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ABSTRACT: We report the identification of the tnd biosynthetic cluster
from the marine-derived fungus Aspergillus f lavipes and the in vivo
characterization of a cryptic type I diterpene synthase. The heterologous
expression of the bifunctional terpene synthase led to the discovery of a
diterpene backbone, talarodiene, harboring a benzo[a]cyclopenta[d]-
cyclooctane tricyclic fused ring system. The conversion of geranylgeranyl
diphosphate to talarodiene was investigated using 13C-labeling studies, and
stable isotope tracer experiments showed the biotransformation of talarodiene
into talaronoid C.

Terpenes are the largest class of natural products and are
produced by all kingdoms of life. These compounds

possess enormous structural diversity and exhibit various
biological activities ranging from anticancer and antimalarial
activity to being carcinogens and mycotoxins.1 Despite their
structural complexity, all terpenes are derived from the
universal C5 hemiterpene precursors dimethylallyl diphosphate
(DMAPP) and isopentenyl diphosphate (IPP). Coupling of
these C5 precursors, facilitated by prenyltransferases (PTs),
generates linear, achiral polyprenyl diphosphates that can be
transformed by terpene cyclases (TCs) into complex scaffolds
containing multiple fused rings and stereogenic centers.2−6

The structural diversity associated with terpenes often
originates from the cyclization step, and TCs catalyze some
of the most complex reactions in natural product chemistry.

In fungi, although condensation and cyclization reactions
mostly occur independently, bifunctional terpene synthases
have been characterized where the C-terminal half is
responsible for producing the polyprenyl diphosphate and
the N-terminal half catalyzes the cyclization reaction. Depend-
ing on the cyclization reaction for initial carbocation formation,
TCs are generally categorized into two distinct classes (type I
and type II). An alkene−cation cyclization mechanism is
initiated in type I reactions following the heterolytic cleavage
of the diphosphate, whereas the protonation of an alkene
triggers cyclization in type II TCs.4,5 The first fungal type I
diterpene (C20) synthase, PaFS, was characterized in 2007
from Phomopsis amygdali and shown to produce fusicoccadiene
(1).7 The first type I sesterterpene (C25) synthase, AcOS, was

characterized in 2013 from Aspergillus clavatus and shown to be
responsible for the biosynthesis of ophiobolin F (2).8 Because
of their potential to synthesize diverse hydrocarbon skeletons,
subsequent genome mining efforts focused on identifying
additional cryptic type I bifunctional terpene synthases. As a
result, a number of fungal type I sesterterpene synthases were
characterized.9−17 However, since the discovery of PaFS, only
a limited number of type I diterpene synthases have been
identified, including those responsible for the production of
variediene (3),18 phomopsene (4),19 brassicicene (5),20 a
precursor to the cyclopiane-type diterpenes (6),21 and dolasta-
1(15),8-diene (7)22 (Figure 1). Given our limited knowledge
of type I diterpene synthases, the discovery and biochemical
characterization of new enzymes would bring to light cryptic
natural products, unveil novel cyclization reactions, and allow
for more informed bioinformatic predictions. In this work, we
describe the discovery and in vivo characterization of a cryptic
bifunctional type I diterpene synthase from a marine-derived
fungus that synthesizes a tricyclic 5−8−6 hydrocarbon
skeleton. The use of stable tracer isotope experiments also
allowed us to show the biotransformation of the diterpene
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backbone into the talaronoid class of natural products and
ultimately characterize a cryptic biosynthetic cluster.

It is known that marine organisms are prolific producers of
bioactive natural products and often produce molecules not
observed in their terrestrial counterparts.23 The previously
characterized type I bifunctional terpene synthases were
identified exclusively from terrestrial fungi; given the
tremendous promise that marine organisms hold for character-
izing novel biosynthetic enzymes, we turned to marine-derived
fungi as an underexplored resource to identify and characterize
type I terpene synthases. Recently, our group sequenced the
genome of the marine-derived fungus Aspergillus f lavipes CNL-
33824 and, using the PaFS and AcOS sequences as probes,
scanned the genome for bifunctional terpene synthases. A 21-
kb biosynthetic cluster harboring a cryptic chimeric synthase,
tndC, was identified (Figure 2A), and the bioinformatic
analysis of TndC revealed that the 764 amino acid-containing
protein possessed both PT and TC domains. A multiple
sequence alignment also showed that TndC contained the
conserved aspartate-rich DDxxD motif for Mg2+ binding in
both the PT and TC domains in addition to a second NSE
Mg2+-binding motif in the TC domain indicative of type I
cyclases (Figure S2). The phylogenetic comparison of the
cryptic chimeric synthase with known fungal-derived diterpene
and sesterterpene synthases showed that TndC clades between
PaFS and the astellifadiene sesterterpene synthase EvAS25 and
stellata-2,6,19-triene sesterterpene synthase EvSS26 (Figure
S1), suggesting that TndC could produce a new terpene
skeleton; however, it was not clear if the product was a
diterpene or sesterterpene.

Initial efforts at expressing recombinant TndC from
Escherichia coli and Saccharomyces cerevisiae failed to generate
any soluble protein. Thus, to elucidate the product of TndC,
we heterologously expressed intron-free tndC in Saccharomyces
cerevisiae ZXM144.27 Compared to an empty vector control,
the GC-MS analysis of crude extracts of S. cerevisiae ZXM144
transformed with tndC revealed the presence of a new major
product, 8, with m/z 272 [M]+ (Figures 2B and S7),
supporting the production of a diterpene instead of a
sesterterpene. HRESIMS (Figure S7) coupled with 1D and

2D NMR experiments (Figures S11−S15 and Table S2)
identified that the planar structure of 8, which was named
talarodiene, contained a benzo[a]cyclopenta[d]cyclooctane
tricyclic hydrocarbon backbone (Figure 2C). NOESY
correlations were used to assign the relative configuration of
8 (Figures S16−S22), and ECD calculations (Figure S8) were
used to determine the absolute configuration as
(2S,3S,6R,11R).

With the isolation of 8, the cyclization mechanism that
converts geranylgeranyl diphosphate (GGPP) into the 5−8−6
tricyclic hydrocarbon skeleton was investigated using 13C-
labeling studies. [1-13C]Acetate, [2-13C]acetate, and
[1,2-13C2]acetate were administered independently to tndC-
transformed S. cerevisiae ZXM144, and the corresponding
labeling patterns of 13C-enriched 8 were analyzed by NMR
spectroscopy (Figures S23−S25 and Table S3). From the
[1,2-13C2]acetate labeling patterns and given the similarity of
TndC to EvAS and EvSS, a cyclization mechanism similar to
the first steps in the biosynthesis of astellifadiene and stellata-
2,6,19-triene is proposed in Figure 3. Cleavage of diphosphate
followed by 1,11- and 10,14-cyclization reactions converts
GGPP to the bicyclic tertiary cation intermediate 9+. Ring
expansion of 9+ from a 1,2-alkyl shift forms the cation
intermediate 10+, which is transformed into the tertiary cation
intermediate 11+ following a transannular proton transfer. A
1,2-hydride shift and 2,6-cyclization form intermediate 12+,
and deprotonation at C-8 ultimately yields 8.

After the heterologous expression of the cryptic tndC gene
led to the isolation of 8, we turned back to the original host
and evaluated A. f lavipes CNL-338 for its production of this
new tricyclic diterpene (Figure 4). Unfortunately, we were
unable to detect the presence of 8 in crude extracts using GC-
MS and LC-MS analyses, suggesting that 8 is not the final
natural product and is instead an intermediate that is modified
by tailoring enzymes encoded in the tnd gene cluster. A closer
inspection of the regions upstream and downstream of tndC

Figure 1. Structures of selected fungal diterpenes and sesterterpenes
produced by type I bifunctional terpene synthases.

Figure 2. Characterization of the type I diterpene synthase tndC from
A. f lavipes CNL-338. (A) Organization of the tnd biosynthetic gene
cluster in A. f lavipes CNL-338. (B) GC-MS analysis (TIC) of extracts
from S. cerevisiae ZXM144 transformed with (i) a plasmid-borne tndC
or (ii) an empty vector. (C) Structure identification of compound 8
and key 2D NMR correlations.
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revealed that the tnd cluster encodes several oxidative enzymes
in addition to the diterpene synthase, including a cytochrome
P450 enzyme (tndB), an aldehyde reductase (tndE), and an
alcohol dehydrogenase (tndF) (Table S4). Given the type of
tailoring enzymes present, we speculated that the cytochrome
P450 TndB would be the next enzyme in the biosynthetic
pathway. Indeed, GC-MS analysis of the ΔtndB mutant
showed the accumulation of 8 (Figures 4 and S10).

While the gene inactivation experiments unequivocally
linked the tnd biosynthetic cluster to 8 in A. f lavipes CNL-
338, the final natural products produced by the pathway were
unknown. Recently, a group of diterpenoids, namely,
talaronoids A (13), B (14), C (15), and D (16), containing
a 5−8−6 fused ring system were isolated from the terrestrial
fungus Talaromyces stipitatus (Figure 3).28 Using the amino
acid sequence of TndC as a biosynthetic hook, we scanned the
genome of T. stipitatus and identified a 24-kb cluster that
harbored an assortment of genes similar to those in the tnd
biosynthetic cluster from A. f lavipes CNL-338. When aligned,
the two tnd clusters were organized similarly, with both clusters
containing genes coding for the cytochrome P450 enzyme
(tndB), the bifunctional type I terpene cyclase (tndC), the
MFS multidrug transporter (tndD), and the aldehyde
reductase (tndE) (Figures S3−S5). Further annotation up-
stream and downstream of the four tnd genes in T. stipitatus
revealed a number of transposable elements suggestive of

putative boundaries for the biosynthetic cluster, whereas A.
f lavipes contained genes coding for a putative drug-resistant
protein (tndA), an alcohol dehydrogenase (tndF), and a
putative short-chain dehydrogenase (orf-1) (Figure S3 and
Table S4).Without independently knocking out each tnd gene,
we cannot unequivocally define the tnd cluster boundaries.
However, given the variability between the two organisms
upstream and downstream of tndB and TndE, respectively, we
can predict that the minimal tnd cluster consists of tndB, tndC,
tndD, and tndE. Although both organisms share the same four
core tnd genes, when we scanned crude extracts of A. f lavipes
CNL-338 for the presence of 13−16, the compounds were not
detected. It is worth noting that only limited quantities of the
talaronoids were originally reported from a large-scale solid-
phase fermentation of T. stipitatus.28 We thus assumed that
much like the terrestrial strain, the talaronoids were also
produced in trace amounts in the marine-derived fungus A.
f lavipes CNL-338.

To determine if 8 was indeed an intermediate in talaronoid
biosynthesis, we biosynthetically prepared 13C-enriched 8 in S.
cerevisiae using [1-13C]acetate. Labeled material was adminis-
tered to A. f lavipes CNL-338, and HRESIMS inspection of the
crude extract showed the production of a new compound not
observed in the DMSO control. The isotopic fragmentation
pattern of the new compound also indicated it was derived
from the labeled material (Figure 5A). Closer inspection of the
new compound showed that its retention time and m/z
matched those of an authentic standard, talaronoid C (15)
(Figure 5B), thereby confirming that 8 had been biotrans-
formed into 15. Thus, the stable tracer isotope experiment
confirmed 8 as an intermediate in the talaronoid biosynthetic
pathway.

In summary, we identified and characterized the tnd
biosynthetic cluster responsible for the production of
talaronoid C from the marine-derived fungus A. f lavipes
CNL-338. The heterologous expression of a cryptic type I
bifunctional terpene synthase led to the discovery of a
diterpene possessing a benzo[a]cyclopenta[d]cyclooctane

Figure 3. Proposed biosynthesis of the talarodiene backbone. (A) Biosynthesis of the acyclic precursor geranylgeranyl diphosphate (GGPP) using
the C-terminal prenyltransferase (PT) domain of TndC. (B) Formation of the 5−8−6 tricyclic talarodiene backbone 8 via the N-terminal
cyclization (TC) domain of TndC. [1,2-13C2]Acetate labeling patterns are shown as black bold lines and dots to signify double and single
enrichments, respectively. Red dots indicate C−C bond breakage of an intact acetate unit.

Figure 4. GC-MS chromatograms (TIC) of (i) a standard of
compound 8, (ii) a crude extract of the ΔtndB strain, and (iii) a crude
extract from wild-type A. f lavipes CNL-338.
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ring system and demonstrated that a single enzyme was
responsible for the synthesis of this complex hydrocarbon
scaffold. 13C-Labeling studies helped elucidate a possible
cyclization mechanism that would convert geranylgeranyl
diphosphate to the 5−8−6 tricyclic hydrocarbon skeleton,
and stable tracer isotope experiments validated 8 as an
intermediate in talaronoid biosynthesis. Our work thus brought
to light the product of a cryptic terpene biosynthetic cluster,
and information gleaned from the characterization of TndC
can assist with future genome mining predictions.
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