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Abstract

Many gene array studies of the yeast cell cycle have been performed (Cho RJ, Campbell MJ, Winzeler EA et al. A genome-
wide transcriptional analysis of the mitotic cell cycle. Mol Cell 1998;2:65–73; Orlando DA, Lin CY, Bernard A et al. Global
control of cell-cycle transcription by coupled CDK and network oscillators. Nature 2008;453:944–7; Pramila T, Wu W, Miles S
et al. The Forkhead transcription factor Hcm1 regulates chromosome segregation genes and fills the S-phase gap in the
transcriptional circuitry of the cell cycle. Genes Dev 2006;20:2266–78; Spellman PT, Sherlock G, Zhang MQ et al.
Comprehensive identification of cell cycle–regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridiza-
tion. MBoC 1998;9:3273–97). Largely, these studies contain elements drawn from laboratory experiments. The present inves-
tigation determines cell division cycle (CDC) genes solely from the data (Orlando DA, Lin CY, Bernard A et al. Global control
of cell-cycle transcription by coupled CDK and network oscillators. Nature 2008;453:944–7). It is shown by simple reasoning
that the dynamics of the approximately 6000 yeast genes are described by an approximately six-dimensional space. This
leads a precisely determined cell-cycle period, along with the quality and timing of the identified CDC genes. Convincing ev-
idence for the role of the identified genes is obtained. While these show good agreement with standard CDC gene represen-
tatives (Orlando DA, Lin CY, Bernard A et al. Global control of cell-cycle transcription by coupled CDK and network oscilla-
tors. Nature 2008;453:944–7; Spellman PT, Sherlock G, Zhang MQ et al. Comprehensive identification of cell cycle–regulated
genes of the yeast Saccharomyces cerevisiae by microarray hybridization. MBoC 1998;9:3273–97; de Lichtenberg U, Jensen
LJ, Fausbøll A et al. Comparison of computational methods for the identification of cell cycle-regulated genes.
Bioinformatics 2005;21:1164–71) several hundred newly revealed CDC genes appear, which merit attention. The present ap-
proach employs an adaptation of a method introduced to study turbulent flows (Schmid PJ. Dynamic mode decomposition
of numerical and experimental data. J Fluid Mech 2010;656:5–28), “dynamic mode decomposition” (DMD). From this, one
can infer that singular value decomposition, analysis of the data entangles the underlying (gene) dynamics implicit in the
data; and that DMD produces the disentangling transformation. It is the assertion of this study that a new tool now exists
for the analysis of the gene array signals, and in particular for investigating the yeast cell cycle.
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Introduction

This article shows that a rational analysis of yeast gene array
data leads to an elementary model of the yeast life cycle.
Simply stated, the yeast cell division cycle (CDC) can be viewed
as an underdamped harmonic oscillator; and that each gene fol-
lows this dynamic with its own particular amplitude and phase.

Budding yeast, Saccharomyces cerevisiae, is a single cell eukary-
ote, perhaps the simplest of all. The cell contains a nucleus, the

repository of DNA, and an assembly of organelles, e.g. endoplasmic
reticulum, Golgi apparatus, ribosomes, etc. This content is typical
of mammalian cells; thus the latter can be regarded as an extended
version of the former. The yeast genome is composed of roughly
12 Mbp, compared to �3 Gbp found in mammalian cells; with
roughly, 6000 yeast genes versus 21,000 human genes [1].

The blueprint of the yeast life form is contained in yeast’s 16
chromosomes [2]. The genome contains instructions for
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decoding itself, constructing itself, duplicating itself, and finally,
inserting these commands into the constructed duplicate. This
conforms to the overarching definition of an automaton, pro-
posed by von Neumann, in a 1948 conference [3], well before the
announcement by Watson and Crick of the double helix DNA
model [4]. As Sydney Brenner, in [5] observed, a history of mo-
lecular biology might be written from the von Neumann per-
spective, but the coincidence of concepts is entirely
retrospective.

Two theoretical ideas lie at the heart of the present con-
struction. One is the Beadle and Tatum hypothesis “one gene-
one enzyme” [6], later to become “one gene-one polypeptide.”
The second is “DNA makes RNA makes protein,” referred to as
the Central Dogma, and attributed to Frances Crick [7]. It too
was subsequently recast more generally.

The fate of a budding yeast cell is mitosis division into two
daughter cells, each conforming to the mother. The process of
division contains two acts: Synthesis, S, and Mitosis, M; and two
entr’actes: gap1, G1 and gap 2, G2, during which the motif
changes. This play has a duration of at least an hour, and under
proper conditions yeast cell division continues indefinitely,
with population doubling each cycle:!G1! S! G2!M! G1.

During the course of the cell cycle, DNA and the full range of
organelles are duplicated, through processes broadly dubbed as
transcription and translation, which involve production of
mRNA and other polypeptides that lead to the daughter copies
of the mother cell. The dynamics of transcription and transla-
tion have time-scales �1 min [1], accompanied by additional,
shorter, sub-events.

As a conceptual background to the present viewpoint, con-
sider a volume of gas, with �1023 interacting molecules. The
mean time between collisions, t, and the mean free path, l, char-
acterize the internal state of the gas (Incidentally, l/t � the
speed of sound.). A coarse-grained description, for times � t
and spatial scales � l, then leads to a satisfactory thermody-
namic description of the gas, in terms of: density, q, and pres-
sure, p; instead of the dynamics of 1023 interacting molecules
[8].

If the yeast cell cycle is coarsely sampled, then over many
minutes, “translation and transcription” and their sub-events
are averaged out, and from this, it follows that only genes and
their proteins figure in the description, i.e. the Beadle–Tatum
view.

Material and methods
Yeast cell cycle data

At the end of the last century, micro-array studies appeared for
yeast (S. cerevisiae), that used course-grain time sampling of
gene expression levels, over the course of the cell cycle [9, 10].
These studies followed the roughly 6000 yeast genes over the
cell cycle, by recording mRNA expression levels of the genes. To
enable such data acquisition, yeast populations were assembled
by various means so as to contain an initial homogeneous pop-
ulation of cells. For example, by elutriation, a population of
newly minted daughter cells could be extracted.

Attention will be confined to the Orlando et al. [11] database,
henceforth referred to as (I). Their study followed the expres-
sion levels of 5716 genes of S. cerevisiae for the wild-type (WT),
and also for a mutant strain. WT data will mainly be considered
here. As might be expected from gene array data, noise is a

factor. However, in acquiring repeated databases, these authors
provide convincing evidence of reproducibility.

The database

Yeast populations of (I), composed largely of daughter cells,
were sampled 15 times at 16 min intervals, consistent with tem-
poral coarse graining. The matrix of gene expressions of the first
WT dataset will be denoted by the array

5716G15; (1)

as indicated, G is composed of the 5716 sampled genes, as rows
of the 15 sample times, at intervals

dt ¼ 16 min: (2)

The mean of each sequence is subtracted,
P

j Gij ¼ 0; and we
define,

Z ¼ G� G; G ¼ hGit: (3)

While 5716 genes may appear daunting the true dimension
is 15. Treatment of this database falls under the “method of
snapshots” [12] which demonstrates that the analyses of any
database can be reduced to the minimal dimension of the data,
15 in the present instance. To carry out this calculation, the
15� 15 symmetric nonnegative matrix, Z

†
Z is formed, and an

Eigen analysis is applied,

Z
†
ZV ¼ VK: (4)

K is the diagonal matrix of eigenvalues, kj, arranged in
descending order of magnitude. The columns of the eigenvector
matrix, V, correspond to the associated time courses. Any gene
expression can be represented as an admixture of these 15
columns.

The matrix, Z, Equation (1), has the singular value decompo-
sition (SVD) representation [13] (see [14] for an SVD analysis of
the [10] database),

Z ¼ UKV
† ¼

X15

j¼1

ujrjv
†

j ; rj ¼
ffiffiffiffi
kj

q
; (5)

where {vj}, are the columns of V. The terms of Equation (5) are
ordered in decreasing size of kj: The column vectors, U, of length
5716 are the eigenvectors of ZZ

†
; but are more easily obtained

from the columns of

U ¼ ZVK�1; (6)

Both {uj} and {vj}, as eigenvectors of symmetric matrices,
each form orthonormal sets. It is important to observe that
Equation (5) formats the data in a factored form: gene features,
U, and dynamics, KV

†
. In what follows, discussion is simplified

by the introduction of

T ¼ KV
† ¼

s1 � � � sN

..

. ..
. ..

.

" #
; (7)

which describes the dynamics.
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We pause to compare the second WT database contained in
(I). If we denote its eigenvector matrix by V2, then a suitable
measure of reproducibility of the two WT databases is furnished
by the 15� 15 correlation matrix,

V
†
V2; (8)

depicted below.
Figure 1 shows high correlation for the first six subspaces.

The remaining nine subspaces are considered noise. Further
verification comes from the “energy” norm, i.e. the square of
the Frobenius norm. As indicated by the name it denotes the en-
ergy in physical situations. Under this norm

kZk2
F ¼

X
i;j

Z2
i;j ¼

X15

k

kj: (9)

A direct calculation reveals that

X15

7

kj=
X15

1

kj ¼ Oð10�6Þ; (10)

which confirms that the last nine subspaces represent noise.
Another perspective, is furnished by the log–log plot of eigenval-
ues, shown below in Fig. 2. The eigenvalues are clearly well fit
by two straight lines indicating two different power-law
descriptions. In a time-honored tradition, the left collection is
associated with signal, large k, and the right with noise, small k.
Under this hypothesis, the signal is contained in the first six
eigenmodes.

The agreement of Figs. 1 and 2 confirms the quality of the
data. Henceforth, attention is restricted to the first six modes,

X ¼ UrTr ¼
X6

j¼1

ujs
†

j ; (11)

where u is a 5716 element column vector, ands
†

is a 15 element
row vector.

ðUrÞi;j ¼ Ui;j; j ¼ 1; ::; 6; (12)

and similarly Tr, is 6� 15. Equation (11) is an “example” of a low-
rank approximation [15], and SVD has the property of being the
best Nth order approximation to X, for any N, the Schmidt–
Eckart–Young–Mirsky theorem [16].

Dynamic mode decomposition

The six SVD temporal modes of V are depicted in Fig. 3. From
the experiment giving rise to the analyzed data, one might rea-
sonably suppose that exponential decay and sinusoidal expres-
sion are main events. However, what we see in Fig. 3 appears to
be a hodgepodge of behaviors, some passably sinusoidal, some
passably exponential. The anticipated behavior appears to be
“entangled,” an abiding shortcoming of SVD. As emphasized
above SVD is a mathematically optimal representation of the
data, but of uncertain scientific interpretation for the variables,
U and V. This section shows how the data can be
“disentangled,” by a procedure referred to as dynamic mode de-
composition (DMD).

Focus will be on the near periodic phenomena of cell divi-
sion, and the identification of genes mobilized to carry out the
CDC. Help comes from an analytic framework for treating turbu-
lent fluid dynamics [17], which produces a framework for disen-
tangling multimodal phenomena, dubbed DMD. A monograph
on DMD [18], displays the rich range of phenomena to which
DMD may be applied. For earlier references, and especially the
program proposed by [19] see [17, 18]. Appendix section con-
tains an outline of the basic DMD concepts adapted to the pre-
sent situation.

In brief, consider Equation (11), which in column format can
be written as

X ¼ x1 � � � xN

# � � � #

� �
; (13)

where N¼ 15. As an overall concept, under DMD, a constant ma-
trix, A is sought, such that

XN�1

k¼1
kxkþ1 � Axkk2; (14)

Figure 1: Correlation levels, see color bar, of the two WT databases obtained in

(I).

Figure 2: Log-log plot of the 15 eigenvalues of K; arranged in decreasing magni-

tude. The presence of a knee, or crossing point, is generally regarded as a transi-

tion from signal to noise.
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is minimized. This translates into the determination a “useful”
linear approximation of the dynamics so that

xkþ1 � Axk: (15)

As shown in the Appendix, Equation (14), the search for A
can be reduced to consideration of a 6� 6 matrix, ~A ;followed by
its Eigen-decomposition, ~A ¼WDW�1: D is the diagonal matrix
of eigenvalues, mj, j¼ 1, 0.6, is displayed on the first line of
Table 1 below. Under this formulation, T takes on the form,
Equation (15),

T ¼W½D0;D2; . . . ;D14�U0 ¼WU; U0 ¼W�1T1: (16)

To extend the discrete form, Equation (16), to an exponential
(continuous) form, define

Xj ¼
logðljÞ

dt
; (17)

The X values are displayed on the second line of Table 1 be-
low. There is no continuous version of the first entry of m, which
contains an artifact of sampling.

For the data (I), as given in the form Equation (13), the eigen-
values of D are shown in Table 1. Note that these are real or oc-
cur as conjugate pairs, a reflection of the fact that all analyses
should render real-valued results.

Comparison of Fig. 4 with Fig. 3 demonstrates that the goal
of rendering the dynamics into individual component modes
has been accomplished.

The corresponding dynamical modes, >15 samplings are
displayed in Fig. 4. All modes show some decay. The initial pop-
ulation of yeast cells, obtained through elutriation, produces a
stressed nonequilibrium, and exponential return to some form
of equilibrium should be expected. The oscillation due to Modes
2 and 3 can reasonably be regarded as describing cell division.

Exponential decay is due to variability in cycle time of daughter
cells. Modes 2 and 3 will be the focus in the following
deliberations.

Results
Yeast cell cycle

The DMD representation of the yeast data X, Equation (11), as
developed in the Appendix is given by

X ¼ UWU; (18)

where UW¼U�W is the 5716� 6 matrix, of gene weightings, and
Uare the six time courses exhibited in Equation (16). In the inter-
est of clarity, we express Equation (18) as the following
decomposition

UWU ¼ UW1U1 þ UW2U2 þ UW3U3 þ � � � þ UW6U6 � UW2U2 þ UW3U3

¼ XCC:

(19)

Since XCC is real, it’s two terms are conjugates of each other,.
If this is transformed to the continuous version, Equation (17),
then

X2 ¼ �0:0087þ 0:0748i ¼ Xr þ iXi; (20)

and X3;the conjugate. An immediate result, is the period of cell
division,

Tcc ¼
2p
Xi
� 84 min; (21)

an estimate of the cell-cycle period, free of modeling. (The sec-
ond WT experiment, when subjected to the same analysis gave

Figure 3: The temporal behavior of the top six SVD modes, Equation (11), Tr.
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an estimate of Tc �97.5 min.) In passing, note that the sampling
frequency is roughly 0.2, and thus the Nyquist–Shannon crite-
rion is satisfied [20], see the Appendix. Based on their expertise,
the authors of (I) estimated the average cell cycle to be �95 min,
based on a mother cell-cycle period of �77 min and a daughter
cell cycle of �118 min; and that sampling times entered the
third cycle (private communication, Steven Haase). Thus, agree-
ment with the experimental observations might be regarded at
least as passable.

Based on the above deliberations, the pair of cell cycle
modes, Xcc can be expressed as,

Xcc ¼ðR�eiuÞU�ðqeihþXtÞUþ c:c¼ 2RqeXr t cosðXitþuþhÞ; (22)

where R and u represent the magnitude and phase, respectively,
of each of the 5716 gene expressions. The phase u, is a surrogate
for onset time of expression for the gene. As such, it provides
the gene ordering of sequences. As above X¼Xrþ iXi. The sub-
scripts U and U gene contribution and temporal dynamics, re-
spectively. It follows from the data that

q � 22332; and h ¼ 1:7623; (23)

the amplitude and phase for the dynamical mode.
Equation (22) is recognizable as the solution of an under-

damped harmonic oscillator, governed by,

d2g
dt2 ¼ 2fx

dg
dt
þ x2g; (24)

and solution ðqeihþXtÞU;in Equation (22). The frequency, x, and di-
mensionless damping factor fare given by

f ¼ Xr=x � :12 &x ¼ Xi=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f2

q
: (25)

The “true” frequency is a small correction to the above-
calculated value.

If the 5716 sequences are ordered in decreasing phase, u

[9–11, 21], then the 5716� 15 matrix Xcc can be viewed as the im-
age in the left panel of Fig. 5. According to Equation (22) u as a
function of t should carry a negative slope, as faintly evidenced in
Fig. 5, referred to as a phase wave.

The left most panel of Fig. 5 conveys a faint signal. Most
genes respond with near-constant activity. It is estimated that
roughly 8–12% of the genes participate in the CDC. The vast ma-
jority of genes does not participate, and might be deemed to be
“housekeeping” genes, responsible for a steady supply of ingre-
dients needed by a typical cell. We can consider the time of
maximal gene expression, tm, as described by Equation (22), also
see. From Equation (21), this is given by

tm=Tcc þ
h

2p
¼ u

2p
modð1Þ (26)

which is clearly proportional to u. The expression level at this
time is given by the amplitude

Mcc ¼maxðXccÞt: (27)

Cell division genes

In [11] a collection of 440 cell-cycle genes, WTCON, are assem-
bled based on commonality with related investigations [9, 10,
22,]. In this section, we obtain a full complement of CDC genes,
based solely on the data itself. For this purpose, the total gene
signal will be written in the approximate form,

Gcc ¼ G þ Xcc: (28)

A criterion for distinguishing cell cycle versus housekeeping
genes can be discussed in terms of

CV ¼
Mcc

G
; (29)

a “coefficient of variation,” for each gene. If CV is relatively large,
then it is a candidate CDC gene, and if CV is relatively small, it is
a candidate housekeeping gene. As a nominal case we consider
CV > 0:475: There are approximately 400 such gene candidates,
which we denote by WT400 (actual number is 403), that meet
this condition, this number is roughly 8% of the total number of
genes. The WTCON set only shares �30 with the presently pro-
posed set of WT400 genes.

To test the validity of WT400 set, restriction to these genes is
considered, and the result is the left image of Fig. 6, which
clearly shows the phase wave associated with CDC. The right
panel shows all 407 time courses, a dense collection of peaking
gene expressions. The criterion values of CV , used to select the
407 sequences is nominal, and will be further considered.

First proof of concept

In Fig. 7 below, we show three versions of the CDC phase wave.

Figure 4: The time courses of the six modes are displayed. Modes 2 and 3 are

conjugate, as are 4 and 5.

Table 1: the six m and X values

m �0.4433 0.3182þ 0.8105i 0.3182–0.8105i 0.5376þ 0.2992i 0.5376–0.2992i 0.3953
X NA �0.0087þ 0748i �0.0087–0748i �0.0304þ 0.0317i �0.0304–0.0317i �0.0580

A novel analysis of gene array data | 5



The first panel on the left displays the phase wave for the
sampled data, without the use of trigonometric interpolation.
The agreement with the left figure of Fig. 6; is evident which
should remove doubt about “massaging” of data. The middle
image, shows the direct application of the WT400 set to the
mean subtracted version to WT1, the phase wave is clear, show-
ing that the result is independent of the construction of Xcc.
Finally, the rightmost panel, clearly shows the phase wave
when WT400 is applied to WT2. WT2 which played no role in
the analysis, and hence is an independent verification of
WT400. Supplementary File S1 provides a full list of the creden-
tials of WT400.

Second proof of concept

The Spellman et al. [10] study employed meticulous application
of Fourier methods to obtain phase information. Along with lab
knowledge this produced a set of 800 genes deemed to be “cell-
regulated genes,” that has 272 genes in common with WT400.
The search for WT400 included consideration of set of approxi-
mately 800 genes, WT800, dropped from consideration since it

produced a fainter phase wave. The intersection of this larger
set with the Spellman 800 gave 390 genes.

Further comparison is furnished by tests proposed by [21]. Of
these tests, that labeled “Dberg_benchmark_smallscale,” con-
tains 113 genes is regarded as a “gold standard” of CDC genes,
and has the high, 73, commonality with WT400. Another of the
tests, labeled Pacifica, contains the 25 highest amplitude genes.
However, based on the present criterion for “highest
amplitude,” only three Pacifica genes qualify. The criterion for
judging a gene to belong to the CDC order is ambiguous.
Nevertheless, it seems clear that WT400 has high commonality
with accepted orders. But, by this measure, there are several
hundred genes WT400, that merit further examination.
Supplementary File S2 shows these comparisons, and
Supplementary File S3, the credentials of the present WT800.

Discussion

A mathematically inclined reader might be surprised that a dy-
namical system of approximately 6000 genes, can be adequately
described by a mere six-dimensional space, especially when
each gene likely requires several nonlinear dynamical equa-
tions to be properly modeled [23] (It is a speculation that a more
frequently sampled experiment will not change this aspect the
picture.). The explanation is that these CDC genes are slaved to
a single underdamped oscillator Equation (24).

In [10] the authors introduce the concept of co-regulated
genes, and use methods largely unconnected to the present
analysis. One aspect of this is the suggestion that genes of
nearby phase might be co-regulated. The three Supplementary
files that accompany this paper allow the reader to look into
this as a phase related feature. One can imagine that the co-
regulation of CDC genes manifests itself through a temporal
process of growth and decay. As demonstrated in the Appendix,
DMD would be capable of detecting such an event. For example,
if experimental time sampling is performed on a minute by
minute basis, it is a speculation that cell regulating genes might
be uncovered through a scenario of growth and decay.

Figure 5: The figure on the left shows the relatively weak signal. To enhance the effect, the Figure has been subjected to a log transformation, middle figure. The jagged

appearance is due to the 16-min sampling times. The middle panel of Fig. 5 is just an enhancement. The rightmost panel is the three-dimensional version of all 5716

time courses, which shows the paucity of sharp maxima, the presumed evidence for the CDC.

Figure 6: Depiction of the WT400 CDC genes. In both images time, measured in

minutes, runs over more than two periods of the CDC. In both instances, the

continuous model Equation (22) is used to generate the images.
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In this regard, mention should be made that comparison
with Spellman et al. brings up a concern. In their analysis, each
gene expression, g, is normalized so that

gðtÞ ! ln2ðgðtÞ=gÞ; g ¼ hgit; (30)

which differs from Equation (3) in two essential ways. Dividing
by g, sometimes referred to as “whitening” puts weak and

strong gene expression on the same footing, and the log trans-
formation is questionable. On the other hand, the relatively
strong agreement between WT400 and WT800 with
Spellman800, mentioned above, suggests that more is going on,
and the need for further investigation.

A partial model for the lifecycle of the yeast cell can be pro-
posed. In this regard, it is first noted that at the moment of cell
division, each daughter cell has half the proper number of

Figure 7: The WT400 CDC wave. Three activity images of the approximately 400 high-value CDC genes as represented by Xcc, left; by the mean subtracted data from

WT1, middle; by the mean subtracted data from WT2, right. All three images are free of any enhancement.

Figure 8: The four SVD modes of Equation (A.4).
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organelles: mitochondria, endoplasmic reticulum, Golgi appara-
tus, etc. The proposal is to take WT400 (or say WT800), specified
by Equation (22) as controlling the CDC. A large number of
remaining genes performs their role at a steady rate, without
phase, so e.g. organelle density grows until the proper density is
reached. A gaping hole of the model is how does the self-
assembly of the cell take place. It is a speculation that some
structures such as the Golgi apparatus, endoplasmic reticulum,
mitochondria, etc., already present in the daughter cells, serve
as seeds for their self-assembly.

Finally, as pointed out by a referee, there is potential utility
of this method for discovering new circadian genes from tran-
scriptome dynamics data, and the author would be happy to
provide help to anyone who wishes pursue this possibility.

Appendix
Outline of DMD
The goal of this section is to provide guidance in carrying out
DMD calculations (Readers in need of aid with this outline may
contact the author for help.). To flesh out the DMD analysis, we
consider a toy example. All coding will be performed in the
Matlab language [24].

If the data understudy were an admixture pure sinusoids
then a spectral analysis [25], would suffice and unraveling the
entangled data. However, it should be evident that exponential
growth and decay are playing a role, and that a more robust
analysis is needed. One purpose of this appendix is to demon-
strate that DMD fulfills this role.

Toy Example: A time course driven by many incommensurate
frequencies looks to the eye as chaotic. For purposes of exposi-
tion, we will consider just two frequencies, 2 and p,

TðtÞ ¼ ½a1; a2; a3; a4� 	 ½sinð2tÞ; cosð2tÞ; sinðptÞ; cosðptÞ�
†
; (A.1)

where each aj is chosen, at random, from the uniform distribu-
tion over the unit interval.,

In analogy with laboratory data D will be time sampled. The
first consideration is the Nyquist–Shannon criterion [20], which
states that a sampling frequency must be greater than twice the
highest frequency latent in the data. A second requirement is
that the time duration of the sample be larger than the period of
the smallest frequency. From these deliberations, the sampling
period P¼ 4.5, >2p/2, and a sampling rate dt¼ 0.18,<2/2p, are
chosen. Thus there are 26 sample points

t ¼ ½0; dt; 2dt; . . . :;4:5�: (A.2)

As a nominal case consider an ensemble of 100 presenta-
tions, yielding a data matrix, D, of order 100� 26, given by

D ¼ C 	 T; (A.3)

where C is order 100� 4, with each element chosen at random
over the interval [0, 1], and thus the matrix D is order 100� 26.
The first step is to get rid of “noise.” Consider the SVD of D which
in Matlab is given by [u, s, v]¼svd(D); s is the diagonal matrix of
singular values and s2 the matrix of eigenvalues, of which n¼ 4
are significant, as should be expected. See Matlab script below.

% Noise removal D! Do; N ¼ 100
%find r; the number of signals; 4
clear u v s
Do ¼ USV

†

In regard to the above script, the time dependence is contained in

T ¼ SV
†

or V
†
: (A.4)

In the Figure 8 below, we exhibit the four temporal modes of V
†
:

It should be clear that the modes are entangled versions of
the two input frequencies 2 and p.

As discussed earlier, the goal of DMD is to untangle the dy-
namics. Without loss of generality, we can restrict attention to
temporal behavior. The criterion for solving Equation (14) [17,
18], is equivalent to solving

~AT1 ¼ T2; (A.5)

where

T1 ¼ Tð1; . . . ;N� 1Þ& T2 ¼ Tð2; . . . ;NÞ; (A.6)

for ~A. A simple dynamical example is

T ¼ ½e0dt�z; e1dt�z; e2dt�z; . . . :; eNdt�z�; with z ¼ kþ ix; (A.7)

where k and x are real. The period is P¼ 2p/x and dt ¼ P=N.
In this case Equation (A.5) is solved by ~A ¼ ez, i.e. multiplication
by the complex generator ez:Observe that the complex conju-
gate, T	;is also a candidate solution. Since we are dealing with
real quantities, and that require real results. In this spirit, we
write T ¼ Cþ iS;where

C ¼ ek�t cosðx � tÞ& S¼k�t sinðx � tÞ ;
t ¼ ½0; 1; . . . N� � dt:

(A.8)

Equation (A.5), for the real case in the same notation is solved
by with an order 2 matrix generated,

ekdt cosðx � dtÞ �ekdt sinðx � dtÞ
ekdt sinðx � dtÞ ekdt cosðx � dtÞ

� �
C1
S1

� �
¼ C2

S2

� �
: (A.9)

In general, we can expect a solution for Equation (A.5) to have
the form

~A ¼

~A1 O O O
O ~A2 O O

O O . .
.

O
O O O ~AM

2
66664

3
77775; ~Ak ¼

ak �bk
bk ak

� �
;O¼ 0 0

0 0

� �
: (A.10)

Matrices of this form, off-diagonal skew-symmetric, are nor-
mal and have a straightforward eigen theory, can

We return to the toy problem and apply the following Matlab
script:

%DMD Script

½u; s;v� ¼ svdðDÞ; U ¼ uð:;1: rÞ; S ¼ sð1: r; 1: rÞ; V ¼ vð:; 1: rÞ;
clear u v s

Vt ¼ V; %

clear U S V

V2 ¼ Vtð:; 1 : 25Þ; %T2

V1 ¼ Vtð:; 2 : 26Þ; %T1
~A ¼ V2 	 pinvðV1Þ; %Moore� Penrose inverse

L ¼ eigð~AÞ;
dt ¼ :18; %time step

omega ¼ logðLÞ=dt; % Gives X; the frequencies
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The result of applying this script to V are the omega values
6i2 and 6ip, to double precision accuracy, for any N> 4.

We deal specifically with X, as given by Equation (11), the
noise-free signal made up of 5716 rows, and N¼ 15 sampling
times at intervals dt¼ 16 min, and restricted to the significant r
(¼ 6) modes

X ¼ UrKrV
†

r ¼ UrTr: (A.11)

Henceforth the subscript r will be dropped. The notation of
Equation (A.11) emphasizes that the dependence on gene activ-
ity and on time appears in factored form, i.e. for example, inP

kUjkTk the first term, Ujk, specifies the nature and quality with
which each gene affects the kth time course, Tk.

Under the notation of Equation (13), the goal of minimizing
Equation (14) is achieved by solving

~AT1 ¼ T2; (A.12)

for ~A where,

T ¼ KV
† ¼ ½s1; s1; . . . ; sN�; (A.13)

And T1 and T2 are defined by Equation (A.6). formally

~A ¼ T2� T1þ: (A.14)

with Tþ the Moore–Penrose inverse. From Equation (A.13) T is
the collection of the r time courses shown in Fig. 3, and from
Equation (A.11) all gene expressions have the same time course,
modified by individual amplitudes, R, and phases u, determined
by U.

It follows from this that for

T ¼ ½~A0
s1

~A
1
s1 � � � ~A

14
s1 � ¼W½D0 D1 D2 � � �D14�W�1s1; (A.15)

X be expressed as

X ¼ UW½D0;D1; . . . DN�1�W�1s1: (A.16)

If

U ¼ ½D0 D1 D2 � � �D14� � U0;U0 ¼W�1s1; (A.17)

X can be expressed in two alternate ways,

X ¼ ðUWÞU ¼ UWU;
or

X ¼ UðWUÞ ¼ UUW :
(A.18)

The first form, with modal form Equation (19) is the desired
DMD representation in terms of disentangled modes, evolving
in time through powers of D. The amplitude and phase of each
time course is determined by UW as exhibited in Fig. 4. The sec-
ond form of Equation (A.18) determines amplitude and phase
from U, and entangles the dynamics through the product
WU ¼ UW , as in the SVD decomposition, with modal decomposi-
tion Equation (11).

Supplementary data

Supplementary data is available at Biology Methods and Protocols
online.
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