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ABSTRACT
Objectives  This study quantified how the efficiency 
of testing and contact tracing impacts the spread of 
COVID-19. The average time interval between infection 
and quarantine, whether asymptomatic cases are tested 
or not, and initial delays to beginning a testing and tracing 
programme were investigated.
Setting  We developed a novel individual-level network 
model, called CoTECT (Testing Efficiency and Contact 
Tracing model for COVID-19), using key parameters from 
recent studies to quantify the impacts of testing and 
tracing efficiency. The model distinguishes infection from 
confirmation by integrating a ‘T’ compartment, which 
represents infections confirmed by testing and quarantine. 
The compartments of presymptomatic (E), asymptomatic 
(I), symptomatic (Is), and death with (F) or without (f) 
test confirmation were also included in the model. Three 
scenarios were evaluated in a closed population of 3000 
individuals to mimic community-level dynamics. Real-
world data from four Nordic countries were also analysed.
Primary and secondary outcome measures  Simulation 
result: total/peak daily infections and confirmed cases, 
total deaths (confirmed/unconfirmed by testing), fatalities 
and the case fatality rate. Real-world analysis: confirmed 
cases and deaths per million people.
Results  (1) Shortening the duration between Is and 
T from 12 to 4 days reduces infections by 85.2% and 
deaths by 88.8%. (2) Testing and tracing regardless of 
symptoms reduce infections by 35.7% and deaths by 
46.2% compared with testing only symptomatic cases. (3) 
Reducing the delay to implementing a testing and tracing 
programme from 50 to 10 days reduces infections by 
35.2% and deaths by 44.6%. These results were robust to 
sensitivity analysis. An analysis of real-world data showed 
that tests per case early in the pandemic are critical for 
reducing confirmed cases and the fatality rate.
Conclusions  Reducing testing delays will help to contain 
outbreaks. These results provide policymakers with 
quantitative evidence of efficiency as a critical value in 
developing testing and contact tracing strategies.

INTRODUCTION
COVID-19 has posed severe challenges to the 
physical and mental health of people world-
wide since its outbreak in December 2019.1 
New waves of cases in Asia, South America 
and the European Union continue to occur 

in the first quarter of 2021. It takes a long-time 
effort to achieve global herd immunity, espe-
cially when new strains predominate.2–4 In 
this condition, testing cases and tracing and 
quarantining their contacts are still key non-
pharmaceutical interventions. SARS-CoV-2 is 
more contagious and has longer incubation 
time than SARS-CoV or Middle East respi-
ratory syndrome coronavirus5 and can be 
transmitted during the incubation period.6–10 
For example, approximately one-third of 
SARS-CoV-2 infectors in Spain were asymp-
tomatic11 and contagious. Transmission 
via latent, presymptomatic and asymptom-
atic infected individuals may lead to more 
rapid spread. Due to the rapid spread of the 
epidemic and asymptomatic transmission, 
higher requirements are put forward for 

Strengths and limitations of this study

►► This work provides efficiency as a new perspective 
when evaluating the impact of testing and tracing 
from three aspects: (1) the average time interval 
between infection and test confirmation/quarantine; 
(2) whether or not contacts of both symptomatic and 
asymptomatic infectors undergo testing and contact 
tracing; and (3) the delay to initiating testing and 
contact tracing after the first infection early in the 
outbreak.

►► We quantified the effects of different kinds of testing 
and tracing efficiency using a self-designed model 
with a novel structure, and verified their important 
role in the control of the COVID-19 pandemic.

►► This model is highly practicable, because the ideal 
average wait time between infection and quarantine 
can be simulated, and this value can be measured 
in practice for policymakers to assess whether their 
actions are efficient.

►► A limitation of this work is that all simulations were 
conducted in a closed population that did not ac-
count for intercommunity social activity.

►► Impacts of differences in population age ranges, 
medical resources and lockdown measures could 
be considered in this model in future work.
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testing and tracing. Not only is a large number of tests 
necessary, but more importantly, efficiency of testing 
and tracing must be improved. Otherwise, it is difficult 
to avoid the epidemic rebound before herd immunity is 
achieved. Therefore, it is crucial to quantify the efficiency 
of the testing and contact tracing (ie, the timeliness of 
testing and tracing). This efficiency is related to three 
aspects: (1) the average time interval from infection to 
test confirmation and quarantine; (2) whether or not 
symptomatic, asymptomatic, and presymptomatic infec-
tors are tested and traced; and (3) the delay to initiating 
testing and contact tracing after the first infection early 
in the outbreak.

The impact of testing and contact tracing (including 
quarantine) has been widely evaluated by various models. 
However, previous studies have focused on quantifying 
the volume of testing or the percentage of infections that 
should be traced, or they have highlighted a combination 
of other interventions.12–22 Few studies have quantified 
how the efficiency of testing and contact tracing limits 
disease spread. Lopes-Júnior et al23 published a protocol to 
evaluate the influence of testing capacity for symptomatic 
individuals on the control of COVID-19. We referred to 
this protocol and searched PubMed and Google Scholar 
in our literature review for studies evaluating the effect 
of testing and contact tracing through March 2021. We 
identified 14 modelling studies that were closely related 
to our work, but most of them did not investigate the 
effects of the time interval between infection and quar-
antine or delays to the implementation of testing and 
tracing procedures on epidemic control. Six of these 14 
studies12 13 24–27 only determined the percentage of infec-
tions or contacts that needed to be tested and traced to 
stop the pandemic, but their models were not designed 
to quantify the effect of testing and tracing delays. For 
example, Ferretti et al27 concluded the contact tracing 
work could be overwhelming based on the transmis-
sion speed and active social interaction. Therefore, they 
compromised to strategies which covering only part of 
the contacts, and the assumptions were fit only for the 
exponential phase of the pandemic. Keeling et al25 found 
that 71% of contacts needed to be traced to reduce the 
basic reproductive number (R0) below 1 or to relax 
social distancing interventions, but these studies did not 
mention tracing efficiency (ie, the time interval needed 
for tracing). Other four articles12 13 24 26 also identified the 
proportion of contacts that should be traced. But because 
the number of infections is unknown in the real world, 
the usefulness for policymakers of these studies is limited. 
Five studies28–32 were simulations of specific environments 
(a university campus, care homes, and Dane County in 
the USA, and the USA); thus, the generalisability of their 
findings is limited. Three studies16 26 33 focused on poli-
cies of testing and tracing. For instance, McCombs and 
Kadelka33 compared different testing priority strategies 
(eg, people at high risk or low risk are tested first, people 
with recent/early symptoms are tested first) under the 
condition that the maximum test volume per day is fixed. 

Kucharski et al26 simulated the effect on transmission 
reduction of randomly mass testing 5% of the population 
each week and compared it with the effects of isolation and 
tracing, but the authors did not analyse different testing 
scenarios. Bilinski et al16 explored whether testing that 
includes all identified contacts or only those with symp-
toms alters the effective reproductive number. However, 
these models do not quantify the impacts of testing and 
tracing efficiency, which is a vital factor independent of 
the total amount of testing and tracing.

To quantify the impacts of testing and tracing efficiency 
on COVID-19 containment and supplement the deficien-
cies of existing research, we developed a novel individual-
level network model, called CoTECT (Testing Efficiency 
and Contact Tracing model for COVID-19). Traditional 
population-level models cannot evaluate the time interval 
between infection and quarantine for each individual, and 
they do not define the interaction mode between individ-
uals. Although some individual-level models have been 
developed, they are not directly suitable for modelling 
testing efficiency in COVID-19 transmission,34 because 
infectivity of SARS-CoV-2 during incubation period was 
not considered, and confirmed cases were not distin-
guished from infections. CoTECT distinguishes between 
confirmed and unconfirmed infections by integrating a T 
compartment, which refers to those who are confirmed 
to be infected by testing and then quarantined. The 
model also incorporates the following compartments: 
presymptomatic (E), asymptomatic (I), symptomatic 
(Is), and death with (F) or without (f) test confirmation. 
Regarding three aspects of efficiency, we simulated three 
scenarios using controlled variables with the aim of elimi-
nating confounding factors, and investigated the average 
time interval between infection and quarantine, whether 
asymptomatic cases are tested, and initial delays to begin-
ning a testing and tracing programme. Other key parame-
ters used in our model were obtained from recent studies. 
Our model uses novel factors, strategies, and a unique 
model structure to evaluate how the efficiency of testing 
and contact tracing impacts the spread of COVID-19. An 
analysis of real-world data from four Nordic countries 
(with other similar confounders) revealed that delays in 
countermeasures adversely affect pandemic progression. 
Data from the second outbreak in Beijing were used to 
verify the importance of shortening the time interval 
between infection and quarantine. We provide a compre-
hensive and quantitative assessment of the critical factors 
related to testing and contact tracing that will help imple-
ment more effective measures to contain the pandemic.

METHODS
CoTECT simulation model
CoTECT is a stochastic epidemiological network model 
that we developed specifically to evaluate how the effi-
ciency of testing and contact tracing impacts the outcome 
of COVID-19 spread. The model was built with the R 
language and is based on EpiModel, a platform that 
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can mathematically model infectious disease dynamics, 
allowing the user to construct a flexible network35 with 
the desired likelihood of connections conditional on 
specific network properties.36 37 The compartments and 
parameters were set in accordance with recent COVID-19 
research. EpiModel supports stochastic network models 
developed with self-defined contact modes and inter-
actions between different nodes (ie, different individ-
uals). This differs from the typical differential equation 
(compartmental) mode, which assumes that human 
social activity is based on a large, homogeneous, well-
mixed population. By contrast, every interaction is a 
stochastic process in CoTECT. The underlying network 
is an exponential family random graph model (ERGM),38 
developed by Holland and Leinhardt.

Building on the traditional Susceptible–Exposed–Infec-
tious–Recovered structure, we designed the CoTECT 
model with eight compartments (figure 1):
1.	 Susceptible individuals (S).

2.	 Individuals exposed to the virus (E) (ie, cases in the 
incubation period). E cases are considered to be infec-
tious based on the biological characteristics of SARS-
CoV-2.

3.	 Infected individuals who do not have observable symp-
toms (I). Some I cases become symptomatic and trans-
fer to the Is compartment.

4.	 Infected symptomatic cases (Is) are more likely to ap-
pear in the T compartment than I or E cases, as symp-
tomatic cases are easier to detect.

5.	 Test-positive cases who are quarantined (T). We as-
sumed all cases confirmed by testing are immediately 
quarantined.

6.	 Test-positive fatalities (F).
7.	 Fatalities without a positive test confirmation (f).
8.	 Recovered cases (R).

A schematic of the model is provided in figure  1. 
Arrows represent the transmission rate from one 
compartment to another, such as from Is to T, denoted 
as the IsT rate.

Figure 1  Introduction of the CoTECT model. (A) Structure of the network-based epidemiological model CoTECT. (B) 
Abbreviated version of the infection network progression. Snapshots shown are days 0, 10 and 20 after the first infected 
individual. Red and blue dots represent infected and susceptible individuals, respectively. Strings represent contact 
relationships. CoTECT, Testing Efficiency and Contact Tracing model for COVID-19.
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Infection occurs at the existing edge (real contact) 
between two nodes (people), with a given probability. In 
our model, the infection rate is determined by the SE rate 
and the times of contact between a susceptible person 
and an exposed person. SE rate related to the probability 
of a susceptible person become exposed (E) under the 
condition of existed connection with another infected 
nodes (E, I or Is). The exposed compartment represents 
the incubation period and contains individuals with a 
lower transmission ability than symptomatic, infected 
cases. This probability setting is based on the epidemio-
logical characteristics of COVID-19. If the SE rate is p and 
the average time of contact is three, the infection proba-
bility between two connected nodes (people) is 1−(1−p).3 
Meanwhile, the edge connecting two nodes is generated 
and dissolved by a stochastic process with particular condi-
tions. The conditional probability of an edge forming 
and dissolving is based on a Bernoulli distribution of 
the module-specific parameter, and the resulting distri-
bution is a binomial mixture.38 After infection, the status 
transmission rate (the combined IsT, IT and ET rate) is 
the reciprocal of the waiting interval. For example, an 
average 7-day waiting time from symptom onset to quar-
antine corresponds to a 1/7 transmission rate.

In addition to the infection process, the transmission 
rate from A to B implies a mean duration of remaining in 
the A status before changing to B status. For example, a 0.1 
recovery rate (IR rate) indicates a 10-day recovery dura-
tion; thus, we defined the efficiency of testing and contact 
tracing as the time from E to T or from I to T, reflected 
as the ET rate and the IT rate, respectively. All transmis-
sions of status of each node form a Bernoulli distribution 
over time. The value of R0 is determined based on the 
simulated result of changing the number of total infec-
tions (E+I+Is+T). To approach the SARS-CoV-2 R0 value 
reported by the WHO, we adjusted the network-related 
parameters in our baseline model, as shown in Figure 2A. 
Figure  1B displays the stochastic process of the edge 
generation and desolvation, representing the dynamic 
change of the social network. This dynamic change led to 
the abbreviated version of the contact network at various 
time steps.

Parameter settings
The parameters used in the model were taken from 
published values from multiple sources,39–43 most of 
which were case-level statistics.8 44–46 The parameters 
are shown in online supplemental table 1 and include 
the incubation period,7 47 the average time from onset 
to a severe case,41 and the average recovery time45 for 
mild and severe cases. The sampled parameters were 
set at different grades within the scenarios, while fixed 
parameters remained constant across all experiments. 
A hypothetical population of 3000 people over 300 days 
was used. Our assumptions and network parameters 
are in line with ERGMs and are listed in online supple-
mental table 2. The R0 of the baseline model was 2.2 and 
was obtained by adjusting the edge density, maximum 

number of connections and probability of transmission 
between connected nodes (online supplemental table 2). 
Testing and tracing efficiency was defined as an individ-
ual’s average duration between exposure, infection, and 
symptom onset and test confirmation and quarantine. In 
CoTECT, the efficiency is translated as the transmission 
rate (the combined IsT, IT and ET rate is the reciprocal 
of the waiting interval). For example, an average 7-day 
waiting time from symptom onset to quarantine corre-
sponds to a 1/7 transmission rate.

The efficiency parameters (IsT rate, IT rate and ET 
rate) were linked with all experiments setting according 
to table 1. The average time interval from E to I was 6 days; 
this was based on an average of 6.4 days7 10 40 43 from expo-
sure to infection (ie, the incubation period). Therefore, 
the denominator of the IT rate is typically 6 days greater 
than that of the ET rate. The same logic applies to the IsT 
rate. Nevertheless, efficient contact tracing will boost both 
the IT and ET rates. CoTECT assumes that all COVID-19 
tests have optimal sensitivity and specificity; therefore, 
false positives are described as small probability events.

Experiment setting
Efficient testing and contact tracing are crucial and 
include three aspects: (1) the average duration (in days) 
from exposure to self-quarantine for each individual 
during the pandemic; (2) whether or not symptom-
atic, asymptomatic, and presymptomatic infectors are 
tested and traced; and (3) the delay to initiating testing 
and contact tracing after the first infection early in the 
outbreak. To quantify the impacts of different kinds of 
efficiency of testing and tracing on transmission, CoTECT 
was used to simulate three different scenarios and one 
baseline scenario. The critical outcome indicators were 
cumulative infection (R+F+f), peak daily infections 
(E+I+Is), peak daily test-positive cases with quarantine 
(T), cumulative test-positive cases, total fatalities and case 
fatality rate (CFR).

The baseline scenario is the worst-case condition in 
which no testing or contact tracing is conducted. Thus, no 
quarantine measurements were carried out in this model. 
When the R0 is greater than 1, most of the population 
will eventually become infected. Using these assumptions, 
we also simulated different combinations of interventions 
as preliminary experiments to compare with the baseline 
scenario: (1) a 4-week delay in response (with no testing 
or contact tracing before the fourth week), and testing 
of symptomatic cases only; (2) a 4-week delay in response 
after which symptomatic, presymptomatic and asymptom-
atic cases are tested; and (3) a 2-week delay in response 
after which symptomatic, presymptomatic and asymptom-
atic cases are tested.

We designed the following three scenarios to investigate 
the importance of testing efficiency from three aspects. 
Only one condition was changed, with the other variables 
remaining consistent in each scenario. The average of 20 
randomly repeated experiments were taken as the final 
result.

https://dx.doi.org/10.1136/bmjopen-2020-045886
https://dx.doi.org/10.1136/bmjopen-2020-045886
https://dx.doi.org/10.1136/bmjopen-2020-045886
https://dx.doi.org/10.1136/bmjopen-2020-045886
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1.	 Scenario 1 evaluated the impact of overall testing and 
contact tracing efficiency by simulating five different 
levels of test efficiency, represented by five scales of dai-
ly transmission rate or average IsT rate. The intervals 
from symptom onset to positive test with quarantine 
were 4, 6, 8, 10 and 12 days. The corresponding IsT 
rates were 1/4, 1/6, 1/8, 1/10 and 1/12, thus reflect-
ing different kinds of testing efficiency.

2.	 Scenario 2 evaluated the impact of tracing efficiency 
for presymptomatic and asymptomatic cases by simu-
lating different IT and ET rates with a fixed IsT rate. 
Contact tracing for COVID-19 is critical due to the 
transmissibility of presymptomatic and asymptomatic 
infections. The IT and ET rates reflect contract tracing 
efficiency. In this scenario, the probability that latent 
and asymptomatic (or mild) cases would be tested and 
isolated (ET and IT rate) was adjusted by 0, 1/13 and 
1/11. The fixed IsT rate was 1/7, which assumed 7 days 
waiting for an interval from onset to quarantine.

3.	 Scenario 3 evaluated the impact of delayed implemen-
tation of efficient testing and contact tracing. The re-
sponse times are varied significantly worldwide. Many 
countries were not well prepared for the pandemic, 
and targeted testing and contact tracing measures were 
often not implemented until after many confirmed 
case fatalities. Therefore, we simulated different public 
health response delays in CoTECT. Five experiments 
were conducted with fixed IsT, IT and ET rates. The 
delay intervals between the first infection and imple-
mentation of targeted testing were set as 10, 20, 30, 40 
and 50 days. The transmission rates from the E, I and Is 
compartments to T were set as 0 prior to the response.

Sensitivity analysis
We conducted the sensitivity analysis to elaborate how 
other factors (network parameters) would impact the 
transmission process. First, we evaluated transmission 
progression when no testing or contact tracing was in 
place for varying population sizes. For the three scenarios, 
the mean R0 was set as 2.2. The network density and 
contact duration between nodes were consistent across 
the main experiments.

Second, the sensitivity analysis also included tests of 
network-related parameters, which describe the disease 
transmission model’s underlying social activity patterns. 
In our study, the simulation model built on a graph 
model consisted of edges and nodes. The edge between 
two nodes reflects a relatively close contact that could 
result in disease transmission with a certain probability. 
In CoTECT, the edges can be interpreted, for example, 
as face-to-face conversations or sharing a car ride. Unlike 
the sensitivity analysis of the population size, which uses a 
constant infection ratio and transmission rate but applies 
different network sizes, the network-related parameter 
test demonstrates how these parameters impact disease 
transmission.

We tested each edge’s mean duration (contact), concur-
rent edges (how many simultaneous contacts happened 

per day) and the density of the entire network. The results 
are presented in the online supplemental figure 1 and 
online supplemental table 3. As previously mentioned, 
the final set of these parameters was tuned based on the 
R0 of the simulated baseline.

Patient and public involvement
No patients or other members of the public were involved 
in this study.

RESULTS
We carried out preliminary experiments to show how the 
CoTECT model simulates transmission under different 
conditions of testing and contact tracing. We then demon-
strated how disease transmission is impacted by (1) the 
efficiency of comprehensive testing and contact tracing, 
(2) the efficiency of contact tracing for presymptomatic 
and asymptomatic cases, and (3) delaying the implemen-
tation of efficient testing and contact tracing.

Preliminary results of CoTECT simulation
We first defined the baseline model as the worst-
case scenario with no epidemiological interventions 
conducted in a closed population. The baseline R0 was 
2.2, according to the average R0 estimated48 from 177 
countries and territories49 (figure 2A), aligned with previ-
ously published studies.41 Then we compared the baseline 
model with different combinations of testing and contact 
tracing interventions to evaluate their respective impact 
on disease transmission. The infection curve is shown 
in figure 2B. We assumed each community responded a 
minimum of several weeks after the first infection. The 
dark blu

e line indicates the outcome for a delay of 4 weeks and 
testing only symptomatic cases. Total infections, peak 
daily infections, and total deaths were reduced by 13.2%, 
43.7% and 27.3%, respectively, compared with base-
line. The navy line shows the outcome of an open test 
policy (not only symptomatic cases) with a 4-week delay. 
Total infections, peak daily infections, and total deaths 
decreased by 23.4%, 43.1% and 41.3%, respectively, 
compared with baseline. The light blue line shows the 
outcome for a delay of 2 weeks after the first infection. 
Total infections, peak daily infections, and total deaths 
decreased by 44.1%, 75.8% and 61.0%, respectively, 
compared with baseline.

Daily new symptomatic, presymptomatic and asymp-
tomatic cases confirmed by testing in three conditions 
are shown in figure 2C. Compared with condition 1 (only 
testing symptomatic cases with 4-week delay), condition 
2 (testing and tracing presymptomatic and asymptom-
atic contacts with 4-week delay) could reduce 24.8% of 
total confirmed cases (from 125 to 94), and 26.5% of 94 
confirmed cases were diagnosed before symptom onset 
(E+I). Condition 3 (tracing contacts and testing with a 
2-week delay) could reduce 51.2% of total confirmed 
cases (from 125 to 61), 33.6% of 61 confirmed cases 

https://dx.doi.org/10.1136/bmjopen-2020-045886
https://dx.doi.org/10.1136/bmjopen-2020-045886


7Hu Y, et al. BMJ Open 2021;11:e045886. doi:10.1136/bmjopen-2020-045886

Open access

were diagnosed before symptom onset (E+I). Moreover, 
compared with condition 2, condition 3 also reduced daily 
peak confirmed Is, I, and E cases by 65.8% (from 38 to 13), 
75.0% (from 16 to 4), and 75.0% (from 20 to 5), respec-
tively. We further demonstrated trends of all compart-
ments in baseline and different conditions (figure 2D). 
Compared with baseline, as infections decreased in three 
conditions, the S individuals (those who remain unin-
fected) of conditions 1, 2, 3 were 6.6, 11.6 and 20.7 times 
of S individuals of baseline model after 300 days of the 
epidemic, respectively. Meanwhile, 27.7%, 41.5% and 
61.2% of deaths (confirmed and unconfirmed by testing) 
of the baseline model were saved in conditions 1, 2, 3, 
respectively. These results indicate that reduced time to 
action and better identification of presymptomatic and 
asymptomatic cases are critical factors in flattening the 
infection curve and decreasing the deaths.

Impacts of overall testing and contact tracing efficiency to all 
infectors
Scenario 1 simulated five different test efficiency levels 
represented by five different daily transmission rates 
from Is to T (IsT rate): 1/4, 1/6, 1/8, 1/10 and 1/12. 
The daily transmission rate from I to T (IT rate) and 
from E to T (ET rate) changed in accordance with the 
IsT rate. This scenario assumes that contact tracing effi-
ciency changed with the IsT rate, and therefore latent, 
asymptomatic cases could also be tested. We found 
that longer public health response delays (ie, lower 
IsT rates) resulted in higher peak daily new transmit-
ters, peak daily new diagnoses and overall cumulative 
infections. Besides, the number of diagnosed and undi-
agnosed fatalities and the proportion of undiagnosed 
fatalities increased as IsT rates declined, indicating that 
fewer tests and slower response times resulted in worse 

Figure 2  Epidemic transmission for the baseline and intervention models. (A) Violin plots of R0 distributions for the real-world 
data and baseline model. (B) Infection curves for the baseline and different intervention models. (C) Daily new symptomatic, 
presymptomatic and asymptomatic cases confirmed by testing. (D) Compartment trends for the different models. E, exposed; F, 
confirmed death; f, unconfirmed death; I, infected; Is, infected with symptom; R, recovered and immune; R0, basic reproductive 
number; S, susceptible; T, tested positive and quarantined.



8 Hu Y, et al. BMJ Open 2021;11:e045886. doi:10.1136/bmjopen-2020-045886

Open access�

epidemic outcomes. We decreased the IsT delay from 
12 to 4 days in 2-day intervals and found that, compared 
with baseline, total infections decreased by 20.5%, 
29.2%, 39.0%, 57.0% and 88.3%, respectively, and total 
deaths decreased by 36.0%, 46.7%, 52.2%, 70.6% and 
92.8%, respectively. Peak daily infections across the five 
experiments increased linearly as IsT rates decreased 
(table 1, figure 3A).

Impacts of contact tracing efficiency for presymptomatic and 
asymptomatic cases
Scenario 2 quantified the importance of efficient contact 
tracing. Owing to asymptomatic transmissibility, contact 
tracing is critical for effective containment. The tracing 
efficiency is represented by either the IT or ET rate. There-
fore, we designed simulations with a fixed IsT rate (1/7) 
and varied the IT (1/12, 1/19, 0) and ET rates (1/17, 1/24, 

Figure 3  Scenario 1, 2 and 3 outcomes. Total infections over time, peak daily infections for different public health response 
strategies (each dot represents a simulation) and accumulated deaths (both confirmed and unconfirmed cases) for (A) scenario 
1, (B) scenario 2 and (C) scenario 3. I, infected; Is, infected with symptom; T, tested positive and quarantined.
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0).The results showed that larger ET and IT rates resulted 
in fewer overall infections, confirmed cases, and confirmed 
and unconfirmed fatalities. More efficient contact tracing 
(12-day delay from infected to testing for I cases) would 
prevent 36% of cumulative infections, 64% of peak daily 
infections, 46% of peak daily confirmed cases and 46% of 
total deaths compared with no contact tracing. Less efficient 
contact tracing (as a 19-day delay from infected to testing 
for I patients) prevented 23% of cumulative infections, 50% 
of peak daily infections, 32% of peak daily confirmed cases 
and 33% of total fatalities compared with no contact tracing. 
Thus, more efficient contact tracing resulted in fewer infec-
tions (table 1, figure 3B).

Impacts of delayed implementation of efficient testing and 
contact tracing
Scenario 3 evaluated the impact of delayed implemen-
tation of efficient testing and contact tracing. We found 
that cumulative infections and fatalities increased with 
increasing delay intervals. Compared with 50-day delay, 
delays of 10, 20, 30 and 40 days reduced total infections 
by 35.2%, 32.9%, 20.7% and 7.6%, respectively, and total 
deaths by 44.6%, 43.7%, 32.6% and 12.7%, respectively. 
The increase in peak daily transmitters as delay interval 
increased followed a sigmoid-shaped curve (table  1, 
figure  3C). Clearly, implementing a prompt testing 
response within 20 days of the first infection had much 
more impact than response 20 days later.

The critical impact of the prompt initiation of a testing 
programme is demonstrated in our simulation and is 
observed in real-world data. Measures of testing suffi-
ciency are the number of tests conducted per confirmed 
case (TPC) and the number of tests per million people 

(TPM). Here, efficiency is measured as the average time 
interval between infection and a positive COVID-19 test. 
A sufficient testing capacity, estimated by TPC and TPM, is 
a prerequisite for efficient testing. Decreasing TPC trends 
indicate that disease transmission is outpacing testing 
and that efficiency is decreasing. The three indicators of 
epidemic control are CFR, confirmed cases per million 
people (CPM) and deaths per million people (DPM).

For comparison, we selected four Nordic countries that 
have similar medical resources, population age ranges, geog-
raphy and climate (figure 4). Day 0 was defined as the day 
on which the daily DPM reached 0.1. Norway, Finland and 
Denmark experienced a similar lockdown duration in the 
first 70 days, and the TPC over the first 70 days increased in 
all countries. From day 0 to 14, TPC was highest in Norway, 
followed by Finland and Denmark. Between days 15 and 70, 
although the TPCs in Norway and Finland were similar, the 
CFR in Norway (2.8%) was lower than in Finland (4.6%). 
This implies that the early outbreak TPC values were a more 
significant factor than later TPC values in controlling the 
pandemic. Denmark had the lowest early outbreak TPC 
of these three countries. Even though its TPC later grew 
dramatically and far exceeded those of Norway and Finland, 
its CFR (4.9%) was higher than those of Norway and Finland. 
We also observed that the overall TPM in Denmark from 
day 0 to 70 was 2.7 times those of Norway and Finland. This 
implies that the early stage TPC may have a more significant 
influence on the overall CFR than the late-stage TPC, consis-
tent with our hypothesis that early testing plays a critical 
role, without which testing efforts must be heavily increased 
as transmission rates worsen. In Sweden, the TPC gradually 
decreased. Sweden’s CFR (12%) was the highest of all four 
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countries. This indicates that insufficient testing in the early 
stage might not be remedied by subsequently increasing the 
testing volume.

Sensitivity analysis
To validate the rationality of our model’s network settings, 
we conducted sensitivity analyses using various population 
sizes and different settings of the parameters related to R0.

We first compared baseline models with population 
sizes of 1000, 2000, 3000, 4000 and 5000. The proportion 
of cumulative infections, peak daily infections and cumu-
lative deaths were similar in all five models. However, 
there was considerably more variation between the 1000 
and 2000 population models than between the models 
with population sizes of 3000 or more. These findings 
underpinned our rationale for using a representative 
population of 3000 (online supplemental figure 1, online 
supplemental table 3).

Second, a sensitivity analysis of R0-related parameters 
emphasised how the structure of a social network impacts 
disease transmission. In addition to the intrinsic proper-
ties of SARS-CoV-2, the value of R0 is determined by three 
parameters that we studied in the sensitivity analysis: the 
social network density, concurrent contacts (the number of 
people a person has contact with) and the average duration 
of contact between two people. The network density will 
directly impact the rate of disease spread (online supple-
mental figure 1, online supplemental table 3). An extremely 
low density is difficult to maintain in most areas. However, we 
can expect that a low density would occur in a town under 
lockdown for a short period of time. Decreasing the number 
of concurrent nodes with a fixed density will skew the infec-
tion number curve. This also affects the variance, because 
concurrent nodes become critical nodes that can spread 
the disease to many other nodes. The duration of an edge 
indicates the stability of the relationship between two nodes. 
The results revealed that increased stability would flatten 
the infection curve. It is clear that if we were to only contact 
the same group of people repeatedly, the possibility of infec-
tion would decrease. The value of R0 changed when the 
settings of these three parameters were altered. To improve 
the universality of our model, we selected suitable ranges 
for these parameters to achieve the average R0 reported in 
other studies (figure 2A). The R0 distribution in our base-
line simulation corresponded to the average R0 estimated 
from 177 countries and territories.38 The sensitivity analysis 
showed the validity of how we regulated parameters that are 
related to transmission dynamics. For all experiments, the 
mean R0 was set as 2.2. The network density, concurrent 
contacts and the relationship duration between nodes were 
consistent across all experiments.

DISCUSSION
Principal findings
This work quantified how testing and contact tracing 
efficiency, investigated as the average duration between 
infection and quarantine and the delay in testing and 

tracing close contacts after the first identified infec-
tion, can influence COVID-19 transmission. Scenario 1 
demonstrates that shortening the average time interval 
between symptom onset and quarantine from 12 days to 
4 days results in an 85.2% reduction in infections and an 
88.8% decrease in deaths. Scenario 2 indicates testing 
and tracing regardless of symptoms (a 7-day interval 
for Is to T, with the E/I to T intervals changing accord-
ingly) reduce infections by 35.7% and deaths by 46.2% 
compared with testing symptomatic cases (Is) alone. 
Reducing the delay in implementing an efficient testing 
and tracing programme from 50 days to 10 days reduces 
infections and deaths by 35.2% and 44.6%, respectively. 
Scenario 3 implies that the delayed implementation of 
testing and contact tracing will lead to a massive demand 
in testing capacity, which is also supported by the analysis 
of data from the four Nordic countries. Thus, efficient 
testing and contact tracing can reduce disease transmis-
sion and the overall number of fatalities.

Strengths and weaknesses of the study
Strengths of this work include the following: (1) it 
provides a new perspective on evaluating the effect of 
testing and tracing in addition to the test volume at the 
individual level. This new perspective focuses on the 
efficiency of testing and tracing. Our work indicates 
that controlling the COVID-19 pandemic requires a 
rapid response to testing and tracing rather than solely 
relying on a massive testing capacity. (2) We quantified 
the effects of different kinds of testing and tracing effi-
ciency using a self-developed model, called CoTECT, as 
well as real-world data to verify their important role in 
controlling the COVID-19 pandemic. The model quan-
tified the additional percentage of infections and deaths 
that would occur when the implementation of these effi-
cient measures is delayed. (3) This model is highly prac-
ticable. The ideal average wait time between infection 
and quarantine was simulated, and this time interval can 
be measured in practice for policymakers to determine 
whether their actions are efficient. Our main conclu-
sions can be generalised to different circumstances, from 
megacities to small villages.

Weaknesses of this study include the following: (1) all 
simulations were conducted in a closed population; the 
model did not account for intercommunity social activity. 
(2) We assumed that nearly 100% of the tests were accu-
rate because of false-positive tests result in an unnecessary 
self-quarantine. We also assumed that no infections would 
occur after self-quarantine.

Strengths and weaknesses in relation to other studies
While previous studies12 13 16 24–27 have typically empha-
sised the amount or percentage of infections or contacts 
that need to be tested and traced, our model simulates 
the ideal average wait time between infection and quar-
antine, which is a more practical criterion that is easily 
measured in real-world epidemiological investigations. 
In contrast, the percentage or number of infections that 
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need to be tested and traced proposed by other model-
ling studies is less useful; this is because the true number 
of infections is difficult to estimate in the real world.

In addition, we did not limit our analysis to estimating 
a fixed, total amount of testing required because the 
capacity of testing changes over time. Instead, we focused 
on the duration between an exposure event and when an 
exposed person receives their test result (ie, the efficiency 
of testing and contact tracing). We found that more effi-
cient testing can reduce the number of infections and 
deaths and decrease the fatality rate, and demand in 
testing capacity will increase as implementation of testing 
and contact tracing delayed. The testing and contact 
tracing capacity should be considered along with the 
demand for testing, which is related to the total number 
of infections.

In contrast to models that are suitable only for specific 
regions and conditions,28–32 our tool has potential to be 
used for various population sizes and is generalisable to 
different types of communities. The novelty of this method 
is reflected in the model’s structure and scenario design. 
Using the timeliness of individual testing, CoTECT can 
predict macro-perspective outcomes.

The weakness of our work in relation to other studies is 
that age ranges of the population, the medical resources 
and lockdown measures were not explicitly adjusted in 
this model (regarded as controlled variables). Impacts 
of these variables have been considered in other existed 
studies.15 18 27 33

Meaning of the study
Our results provide professionals and policymakers with 
quantitative evidence showing that efficiency is a critical 
value in the development of testing and contact tracing 
strategies. Our model is particularly useful for nations 
facing a potential second or third wave of COVID-19 or 
the spread of mutated virus strains or other emerging 
infectious diseases. We provide a novel tool, CoTECT, 
that policymakers can use to simulate the effects of 
delays to implementing testing and tracing systems, 
which could help them balance the costs against the 
risks. The model highlights that it is critical to consider 
the transmission rates from presymptomatic and asymp-
tomatic cases, as well as the time delay between testing 
and quarantine.

The meaning of our conclusions drew from three 
scenarios: (1) according to scenario 1, an extra 4 days 
of waiting will lead to a considerable difference in total 
infections and deaths. At one point, the mean wait 
time between taking a COVID-19 test and receiving the 
result was 4.1 days in the USA, which is disadvantageous 
for controlling disease spread.50 So our study indicates 
the government and testers of some countries should 
improve the efficiency of testing. (2) An example of the 
value of efficient testing is the successful containment 
of the second COVID-19 outbreak in Beijing, China. 
Highly efficient testing (open to all regardless of symp-
toms) and contact tracing began immediately after 

the first case was identified51–54 and average time from 
onset to reporting of first 37 cases was 2.7 days (online 
supplemental tables 4 and 5). This is in marked contrast 
to the first outbreak in Wuhan when testing was less 
efficient and containment was slower, which verified 
our scenarios 1 and 2. (3) In scenario 3, we focused on 
the delay between the first infection and implementa-
tion of contact tracing and testing. In the real world, 
the longer the delay, the higher the initial positive 
rate would be (the lower TPC), which was analysed in 
Nordic countries. We recommend that the government 
should increase TPC as soon as possible in the early 
stage of a pandemic, which is critical in reducing the 
number of confirmed cases and the fatality rate.

Unanswered questions and future research
Some unanswered questions are the following: (1) How 
does intercommunity social activity affect our model?; (2) 
How do variables such as population age ranges, medical 
resources and lockdown measures lead to different 
results?; (3) Could the socioeconomic resources required 
for efficient testing be estimated? To solve these issues, 
we will introduce more variables and improve our model 
to study the impact of testing and contact tracing effi-
ciency under different circumstances of constraints and 
countermeasures.
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