-
tions between templates and appropriate monomers, the number of suitable templates for
covalent imprinting is limited. Additionally, the robust nature of the covalent interactions
and consequent slow dissociation and binding makes it hard to reach thermodynamic
equilibrium. The second method, non-covalent imprinting, has no such restrictions and
is the most frequently used due to its simplicity [8]. By using an appropriate solvent, the
formed various interactions such as hydrogen bonds, π-π and ionic interactions, van der
Waals forces, etc., generate template-monomer complexes. After removing the template
from the MIP matrix, the interactions can be easily recreated. The removed template can be
rebound via the same non-covalent interactions as before polymerization. Therefore, the
range of applicative compounds which can be imprinted via non-covalent imprinting is ex-
panded, and non-covalent imprinting has become the most popular and general synthesis
strategy for Molecular Imprinting Technology (MIT). The third type of imprinting method
is semi-covalent, defined as subsequent rebinding by non-covalent bond after a covalently
bounded template is removed. This semi-covalent approach was firstly reported by Whit-
combe et al. [6] and offered an intermediate alternative in which the template is bound
covalently to functional monomer since the template rebinding is based on non-covalent
interactions. Semi-covalent bond can be characterized by the high affinity of covalent
binding and mild operation conditions of non-covalent rebinding. The schematic diagram
of non-covalent imprinting mechanisms is presented in Figure 2 [7].

In comparison to other well-known recognition systems, MIPs have received consider-
able attention. Thanks to that, MIPs are widely used in various fields such as purification [9],
separation [10], and catalysis [11], and degradation processes [12] but also they have be-
come attractive in drug delivery [13], artificial antibodies [14], or biosensing [15]. The
widespread use of MIPs is an aftermath of their favorable characteristics, such as high
physical stability to harsh chemical and physical conditions, straightforward preparation,
remarkable robustness, excellent reusability, and low-cost synthesis [7,16]. Whereas MIPs
present a wide range of advantages, there is some drawback that should be considered.
One of them is the design of a new MIP system that will be suitable for a specific template
molecule usually requires a lot of work and time to estimate the best synthesis conditions
that allow obtaining the intended material. Before finding the optimum conditions, there is
a necessity to continually change various experimental parameters [13].
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2. Fundamentals of MIPs

Molecularly imprinted polymers are polymeric matrices that are moulds for the
formation of template complementary binding areas. They can be programmed to recognize
a large variety of structures with antibody-like affinities and selectivities. In addition to the
already mentioned advantages, these properties have made MIPs attractive in various fields.
The main applications of molecularly imprinted polymers are presented in Figure 3 [17].
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2.1. Essential Elements of Molecular Imprinting

Generally, MIPs are synthesized using a functional monomer, template, cross-linker,
a polymerization initiator, and an appropriate solvent. In short, MIPs are prepared by
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mixing the mentioned molecules, and then, this pre-polymerization mixture has to be irra-
diated with UV light or subjected to heat to initiate polymerization [8]. As polymerization
is affected by many factors, MIPs can be modified by the appropriate choice of synthesis
conditions. There is a possibility to obtain various MIPs with specific properties due to
changes of factors such as type and amount of monomer, initiator, cross-linker, and solvent.
Additionally, the time and temperature of polymerization reaction also play an important
role in creating MIPs with superior targeted properties [16].

The central importance of MIP structure is a template, which can direct the organi-
zation of the functional group’s pendant to the functional monomers in the molecular
imprinting process. Templates should be inert under the polymerization conditions during
free radical polymerization [8]. The main goal of molecularly imprinted technology is
to create MIPs compared with biological receptors in specificity. Thanks to that, MIPs
might replace those entities in real-life applications. Since there is a lot of requirements that
should be met, the three mentioned ahead make the template an ideal candidate—it should
exhibit excellent chemical stability during the polymerization reaction, it should contain
functional groups that do not prevent polymerization, and it should contain functional
groups that can form complexes with functional monomers [6]. Additionally, established
imprinted small organic molecules such as pharmaceuticals, pesticides, or amino acids are
well-known and commonly used. Furthermore, a lot of research proves that not only small
molecules are suitable for Molecular Imprinting Technology. Since small molecules have
a lot of advantages—like being more rigid to form well-defined binding cavities during
the imprinting process—there are some of the protocols that reported using larger organic
entities like proteins or even cells. As only a few protocols are reported, imprinting larger
organic compounds containing secondary or tertiary structures is still a challenge because
these structures may be affected when exposed to the thermal or photolytic treatment
involved in the synthesis of MIPs. The rebinding process is also more complicated when
using such individuals as large templates, as they do not penetrate the polymeric network
easily to reoccupy the binding cavities [8].

It is essential to select a suitable functional monomer that can strongly and selectively
react with the template to form specific complexes. Generally, the functional monomers are
responsible for the binding interactions present in the imprinted binding sites during the
imprinting process. As reported in many protocols, for non-covalent molecular imprinting
reaction, the monomer is used in excess of the number of moles of the template to form
template-functional monomers assemblies. To maximize expected complex formation,
matching the template’s functionality with the monomer’s functionality plays a crucial
role. The imprinting effects increase when the template’s functionality is matched with
the functionality of the monomer in a complementary fashion, like an H-bond donor with
an H-bond acceptor [7]. The amount of monomers that can be used in molecular imprinting
is limited. It is imperative to synthesize new functional monomers that form specific
interactions with the templates. Typically, monomers include two independent types of
units—the recognition unit and the unit, which can be polymerized [16]. Figure 4 presents
widely used functional monomers [8].

The amount of cross-linker used in the polymerization process also plays an important
role in MIPs properties. Too low cross-linker causes unstable mechanical properties, whereas
too high amount will reduce the number of recognition areas per unit mass of MIPs. The
primary role of a cross-linker is to form a highly cross-linked polymer. Cross-linker is involved
in fixing monomers around template molecules, thus forming a cross-linked polymer. The
main aim is to develop a highly cross-linked polymer even after removing templates. Gener-
ally, the amount and type of used cross-linker regulate the selectivity and binding capacity
of MIPs [8,16]. In MIPs structure, cross-linker fulfills three major functions: controlling the
morphology of the polymer matrix, serving to stabilize the imprinted binding site, and giving
mechanical stability to the polymer matrix. The structures of commonly used cross-linking
agents in molecular imprinting techniques are presented in Figure 5 [8].
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The most useful reactions for preparing MIPs are free radical polymerization (FRP),
photopolymerization, and electropolymerization [16]. Plenty of initiators with different



Polymers 2022, 14, 640 6 of 21

chemical properties can be used as the radical source in a free radical polymerization
(Figure 6) [8]. In comparison to the monomers, initiators are used at low levels, e.g., 1 wt.%,
or 1 mol.% with respect to the total amount of moles of polymerizable double bonds. More-
over, there are several existing ways in which the rate control and mode of decomposition
of an initiator to radicals, including heat, light, and by chemical/electrochemical means,
depending upon its chemical nature, can be achieved [8].
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The last chemical individuum that strongly impacts proper MIPs formation is sol-
vent. During polymerization, it generally plays an important role as dispersion media
and pore-forming agent. Commonly used solvents include 2-methoxyethanol, methanol,
tetrahydrofuran, acetonitrile, dichloromethane, chloroform, N,N-dimethylformamide, and
toluene [18]. Porogenic solvent needs to have the following features: all of the used chemi-
cal individuals should be well-soluble in the chosen solvent, the solvent should produce
large pores to assure flow-through properties of the polymer, and the last on, the solvent
should possess low polarity to avoid interferences during complex formation between
imprinted molecules and monomers, which is important to obtain high selectivity MIPs [8].
The interactions between templates and monomers depend on the used solvent’s polarity.
Non-polar or low polar solvents such as chloroform are used for non-covalent imprinting.
Due to that, the obtained MIPs gain good imprinting efficiency because the adsorption
properties and morphology of polymer depend on the type of used solvent [16].

2.2. Molecular Imprinting in Drug Delivery

Molecular imprinting is one of the most promising ways to recreate biological molec-
ular recognition and mimic properties of antibodies and enzymes in synthetic materials.
Many researchers are trying to mimic molecular interactions present in these systems as
high recognition characteristics seem to be the fundamental requirement of living systems.
Therefore, most approaches focus on creating a binding cavity in which functional chemical
groups may be strictly positioned. The mechanism of selective recognition and subsequent
drug release from the MIPs structure is presented in Figure 7.
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Whereas MIPs are widely used in various areas of science, the area with one of the
greatest potential seems to be pharmaceutical chemistry, where MIPs, as synthetic molec-
ularly selective receptors, may be used in therapeutics or medical therapy [17]. Due to
properties such as biocompatibility, low toxicity, and biodegradability, MIPs receive exten-
sive attention as drug delivery systems (DDS). MIPs have already been used as selective
oral adsorbents for cholesterol [19] and imprinted bile acid sequestrants [20,21]. Commonly,
MIPs are widely used as DDS in various diseases such as cancer [22], arrhythmia [23,24],
avitaminosis [25], cardiovascular and cerebrovascular disease [26], inflammation [27], ad-
dictive disease [28,29] and other [30]. There are also several applications in which MIPs are
incorporated into membranes to be used for bio-separation and bio-purification [31]. MIPs
are also used in controlled release delivery systems. It is reported that MIPs are widely
used for modifying drug release from solid dosage forms, which results in tuned composi-
tion release. Whereas many studies are based on a simple modification of non-imprinted
polymers, there is also a huge potential in another MIPs application area—intelligent drug
release. This release refers to the predictable release of the therapeutic agent in response to
specific stimuli like the presence of another specific molecule or change in pH. An example
of this intelligent release might be a cell surface epitope. The general mechanism of drug
release from the cell surface is illustrated in Figure 8 [17].
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3. MIP Challenges in Transdermal Delivery

The oral route is the most common and convenient route of drug administration. Low
oral bioavailability and side effects restricted oral administration of most drugs with poor
solubility in clinical use [30]. However, there are a lot of medicines that implementation by
the oral route is characterized by a low adsorption rate from the gastrointestinal tract or
extensive first-pass metabolism [32,33]. In these examples, the skin may be an alternative
route for applying drugs, as it has been widely used as a route of administration for
local and systemic drugs [34,35]. Transport across the biological barrier creates a problem
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resulting from the interaction or reaction of the experimental drug with the epithelial
barrier [36]. The use of MIT may be integrated to design DDS with properties tuned with
pharmaceutical agents produced for dermal or transdermal use [2].

There are a lot of studies that involve MIPs in transdermal drug delivery applications.
In one of them, a molecularly imprinted nicotine transdermal system was proposed. In this
study reported in 2014 by Ruela et al. [28], an imprinted matrix was prepared by free radical
polymerization of a copolymer of methacrylic acid and ethylene glycol dimethacrylate
using the bulk technique in the presence of nicotine, which acted as the template. The bulk
material was then crushed to obtain particles of 75–106 µm. These particles were dispersed
in mineral oil or propylene glycol and formed into a disk with a surface equal to 1.8 cm2.
As results showed, mineral oil was the most promising vehicle due to its hydrophobic
characteristics, which improve the molecular recognition of nicotine in MIP particles.
Polymeric particles present in the transdermal system differed in polarity. In this study, the
pH of the nicotine imprinted polymeric delivery system was similar to the skin’s pH. The
imprinted polymers were characterized using various techniques to study the morphology
of the particles, drug-polymer interactions, and compatibility. The results of controlled
release were compared with the commercially available product—Nicopath®. Results
obtained after in vitro experiments showed that the amounts of permeated nicotine from the
imprinted matrix were similar to commercial patches. The results are 655 and 709 µg cm−2

for 24 h, respectively. According to the results obtained in the study made by Ruela,
a MIP created with a nicotine template showed promising results. It was demonstrated
that non-covalent MIP drug interactions might modify the profile of drug release and
skin penetration. Additional studies, such as FT-IR or SEM, also confirmed that prepared
MIPs with nicotine as a template have high thermal stability and are resistant to chemical
degradation. Although both molecularly imprinted polymer and non-molecular imprinted
polymer could bind the templates in their matrixes, MIPs showed better performance
during the transdermal release. It is caused by the presence of selective recognition sites in
the MIP structure [28,34].

In the further studies made by the same research group, experiments involving the synthe-
sis of several MIPs using precipitation polymerization technique to find optimized materials
able to selectively absorb nicotine were performed. As a result, release and skin permeation
by nicotine was optimized using MIPs synthesized by precipitation polymerization technique.
Obtained polymers showed improved adsorption capacity and selectivity, additionally, MIPs
were also able to modulate the transdermal delivery of templated nicotine [29].

Another application of imprinted polymers is shown in one of the studies presented by
Bodhibukkana et al. [37]. MIPs were used as a composite material integrated with cellulose
to form a membrane to improve the biocompatibility of the transdermal system (Figure 9).
As previous research shows, the cellulose membrane is a biocompatible and biodegradable
material with good mechanical properties.

These studies aimed to modify the cellulose membrane with a thin layer of R-propranolol
or S-propranolol entrapped in MIPs structure. The results showed the potential of molec-
ularly imprinted polymer composite membranes based on cellulose in controlling
S-propranolol release into the skin. The degree of stereoselectivity demonstrated a higher
therapeutic advantage when considering the two enantiomers of propranolol (R/S). Due
to selectivity towards S-propranolol of the MIPs present in the surface of the cellulose
membranes, a limited release was achieved [34,37].
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4. Basic Characteristics of Hydrogels

Polymeric hydrogel networks are insoluble, cross-linked, and composed of hydrophilic
homo- or hetero-co-polymers, absorbing significant amounts of water and retaining their
shape without dissolving. Cross-links within hydrogels may be covalent bonds, permanent
entanglements, ionic interactions, or microcrystalline regions incorporating various chains.
Loading therapeutics into the hydrogel network takes place using one of two possible scenar-
ios. One of them refers to producing the appropriate gel in the presence of the drug, whereas
the second is a path of firstly synthesizing the gel and then loading therapeutic into the gel [38].
Using appropriate monomers with defined properties allows the formed hydrogels to be envi-
ronmentally responsive, for example, toward changes in pH. Generally, molecular imprinting
technologies allow hydrogels to: recognize and selectively bind the specific substrate into the
hydrogel. Hydrogels have many advantages compared with other imprinting materials, such
as milder synthesis conditions at lower temperatures or relatively high solubility of biological
templates like DNA, protein, nucleic acid, etc. Due to that, molecularly imprinted hydrogels
play an important role in modern drug delivery systems [39].

The most valuable feature of hydrogels in drug delivery systems is their ability to
control diffusion and ability to amplify the microscopic events, which occur at the mesh
chain level into macroscopic phenomena [38,40,41]. It is well known that the delivery
of certain drugs directly to localized sites beneath the skin is highly desirable in some
cases since it would allow local pathology to be treated without significant systemic side
effects [42]. Additionally, there are some benefits of transdermal drug delivery within
using hydrogels. The drugs dosage can be interrupted on-demand by simply removing
the devices, and that drugs can bypass hepatic first-pass metabolism. Using hydrogels is
also beneficial because of their dual structure, involving a macroscale three-dimensional
macromolecular network with a highly hydrated microscale environment where the for-
mer characteristic supplies necessary macroscale rigidity, whereas the latter provides the
potential for relatively efficient mass transfer [43]. What is important, swollen hydrogels,
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due to their high water content, may provide a better feeling for the skin in comparison to
conventional ointment and patches [40].

The behavior of hydrogels in a changing environment is presented in Figure 10. Immers-
ing a dry hydrogel in a compatible solvent causes the solvent movement into the hydrogel
polymer chain followed by volume expansion and macromolecular rearrangement depending
on the extent of crosslinking within the network (presented in Figure 10). Two factors are deci-
sive for the rate at which a polymer expands or swells—the rates of polymer-chain relaxation
and solvent penetration into the hydrogel network. Moving from an unperturbed, glassy
state to a solvated, rubbery hydrogel state leads to unlimited exchange in transport. This is
an important feature for swelling-controlled hydrogels, in which we can obtain a zero-order
release or constant release rate. These release rates can be achieved by keeping the constant
rate of solvent front penetration, which should be smaller than the drug diffusion.
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and fully swollen. Reprinted from [38], Copyright (2022), with permission from Elsevier.

In Figure 10, a modified hydrogel molecule is shown. The presented hydrogel molecules
may contain a specific chemical/biological species along their backbone chain to obtain
sensitivity to environmental hydrogels. This feature may be achieved by controlling drug
transport by swelling controlled systems (i.e., drug-loaded dry state with water uptake) or
swellable systems (e.g., pH, temperature, etc.). In a widely used Fickian model of release
kinetics, the relaxation rate is high, resulting in the rate-limiting diffusion process. Thus, the
release rate of the drug is proportional to the concentration gradient between the drug source
and the environment. The achieved rate is proportional to the concentration gradient between
the drug source and the surroundings. The main aim is to find a drug source to achieve
zero-order release. Many strategies try to achieve zero-order release, such as biodegradable
systems with solvent penetration moving with similar velocities the outer eroding [38,44].

One of the new methods is to obtain hydrogel with macromolecular memory for the
drug within the network and delay the transport of drug from the hydrogel matrix by
the presence of interactions with various functional groups within the network. This can



Polymers 2022, 14, 640 11 of 21

be achieved by using molecular imprinting methods presented in Figure 10 Interactions
between the drug and matrix cavities slow drug release from the hydrogel. This type of
hydrogel optimization of slowed release, caused by the amount and strength of functional
monomer interactions, crosslinking structure, and mobility of polymer chains, might be
a potentially synthetic solid way to gain many hydrogels [38].

5. Mechanism of Controlled Release within Molecular Imprinted Hydrogels

Molecular Imprinted Hydrogels can be classified as anionic, cationic, or neutral, which
also determines their behavior. Thermodynamically, the swelling behavior of the hydrogels
network is related to the balance between the polymer-water Gibbs free energy of mixing
and the Gibbs free energy associated with the elastic nature of the entire polymer [45].
The quantities of the mentioned free energies become equal when achieving the swelling
equilibrium [46]. What highlights the hydrogels from others is the advantage of milder
synthesis conditions at lower temperatures and in aqueous mediums regarding the fragility
and solubility of biological templates, including DNA, protein, or even nucleic acids [39].
Two main solvent-activated systems can be indicated—an osmotic-controlled system and
a swelling-controlled system—the rate of water influx controls the overall rate of the drug
release. The controlled drug release mechanism is based on water diffusion and polymer
chain relaxation [46]. Generally, the time dependence of the drug release rate can be
determined by the rate of water diffusion and chain relaxation [47].

It is well-known that the limitations of transdermal drug delivery are controlled by skin
anatomy. Generally, the skin permits a painless and compliant network for systemic drug
administration [48]. The fact that the skin has evolved and thus impedes the flux of toxins
into the body and minimizes water loss means that it naturally has a low permeability to the
penetration of foreign molecules. Because the skin provides a barrier to the delivery of many
drugs, various chemical additives have been tested to achieve better results in transdermal
penetration. Chemical penetration additives offer many advantages, such as design flexibility
with formulation chemistry and a more accessible patch application over a large area [49]. The
mentioned transdermal patches have been widely helpful in developing new applications for
existing therapeutics and reducing first-pass drug-degradation effects. Patches also gain the
ability to reduce some side effects. For example, estradiol patches are commonly used and, in
contrast to the popular oral formulations, do not cause liver damage [50].

Whereas the mechanism of controlled release of the drug from hydrogel structure is
relatively easy to design, implementing imprinted recognition release systems requires
consideration of many environmental impacts and the expected properties of the desired
hydrogel. Basically, the controlled release mechanism and associated swelling charac-
teristics of polyhydrogels’ networks result from cross-links (also known as tie-points or
junctions), permanent entanglements, ionic interactions, or microcrystalline regions incor-
porating various chains. In general, as an analyte replaces pendant analyte groups (attached
to the copolymer chains), the polymeric network loses effective cross-links, opening the
network’s mesh size and regulating the release. Otherwise, as an analyte decreases in
concentration within the bulk phase, the molecule rebinds with the analyte groups attached
to the copolymer chains, which role is to close the network structure [46].

It is not a surprise that one of the most desirable controlled drug delivery applications is
stimuli-responsive hydrogels that can modulate the release in response to pH, temperature,
ionic strength, electric field, or specific analyte concentration differences. The most important
feature of these systems is that they can be designed to operate within a particular human
body area due to the possibility of adapting to well-known environmental conditions [46,47].

5.1. Stimuli-Responsive MIP Hydrogels

The need for creating intelligent materials based on chemical compounds that can
mimic the natural receptors inspires the development of imprinting technologies and ex-
pand the MIPs synthesis into the synthesis of stimuli-responsive MIPs (SR-MIPs) by stimuli-
responsive technology for molecular imprinting. SR-MIPs included thermo-responsive
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MIPs, pH-responsive MIPs, dual- or multiple-responsive MIPs, and other-responsive MIPs.
Due to their great applications properties, these intelligent polymers play an important
role in many fields such as drug delivery, biotechnology, separation science, cell encapsula-
tion in biochemistry, and chemo-biosensing [51]. The combination of stimuli-responsivity
and Molecular Imprinting Technology helps to obtain valuable functionalities. Generally,
imprinting provides a high loading capacity of specific molecules, whereas the ability to
respond to stimuli modulates the affinity to network for the target molecules. The whole
process provides a regulatory or switching capability of the release process [52].

Connecting molecularly imprinting technology with the synthesis of stimuli-responsive
hydrogels requires conducting the polymerization reaction in the presence of a template
in the conformation corresponding to the minimum energy. Imprinted cavities’ recogni-
tion properties after swelling can be maintained only if the network folds back into the
conformation adopted during the synthesis [53]. Generally, when the centers of molecular
recognition are present in the stimuli-responsive hydrogel, the conformation of the recep-
tors may be deformed or re-constituted as a function of an external or a physiological signal.
There are plenty of functions that stimuli-responsive polymeric hydrogels can perform,
such as selectively and effectively load of a particular drug, releasing the drug at a rate
modulated by a stimulus, and uptake the released drug again from the environment if the
drug remains around the hydrogel when the stimulus stop or diminishes its intensity and
the cavities are reformed (Figure 11) [52].
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cavities in a responsive hydrogel.

Generalizing, stimuli-responsive imprinted hydrogels can be synthesized by combining
responsive monomers with functional monomers that interact with the appropriate drug
molecules. After polymerization reaction, during hydrogel swelling, the structure of receptors
is altered, and the drug is released. The receptors can be reconstituted following stimulus
disappear or decrease in its intensity. As a consequence, the release slows down or even stops.
Whereas there is a necessity to recognize cavities structure after several swelling/collapse
cycles, optimizing stimuli-responsive imprinted hydrogels is still challenging [52,54].

5.1.1. Thermo-Responsive Hydrogels

The thermo-responsive gels have been widely used as smart materials in various
fields such as drug delivery systems, tissue engineering, or even cell encapsulation in
biochemistry [55–59]. Thermo-responsive MIPs have gained the researchers’ curiosity
due to the similar recognition mechanisms to the proteins from natural systems and
the ability of the hydrogels to swell or deswell thanks to changes in temperature in the
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surrounding area [40]. Therefore, thermo-responsive polymeric hydrogels can be used in
the design of protein-imprinted polymeric materials, which have already been reported
in many applications [55,56,59,60]. The important thing is that there is dependence on
the availability of binding sites from the MIP structure based on cross-linking. Highly
cross-linked MIPs have a more rigid structure thus, the number of binding sites is limited,
whereas lightly cross-linked polymer gels can undergo reversible swelling and shrink in
response to environmental temperature changes [16]. There are two classes of thermo-
responsive hydrogel materials—positive and negative temperature-responsive systems.
The main difference is critical solution temperature—the positive temperature-responsive
hydrogels have an upper critical solution temperature (UCST), so it means that they
contract upon cooling below the UCST. In contrast, the negative-sensitive hydrogels have
a lower critical solution temperature (LCST), and they contract upon heating above the
mentioned LCST [40]. Generally, thermo-responsive polymers contain both hydrophilic
and hydrophobic groups. Due to that, they can form appropriate structures, swelling and
shrinking, in response to temperature changes. The mechanism of this response is based
on hydrogen bond interactions. It is well known that in lower temperatures, the hydrogen
bond interactions are formed between hydrophilic areas in polymer chains and templates,
whereas in higher temperatures, higher than the low-critical solution temperature (LCST),
the hydrogen bond interactions are destroyed, thus hydrophobic interactions increase.
An increase of hydrophobic bond interactions causes the aggregation of polymer chains
and then contraction of the gel network [51].

The most known thermo- responsive polymer is poly(N-isopropylacrylamide) (PNI-
PAAm). Its low-critical solution temperature is around 32 ◦C in an aqueous solution, so it
means that due to the close to natural body temperature, it may be used widely in smart
drug delivery systems [61,62]. Generally, the combination of thermo-responsive properties
with Molecular Imprinting Technology can develop networks that provide a promising
synthetic strategy ensuring the system responds rapidly to external temperature changes.
The schematic mechanism of thermo-responsive hydrogel’s action is presented in Figure 12.
It is shown that the template can be easily removed from the MIPs network by reducing
the external temperature (Figure 12) [51].
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A lot of studies are reported, showing that the N-isopropylacrylamide (NIPAAm) can be
used as a functional monomer for preparing thermo-responsive MIPs, applicable in various
fields. The NIPAAm has been used for many target species such as proteins [59,63–65], organic
molecules (like 4-aminopyridine) [63], cisplatin [66], or even metal ions (like Cu2+ ions) [67].

Wang et al. [68] reported the results of research in which a preparation of pH/thermo-
responsive MIPs by frontal polymerization using acrylic acid and N-isopropylacrylamide
(NIPAAm) was performed. The proposed MIPs were applied to deliver Gemifloxacin,
a fourth-generation fluoroquinolone antibiotic that acts by inhibiting DNA gyrase and
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topoisomerase IV. The reported data showed that the obtained drug delivery devices
based on MIPs possessed higher relative bioavailability of Gemifloxacin than those of the
corresponding non-imprinted polymers [68].

One of the recently studied MIP hydrogels with the thermo-responsive feature is
a molecularly imprinted polymer based on konjac glucomannan (polysaccharide) im-
printed with 5-fluorouracil as a template reported by Ann et al. [69]. 5-Fluorouracil is
a compound with a high affinity to a range of tumors such as gastric, intestinal, pancreatic,
ovarian, liver, brain, breast, etc. In the reported studies, a novel thermo-responsive MIP
was prepared by graft copolymerization using konjac glucomannan (KGM) as a matrix,
N-isopropylacrylamide (NIPAAm) as a thermo-responsive monomer, acrylamide (AM)
as co-monomer, N,N’-methylenebis(acrylamide) (NBAM) as a cross-linking agent, and
5-fluorouracil (5-Fu) as a template (Figure 13).
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Figure 13. Schematic procedure of synthesis of 5-fluorouracil thermo- responsive MIP reported by
Ann et al. Reprinted [69], Copyright (2022), with permission from Elsevier.

5-Fluorouracil selective MIP was characterized by thermo-responsive features. The
results showed that the system could quickly respond to an external change in temperature.
The swelling or shrinking of the imprinted sites resulted in the adsorption or desorption of
5-fluorouracil. As a result, the prepared MIPs could be used as a sustained-release network
controlling the release of 5-Fu by changing the environmental temperature. Obtained data
of the release kinetics was fit with the Higuchi release model [69].

5.1.2. pH-Responsive Hydrogels

Hydrogels, which are pH-responsive, must contain many chemical groups that can be
easily ionized. Carboxyl or amino groups can be noted as examples of these groups that
can, accordingly, donate or accept a proton, which determines the pH-sensitivity feature
of the entire MIPs. As in the case of thermo-sensitivity, the mechanism of pH-response
is based on hydrogen bonds interaction between the chains and template [51]. When the
chemical group is ionized during changes of environmental pH, at the same time, the
hydrogen bonds between chains are destroyed, which causes a decrease in the crosslinking
points in the hydrogel network. This results in a discontinuous change in the hydrogel
volume [70]. Considering the possibilities of ionized groups, pH-responsive polymers can
be divided into two types—anionic and cationic ones. Within the anionic types, the most
useful group is a carboxyl group, which can be protonated and thus determine hydrophobic
interactions at low pH. Additionally, a low pH environment cause leading the volume
shrinkage. Opposite to that, at high pH, the behavior of hydrogel is quite different. In these
conditions, carboxyl groups dissociate into carboxylate ions, resulting in a high charge
density in the polymer network, which causes swelling. Similarly, the pH-responsive
feature of the cationic hydrogel network is dependent on the protonation of basic groups
in the polymer chains (e.g., amino groups or pyridine groups). At low pH, basic cationic
groups are protonated, which leads to internal charge repulsions between neighboring
protonated groups. In contrast, at higher pH, the groups become less ionized, resulting in
a reduction in the overall hydrodynamic diameter of the polymer [51].

The first reported pH-responsive MIPs were proposed by Tao et al. [71]. In this research,
novel pH-responsive MIPs by using amylose as the host matrix, bisphenol A (BPA) as the
template, and acrylic acid (AA) as the co-functional monomer prepared. Changing the
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acidity of the entire solution could reversibly control the rebinding ability towards the
template. In that case, the rebinding ability of polymers decreased with the increasing pH of
the solution. Comparing two pH conditions, pH1 = 4.5 and pH2 = 8.5, the binding amount
was, accordingly, 2.5 µM·g−1 and 1.0 µM·g−1 [51,71]. The higher pH caused the loss of the
MIP affinity for bisphenol A because of the conformational changes in the amylose chains
caused by the electrostatic repulsions among the ionized groups of acrylic acid and the
subsequent disruption of the imprinted cavities (Figure 14) [52].
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The example of pH-responsive MIP prepared for controlled release of dexamethasone-21-
phosphate disodium salt (DXP) is nanosphere/hydrogel composite reported by Wang et al. [72].
The chosen DXP is a potential coating for implantable biosensors that should improve
their biocompatibility [51]. As results show, the DXP release rate from the MIP structure
increased significantly with a decrease of pH value, while the DXP release rate from the
non-imprinted polymer structure didn’t change with the pH change (Figure 14).

The behavior of DXP in various pH conditions can be explained by interactions
between the template and polymer network. When the pH value decreases, some template
anions are protonated, which causes weak ionic interactions. It subsequently leads to
a faster drug release rate [72]. Obtained hydrogel has been applied in glucose sensors
to improve their biocompatibility as well as their lifetime. The results showed that the
obtained DXP hydrogel MIPs can potentially suppress the inflammation response, causing
an increase in the pH of the imprinted sensors, effectively improving their lifespan [51].

Interesting studies of dual drug release with materials based on poly(L-lactide)-co-
polyethylene glycol-co-poly(L-lactide) dimethacrylate as a degradable polymeric cross-linker
were reported by Xu et al. in 2016 [73]. They used acrylic acid and N-isopropylacrylamide as
monomers, anti-cancer drug DOX, and the antibiotic tetracycline, which both were used as
templates loaded into the hydrogels with dual drug loading efficiency. The drug release
at pH 7.4 and 1.2 were examined. The obtained results confirmed the original thesis and
showed that the synthesized copolymers are pH-responsive, shrinking at pH = 1.3 and
swelling at pH = 7.4. As experiments demonstrated, the dual-drug-loaded hydrogels
released drugs in different patterns and successfully killed targeted cells [73].
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5.1.3. Dual/Multiple-Responsive MIPs

The dual/multiple-responsive hydrogels are polymeric systems responsive to two
or more external stimuli [51]. While the studies on dual stimuli-responsive polymers
are widely common, they are relatively less explored than single-responsive polymers.
However, dual-responsive MIPs gain the researcher’s curiosity due to their feature, such as
enhancing the versatility of polymeric materials as they allow tuning of their properties in
multiple ways rather than in single-responsive polymers [16]. From the synthetic point of
view, by using suitable monomers, the dual-responsive MIPs may be obtained by transform-
ing the single-responsive polymer by replacing the traditional functional monomer with
a stimuli-responsive functional monomer [51]. Generally, dual-responsive polymers mainly
include: magnetic/photo; magnetic/thermo; thermo/pH; thermo/photo; and thermo/salt
dual responsive MIPs. The mentioned types of well-reported dual-responsive MIPs useful
in various fields are presented in Table 1.

Table 1. Examples of well-reported dual/multiple-responsive MIPs with their applications [16].

Type of Polymer Template Responsive Element Application Reference

Thermo/Magnetic

2,4,5-
Trichlorophenol NIPAAm, Fe3O4 Selective separation and enrichment fields [74]

Sulfamethazine NIPAAm, γ-Fe3O4
Separation, drug release,

protein recognition [75]

BSA NIPAAm, Fe3O4

Chromatographic separation, solid-phase
extraction, drug delivery. Medical diagnosis

and biosensors
[76]

Photo/Magnetic Caffeine Fe3O4, MPABA Trace caffeine analysis [77]
pH/Thermo Ovalbumin NIPAAm, boronic acid Chemical sensing and biosensing [78]

Thermo/Photo 2,4-D Azobenzene, NIPAAm Separation, extraction, assays, drug delivery,
and bioanalytical analysis [79]

Thermo/Salt BSA NIPAAm, NaCl Solid-phase extraction, sensors, and protein
delivery agents [80]

Thermo/Salt/Bio-
molecule

Lysozyme or
Cytochrome 4

NIPAAm, NaCl,
Bio-molecule Non-protein acetous receptor [65]

One of the most interesting uses of dual-responsive MIPs is reported by Zhao et al. [77],
a multi-responsive MIP consisting of thermo-responsive and salt-responsive MIPs hydro-
gel. The research presents dual-responsive MIPs hydrogel for BSA by self-assembly of
a basic functional monomer N-[3-(dimethylamino)propyl]methacrylamide (DMAPMA)
with bovine serum albumin (BSA) that can be polymerized in the presence of NIPAAm.
Obtained dual-responsive polymeric hydrogel proved that it possesses a clear memory
of the template protein and can respond to changes in temperature and ionic strength.
In the recognition process mechanism, salt ions play an important role in screening the
electrostatic interactions between protein molecules and the charged polymer chains. It
was observed that the increase of salt concentration caused a screening of electrostatic
interactions between polymer chains, while the addition of NaCl to the adjusted volume
of polymer caused inhibition. The demonstrated features of obtained dual-responsive
MIPs made them attractive for applications such as solid electrolyte membranes, electrode
devices, protein delivery agents, and sensors with the controlled release [80].

There are also some studies reporting multiple-responsive MIPs, however, the amount of
such systems is much lower than dual-response MIPs. One example proposed by Chen et al. [78]
is multi-responsive protein imprinted polymers responsive to temperature, the corresponding
template protein, and salt concentration, which results in specific volume shrinking. Cy-
tochrome c or lysozyme were used as templates, NIPAAm as a major functional monomer,
MAA and AAm as functional co-monomers, and N,N-methylenebisacrylamide as a cross-
linker. As the results showed, the combination of molecular imprinting technique and
a stimuli-responsive feature may be useful for preparing protein-responsive polymeric hydro-
gels that can undergo specific binding and shrinking in the presence of template [65].
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Recently, interesting research was reported by Wang et al. [81] based on the fabrication
of core-shell imprinted nanospheres with multiple responsive properties. The scheme of
the main synthesis is shown in Figure 15.
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As results showed, fabricated magnetic core-shell MIP nanospheres, with an imprinted
layer with a thickness ranging from 40 to 150 nm, gain fine hydrophilicity, high binding
capacity, and favorable selectivity adsorption in aqueous solution. Obtained polymers were
also used in the application of drug delivery systems and expressed a sustained release
effect triggered by temperature and UV light [81].

5.1.4. Other-Responsive Hydrogels

There is a lot of possibilities to obtain a stimuli-responsive polymeric hydrogel. Hy-
drogels may be fabricated to be responsive for various, additional to mentioned in previous
paragraphs, external stimuli such as light, magnetic field, or other stimuli including salt ions
and biomolecules [16]. Whereas many studies are reporting all of the mentioned external
stimuli responsive materials, from pharmaceutical point of view, the most interesting thought
is to be the last, using biomolecule responsive polymeric networks. Recently, biomolecule-
responsive hydrogels have become more important for drug delivery systems and molecular
diagnostics because they can sense the target biomolecule, which results in structural changes.
The mechanism of biomolecule-responsive MIPs is based on changes in the volume as a func-
tion of the concentration of a target biomolecule such as carbohydrates or proteins [82]. The
fabricated MIP’s hydrogels may be an optimal way to overcome tumors as some studies con-
firmed that suppositions. A good example is a research presented by Miyata, who prepared
tumor-marker-imprinted hydrogel, which can shrink in the presence of a target-tumor marker
glycoprotein by using various cross-linkers (low-molecular-weight/high-molecular-weight).
The obtained results provided a basis for developing useful biomolecule-responsive hydrogels
and permitted the knowledge of critical factors of molecular imprinting. The presented studies
were focused not only on the proper preparation of biomolecule-responsive hydrogel but
also on the effect of the molecular weight of cross-linkers on the glycoprotein-responsive be-
havior of imprinted hydrogels. Generally, whereas long chains of the high-molecular-weight
cross-linker and network chains undergo conformational changes by complex formation of
ligands with a target glycoprotein, short chains of the low-molecular-weight cross-linkers do
not undergo these changes [83].



Polymers 2022, 14, 640 18 of 21

6. Conclusions and Future Work

Molecularly imprinted polymers are promising materials in the synthesis of advanced
drug delivery networks due to their ability to increase release times and extend the resi-
dency of the entire drug. As the presented studies showed, the main application fields in
which MIPs hydrogels can be used are sustained release, controlled release, and targeted
delivery system based on its distinct advantages. The future perspectives for transdermal
imprinted drug delivery devices are very promising because of noted enormous progress
in synthetic and material approaches. The main advantage of using MIPs is their high
stability, from which there is a possibility to note: resistance to pressure, high temperatures,
extreme pH, and possibility for long-term storage.

In this review, there was also summarized a mechanism and application of various
stimuli-responsive MIPs. As presented, stimuli-responsive MIPs can be divided into single-
responsive and multi-responsive MIPs. The main conclusion is that the second group has
received more attention between non-stimuli and stimuli-responsive MIPs because of their
excellent properties. One of the main benefits is their response to external stimuli, which
makes it possible to alter their volume and affinity for target molecules by changing the
environmental conditions.

Although various achievements have been attained in molecularly imprinted tech-
nology and stimuli-responsive MIPs, there are still lots of development challenges and
opportunities. For instance, it is still challenging to transfer the imprinting process from
organic to aqueous phase, reaching the level of natural molecular recognition, exploring
various stimuli-responsive systems to develop stimuli-responsive MIPs, and develop-
ing within dual/multiple-responsive MIPs with good biocompatibility with increasing
requirements for functional polymer materials.
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