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Abstract
Objectives: The transforaminal and interlaminar approaches are the two main surgical 
corridors of full endoscopic lumbar surgery. However, there are no quantifying 
methods for assessing the best surgical approach for each patient. This study aimed to 
establish an artificial intelligence  (AI) model using an artificial neural network  (ANN). 
Materials and Methods: Patients who underwent full endoscopic lumbar spinal surgery 
were enrolled in this research. Fourteen pre‑operative factors were fed into the ANN. 
A  three‑layer deep neural network was constructed. Patient data were divided into the 
training, validation, and testing datasets. Results: There were 899  patients enrolled. The 
accuracy of the training, validation, and test datasets were 87.3%, 85.5%, and 85.0%, 
respectively. The positive predictive values for the transforaminal and interlaminar 
approaches were 85.1% and 89.1%, respectively. The area under the curve of the receiver 
operating characteristic was 0.91. The SHapley Additive exPlanations algorithm was 
utilized to explain the relative importance of each factor. The surgical lumbar level was 
the most important factor, followed by herniated disc localization and migrating disc zone 
level. Conclusion: ANN can effectively learn from the choice of an experienced spinal 
endoscopic surgeon and can accurately predict the appropriate surgical approach.

Keywords: Artificial intelligence, Artificial neural network, Deep learning, Machine 
learning, Spinal endoscope

decision‑making or predicting prognosis  [11‑17]. Artificial 
neural network (ANN) is a machine learning model that imitates 
human neurons  [12]. ANN comprised several nodes, which 
can be human neurons  [Figure  1]. Each node receives several 
inputs  (x1, x2,…xn), and each input multiplies a weight  (x1, 
x2,…xn). Then, a bias is added  (b). The weighted sum of the 
input signals is passed through an activation function, and an 
output y = φ(wx+b) is generated  [Figure  1a]. The input could 
be seen as the dendrite and the output as the axon. Several 
of these neurons can construct a neural network  [Figure  1b]. 
Deep neural network is commonly defined as greater than or 
equal to three‑layer ANNs. The total output of the whole ANN 
could then be compared with the actual results using the loss 
function to generate a loss value. Then, via back‑propagation, 
every weight in the ANN can be updated to a new value. Each 
update process is called an epoch. The whole learning process 

introduction

T he use of spinal endoscopes for treating lumbar degenerative 
diseases had been increasing in recent years  [1,2]. With 

advancements in endoscopic instruments and techniques, these 
devices are applied to not only herniated disc but also facet 
cyst, tumor, and lumbar stenosis  [3‑5]. The transforaminal and 
interlaminar approaches are the two main surgical corridors of 
full endoscopic lumbar surgery. Dr.  Parviz Kambin introduced 
the Kambin’s triangle in1973. This paved a road for Dr. Yeung 
and Dr.  Hoogland to invent the transforaminal route  [6‑8]. In 
2005, Dr. Rutten presented the interlaminar approach [9]. These 
two corridors are the foundation of modern full endoscopic 
lumbar spinal surgery. Several studies have discussed the 
indications and benefits of each surgical corridor  [4,5,10]. 
However, there are no quantifying methods for assessing the best 
surgical approach for each patient. Decision‑making is highly 
dependent on the surgeons’ experiences and may be challenging 
for novice surgeons.

The use of artificial intelligence (AI) had been increasing in 
recent years. AI had been a good tool for facilitating medical 
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aims to minimize the loss value and to maximize the accuracy 
between the outputs and the actual results. The ANNs work 
just like a human brain, which learns from errors.

This study aimed to establish a deep learning model that 
could learn from the experience of an endoscopic spinal 
surgeon who performed more than 1000 full endoscopic 
surgeries. The model was designed to provide suggestions 
regarding which surgical methods  (transforaminal versus 
interlaminar approach) are preferred based on the patients’ 
preoperative status. After the AI model was learned from the 
dataset, its efficacy was validated using multiple methods. To 
the best of our knowledge, this study first applied ANN in full 
endoscopic lumbar spinal surgery.

Materials and Methods
Dataset

From March 2009 to May 2021, all patients who underwent 
full endoscopic lumbar spinal surgery were enrolled in the 

study. Patients who require endoscopic surgeries for sacroiliac 
joint pain, juxtafacet cyst, and fracture were excluded. Factors 
included in the analysis could be divided into three main 
categories: Basic information including sex, age, and body mass 
index (BMI); preoperative status such as surgical lumbar level, 
preoperative Oswestry disability index  (ODI), preoperative 
visual analog scale  (VAS) score, previous surgical history, 
and duration of symptom before surgery; and information 
obtained from magnetic resonance imaging including the type 
of lumbar disease, classification of disc migration, Pfirrmann 
grade, herniated disc localization, stenosis versus herniated 
intervertebral disc  (HIVD), and  >50% canal stenosis. Patients 
who had any missing preoperative information were excluded 
from our study. Finally, 899  patients were included in the 
final analysis. The study protocol was approved by the ethics 
review board of Changhua Christian Hospital, Taiwan  (IRB 
No. 190905).

The three herniation types were as follows: Prolapse, 
extrusion, and sequestration  [10]. Previous surgical history 

Figure 1: (a) A neuron node receives inputs (x1, x2,…xn). Then, it enters the weight sum into the activation function to yield the output y. (b) A deep neural network 
comprising 14 inputs and 3 hidden layers. This was also the deep neural structure used in this study

b

a



Figure 2: In total, the data of patients (n = 899) were first divided into the training 
and testing datasets. The training data were further divided into training and 
validation datasets for hyperparameter tuning and validation during the training 
process. The test dataset can provide an unbiased estimate of the final model
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was considered only if the previous surgery was performed at 
the same spinal level. Disc migration was classified into five 
based on a previous research article  [1]: far‑upward  (zone 
1), near‑upward  (zone 2), near‑downward  (zone 3), 
far‑downward  (zone 4), and no migration  [1]. The Pfirrmann 
grading system was used to define the degree of disc 
degeneration, and the condition was graded from I  (normal) 
to V  (most severe)  [10,18]. Lesion localization at the axial 
plane was classified as central, subarticular, foraminal, and 
extraforaminal types [10]. Surgical lumbar levels were divided 
into the following: T12/L1, L1/L2, L2/L3, L3/L4, L4/L5, L5/
S1, L4/L5 + L5/S1, and two levels other than L4/L5 + L5/S1. 
The types of lumbar disease included disc herniation, lumbar 
stenosis, and foraminal stenosis.

To simplify the model, we transformed all continuous 
variables into categorical variables. The patients were grouped 
as follows: age, ≤65 and >65 years; BMI, ≤30 and >30 years 
old; ODI, ≤20, 20 < ODI ≤40, 40 < ODI ≤60, 60 < ODI ≤80, 
and  >80; and VAS  ≤4 and  >4. The symptom duration before 
surgery was divided into ≤3 and >3 months.

Artificial neural network mode
TensorFlow Keras was utilized to build the ANN and train 

the model. We constructed a three‑layer deep neural network. 
There were 14 neurons in the input layer, 16 in the first hidden 
layer, and 8 in the second hidden layer  [Figure  1b]. We used 
binary categorical cross‑entropy in the loss function. Thus, 
there was only one output layer. It showed the percentage of 
results for the transforaminal or interlaminar approach. All 
layers were fully connected. Figure  1b shows the complete 
structure of the model.

We divided 899  patients into three for the training, 
validation, and testing groups [Figure 2]. The validation dataset 
was used to tune the hyperparameter and to prevent overfitting 
during training. The testing dataset was used to evaluate the 
efficacy of our model in the final stage. We shuffled the data 
to prevent the AI model from learning the pattern via time 
series. For example, a spinal endoscopic surgeon might prefer 
the interlaminar approach over the transforaminal approach 
in early practice. The patients were under general anesthesia, 
and the surgical route was more familiar. Thus, our dataset 
was imbalanced since it comprised 621 and 278 patients who 
underwent surgery using the transforaminal and interlaminar 

approaches, respectively. Due to this imbalance, the AI model 
will prefer the dominant group. For example, if the Al model 
simply decided that all patients who will undergo surgery 
using the transforaminal approach, it still achieves an accuracy 
rate of 69.1%  (621/899). However, it will generate a positive 
predictive value  (PPV) of 0% in the interlaminar group. 
To overcome potential bias, we needed to add more loss 
function weight  (transforaminal: interlaminar  =  1:2.24) to the 
interlaminar group. Therefore, the Al model could be punished 
more if it has a wrong prediction in the interlaminar group.

We evaluated the model in terms of not only accuracy but 
also PPV, negative predictive value, confusion matrix, and 
receiver operating characteristic  (ROC) curve. The confusion 
matrix was useful as it saw our attempt to well manage the 
imbalance data work.

Software and hardware
Python 3.8, TensorFlow 2.4.1, and Scipy 1.6.3 were used 

to establish the model. Moreover, the Chi‑square test was 
utilized for calculating the difference between the two groups 
in traditional statistical analysis. Training of the ANN was 
performed in an Intel i5  9400F equipped with an Nvidia 
RTX2070.

Results
Table  1 shows the demographic characteristics of the 

two surgical groups. Patients who underwent transforaminal 
surgery were older  (>65  years old, ratio: 28.2% vs. 10.1%) 
and had a high BMI  (>30  kg/m2, ratio: 17.1% vs. 10.1%) 
longer preoperative symptoms  (>3  months, ratio: 37.2% 
vs. 25.9%), and more  >50% spinal canal stenosis  (12.6% 
vs. 3.6%). On the contrary, the interlaminar group had a 
higher proportion of patients who underwent surgery at L5/
S1  (78.4% vs. 11.8%) and had a more downward migrating 
disc  (54.7% vs. 35.7%). Moreover, their ODI was more 
severe  (>20, ratio: 82.8% vs. 72.4%). Of 22  patients who 
had lumbar surgery at the previous level, only one underwent 
secondary surgery using the interlaminar approach. Lesions 
localized at the central spinal canal were more likely managed 
using the interlaminar approach (45.7% vs. 27.9%). The mean 
preoperative ODI and the postoperative ODI were 26.0  (±7.3) 
and 1.5  (±2.8), respectively. The mean preoperative VAS 
and the postoperative VAS were 7.3  (±2.2) and 0.2  (±0.8), 
respectively. There was a significant improvement in ODI and 
VAS after the surgery (P < 0.001, P < 0.001).

In total, data from 719  patients were used to train the 
model, and those from 180  patients were used to validate the 
accuracy of the model. Data from 72 of 719  patients were 
randomly divided for model validation during the training 
process. The accuracy at the training, validation, and test 
datasets were 87.3%, 85.5%, and 85.0%, respectively. Based 
on the validation results, with the training progress, the 
validation loss was decreasing, and the validation accuracy 
was increasing  [Figure  3]. Hence, the model did not overfit. 
Overfitting was a pattern that the AI model only performed 
well only on the training model, not on the validation or 
testing model. Figure 4 shows the confusion matrix. The PPVs 
for transforaminal and interlaminar approaches were 85.1% 



Figure 3: Training process of the model. With each epoch, the accuracy increased, 
and the loss decreased in both training and validation datasets
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and 89.1%, respectively. Our class weight balance worked 
well. Thus, the model was equally effective in predicting the 
transforaminal and interlaminar approaches. Figure  5 depicts 
the ROC curve. The AUC was 0.91, which was considered an 
outstanding result [19].

Importance of each factor
Machine learning, particularly deep learning, was commonly 

considered a black box because it was challenging to explain 
how it generated the results  [15]. In ANNs, all the nodes were 
fully connected in each layer. Thus, the factors that contributed 
more to the results cannot be identified using the traditional 
method. The SHapley Additive exPlanations (SHAP) algorithm 
was used to explain the relative importance of each factor 
contributing to our model. SHAP was based on the game 
theory and local explanations to explain the AI models [20,21]. 
Using SHAP’s DeepExplainer, the average impact on model 
output magnitude could not be plotted, as shown in Figure  6. 
The surgical lumbar level was the most important factor in 
deciding the surgical approach, after the migrating disc zone 
level and herniated disc localization.

Graphical user interface for deploying the model
We wrote a graphical user interface  (GUI) using Tkinter, 

which was established in the python library. After selecting the 
patients’ factors in the interface, the GUI used the model we 
trained to provide suggestions. Figure 7 shows two examples. 
After inputting the patients’ characteristics, the AI model gave 
the correct surgical suggestions in both cases.

Table 1: Patient demographics and comparisons between the 
transforaminal and interlaminar groups

Transforaminal 
(%)

Interlaminar 
(%)

P

Patient number 621 (69.1) 278 (30.9)
Sex

Male 384 (61.8) 164 (59.0) 0.419
Female 237 (38.2) 114 (41.0)

Age
≤65 446 (71.8) 252 (89.9) <0.001
>65 175 (28.2) 26 (10.1)

BMI
≤30 515 (82.9) 252 (89.9) 0.006
>30 106 (17.1) 26 (10.1)

Symptom duration (months)
≤3 390 (62.8) 206 (74.1) 0.001
>3 231 (37.2) 72 (25.9)

Lumbar level
L2/L3 35 (5.6) 1 (0.4) <0.001
L3/L4 107 (17.2) 3 (1.1)
L4/L5 392 (63.1) 47 (16.9)
L5/S1 73 (11.8) 218 (78.4)
Other 2 levels 7 (1.1) 1 (0.4)
L4/L5+ L5/S1 1 (0.2) 7 (2.5)
L1/L2 4 (0.6) 1 (0.4)
T12/L1 2 (0.3) 0

ODI
≤20 171 (27.5) 48 (17.3) 0.001
20-40 438 (70.5) 219 (78.8)
40-60 12 (1.9) 11 (4.0)
60-80 0 0
>80 0 0

VAS
≤4 71 (11.4) 24 (8.6) 0.206
>4 550 (88.6) 254 (91.4)

Lumbar disease
HIVD 506 (81.5) 267 (96.0) <0.001
Canal stenosis 78 (12.6) 10 (3.6)
Foraminal stenosis 37 (6.0) 1 (0.4)

Previous surgical history*
No 600 (96.6) 277 (99.6) 0.006
Yes 21 (3.4) 1 (0.4)

Herniation type
Prolapse 23 (3.7) 13 (4.7) 0.147
Extrusion 436 (70.2) 177 (63.7)
Sequestration 153 (26.1) 88 (31.7)

Migrating level
Zone I 30 (4.8) 7 (2.5) <0.001
Zone II 22 (3.5) 8 (2.9)
Zone III 123 (19.8) 82 (29.5)
Zone IV 99 (15.9) 70 (25.2)
No migrating 347 (55.9) 111 (39.9)

Pfirrmann grade
Grade I 2 (0.3) 0 0.122
Grade II 128 (20.6) 64 (23.0)
Grade III 439 (70.7) 203 (73.0)
Grade IV 50 (8.1) 10 (3.6)
Grade V 2 (0.3) 1 (0.4)

Table 1: Contd...
Transforaminal 

(%)
Interlaminar 

(%)
P

Lesion localization at axial plane
Central 173 (27.9) 127 (45.7) <0.001
Subarticular 209 (33.7) 104 (37.4)
Foraminal 180 (29.0) 38 (13.7)
Extraforaminal 59 (9.5) 9 (3.2)

>50% canal compromised
No 555 (89.4) 243 (87.4) 0.389
Yes 66 (10.6) 35 (12.6)

HIVD: Herniated intervertebral disc, VAS: Visual Analog Scale, 
ODI: Oswestry disability index

Contd...



Figure 6: In the SHapley Additive exPlanations model, which was used to evaluate 
the important factors of the model, surgical lumbar level was the most important 
factor, followed by herniated disc localization at the axial plane and migrating 
disc zone level

Figure 5: The receiver operating characteristic curve of the AI model. The receiver 
operating characteristic curve represents the diagnostic ability of a binary classifier 
system. The area under the curve was 0.91, which is considered outstanding 
discrimination

Figure 4: The confusion matrix of the artificial intelligence model. The confusion 
matrix can present true positive, true negative, false positive, and false negative data. 
This can overcome the blind spot of accuracy ([(true positive) + (true negative)]/
total data) when evaluating an artificial intelligence model
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Discussion
Previous studies comparing the transforaminal or 

interlaminar approach for lumbar diseases were usually based 
on individual parameters, rather than a combination. Our study 
did not only systemically compare two surgical groups of 
patients in terms of demographic characteristics but also train 
an AI model based on multiple preoperative patient factors. 
The AI model, particularly the deep learning‑like ANN, was 
commonly considered a black box. We will analyze how the 
model learns in the following discussion. Results showed that 
it was extremely similar to a surgeon’s thinking process.

The interlaminar approach was preferred for surgeries 
at the L5/S1 region  [Table  1] because it had the widest 
interlaminar window and the narrowest neural foramen. The 
iliac crest sometimes blocked the surgical route that made the 
transforaminal approach challenging at this level  [3,9]. By 
contrast, the neural foramen widened, and the gap between 
the disc and the interlaminar window was larger when the 
lumbar level went up. The transforaminal approach was 

more favorable at the upper lumbar level  [5]. Thus, it was 
not surprising that in our relative importance analysis, the 
AI model considered the surgical lumbar level as the most 
important factor.

If lumbar spinal stenosis or HIVDs were localized at the 
central spinal canal, the interlaminar approach was more 
feasible, and the transforaminal approach was technically more 
challenging. On the contrary, if the lesions were localized 
more laterally, then the transforaminal approach was preferred, 
particularly in cases of extraforaminal HIVD, in which the 
interlaminar approach is extremely difficult to use unless a 

Figure  7: For demonstration, we applied the AI model into two cases.  (a) a 
21‑year‑old male who had herniated disc at L5/S1 level for 30 days and received 
interlaminar endoscopic surgery. (c) a 37‑year‑old male who had herniated disc at 
L2/L3 level for 7 days and received transforaminal endoscopic surgery. (b and d) the 
artificial intelligence model predict the surgical approach the same as the surgeon

dc

ba
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lot of bony structures are sacrificed. The AI model considered 
herniated disc localization as the second most important.

Moreover, based on the AI model, the migrating disc zone 
level is the third most import variable. In terms of demographic 
data, patients with migrating discs, particularly at zones III 
and IV  (54.7% vs. 35.7%), were more likely to be managed 
using the interlaminar approach  (60.1% vs. 44.1)  [Table  1]. 
The result was reasonable since the transforaminal approach, 
which was used to manage the migrating disc, was challenging 
and even resulted in residual disc [22‑24]. In addition, the use 
of the transforaminal approach to managing the downward 
migrating disc (zones III and IV) was considered an advanced 
spinal endoscopic technique and was often required to sacrifice 
a lot of bony structures  [23]. It might even lead to instability 
due to the extensive destruction of the facet, the pedicle, and, 
even, the vertebral body [25].

Elderly patients might have a higher incidence of 
morbidity, which can inhibit them from receiving general 
anesthesia. Thus, the transforaminal approach was preferred. 
Since the endoscopic sheath and instruments were shorter, 
the interlaminar approach might be more challenging if 
a patient was obese  (BMI: >30  kg/m2). Patients who had 
longer symptoms might have a better pain tolerance. Thus, 
the transforaminal approach under local anesthesia was 
performed. Patients who had a higher ODI might not tolerate 
local anesthesia. Therefore, the interlaminar approach was 
preferred. Foraminal stenosis can be easily managed using 
the transforaminal approach since this route was direct and 
simple. Patients who had a previous lumbar surgical history 
usually had scars at the interlaminar route. Therefore, the 
transforaminal route could prevent from managing the scar 
tissues.

Some factors might not significantly differ between these 
two surgical methods. However, they are fed into the AI model 
for learning because we attempted to follow the surgeons’ 
actual experience when patients visit the clinic. For example, 
the VAS score did not significantly differ in the traditional 
Chi‑square analysis. Nevertheless, it might play a role in the 
decision‑making of surgeons. If patients are in extreme pain, 
the surgeons might believe that they could not tolerate the 
prone position for too long when undergoing surgery using the 
transforaminal approach under local anesthesia. Therefore, the 
interlaminar approach under general anesthesia was preferred.

Our research is advantageous because the number of patients 
was relatively large compared with other studies that used AI 
models in medical predictions or decision‑making [1,12‑14,16]. 
Unnecessary variables were not fed into the AI model to 
prevent garbage in and garbage out. However, the study still 
had some limitations. First, some potential variables might 
have not been recognized and recorded. For example, with 
the evolving of the FESS instrument, the surgeon might 
change his surgical approach during the time. Second, the 
type of surgical route is highly dependent on each surgeon’s 
training and experience. The variables we included in the 
article might not be important to each surgeon. Third, we only 
included one surgeon’s experience in the article which might 
cause some bias. However, it might be an advantage too. If 

we included surgeons who had  <1000 FESS experiences or a 
lot of missing data, then the AI might be confused during the 
training process. Finally, the Al model was not used to replace 
an expert’s decision. Rather, it was utilized as an advisor, 
particularly for inexperienced surgeons in the field. Fourth, 
some factors were not included. For example, in lumbar 
disease classification, we did not include epidural hematoma, 
tumor, and infection.

Conclusion
ANN can effectively learn from the choice of an 

experienced spinal endoscopic surgeon and can accurately 
predict the appropriate surgical approach for lumbar spine 
disease. The AI model may be useful for novice spinal 
endoscopic surgeons as it can assist them in proper surgical 
decision‑making.
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