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Abstract: As one of the factors (e.g., material properties, surface quality, etc.) influencing the corrosion
processes, researchers have always been exploring the role of environmental factors to understand the
mechanism of atmospheric corrosion. This study proposes a random forest algorithm-based modeling
method that successfully maps both the steel’s chemical composition and environmental factors to
the corrosion rate of low-alloy steel under the corresponding environmental conditions. Using the
random forest models based on the corrosion data of three different atmospheric environments,
the environmental factors were proved to have different importance sequence in determining the
environmental corrosivity of open and sheltered exposure test conditions. For each exposure test
site, the importance of environmental features to the corrosion rate is also ranked and analyzed.
Additionally, the feasibility of the random forest model to predict the corrosion rate of steel samples in
the new environment is also demonstrated. The volume and representativeness of the corrosion data
in the training data are considered to be the critical factors in determining its prediction performance.
The above results prove that machine learning provides a useful tool for the analysis of atmospheric
corrosion mechanisms and the evaluation of corrosion resistance.

Keywords: atmospheric corrosion; low-alloy steel; atmospheric exposure test; feature importance;
random forest; machine learning; data mining

1. Introduction

Due to the comprehensive advantages of mechanical properties and economic cost, low-alloy
steel has been widely used in various infrastructures and engineering projects. Some low-alloy steels
containing Cu, Cr and Ni elements (i.e., weathering steel) showed good corrosion resistance in rural,
urban, industrial, and marine atmospheric environments, and they are considered to have important
application values [1,2]. As the corrosion resistance directly affects the service life and safety of
related equipment and constructions, understanding the correlation between the corrosion rate and
the environmental parameters is of great significance for the application and development of low-alloy
steel [3,4].

At present, researchers have proved the influence of many elemental and environmental factors
on metal’s corrosion behavior; many atmospheric corrosion mechanisms have been established [5,6].
Temperature and relative humidity provide conditions for the formation of a wet electrochemical
corrosion environment on the surface of metals [7]. The relatively higher levels of atmospheric pollutants
such as sulfur dioxide in industrial/urban environments and chlorides in marine environments distinctly
accelerate the corrosion process [8,9]. However, even in the same type of atmospheric environment,
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the environmental corrosivity still differs because of the different intensities of environmental factors,
the development of pollution and current climate conditions, etc. [10]. For instance, Ma et al. tested the
stability of 09CuPCrNi steel exposed at two test sites in tropical marine environments. Although both
test sites belong to the same type of atmospheric environment, significant corrosion rate differences of
the steel samples was observed because of the different chloride ion deposition levels [11]. Until now,
the most reliable method is still to place the materials at the target location for atmospheric exposure
tests. But traditional exposure test methods are costly and time-consuming [12]. Therefore, based
on limited experiments, fitting the corrosion rate and related influencing factors and establishing a
corrosion rate prediction model is one of the effective ways to explore atmospheric corrosion.

Due to the development of many international organization and national cooperative projects,
a large number of atmospheric corrosion tests have been carried out worldwide [13,14]. Based on
accumulated corrosion data, methods like the linear model, power model, power-linear model,
and bi-linear model are usually used to fit the correlation between environmental factors and corrosion
rate and to analyze the importance of these factors [15–18]. Researchers have also been looking for more
efficient and accurate tools for data analysis and utilization. For instance, Panchenko et al. developed
a new dose-response function which provided more accurate prediction results of the first-year
corrosion rate than other standard and unified dose-response functions. Quantitative estimations
of the effects of each atmosphere corrosivity parameter on corrosion were considered important to
develop more accurate dose-response functions [19]. Through the regression analysis of corrosion data,
the in-depth exploration of atmospheric corrosion processes is accelerated. Morcillo et al. summarized
the atmospheric corrosion mechanism of weathering steel, the formation of protective rust layers,
and the role of alloying elements, and they made suggestions about the scientific design of new
weathering steel for application in marine atmospheres [20]. Due to limitations in the regression
accuracy, it is usually difficult to provide an accurate assessment for the corrosion behavior of metals
in specific environments [21].

With substantial analysis and simulation capacities to multi-feature fitting problems and small
datasets, machine learning has been widely used in material research [22,23]. In the field of corrosion
research, machine learning has also been used for corrosion rate prediction, electrochemical test
simulation, corrosion inhibitor design [24,25], etc. Wen et al. proposed a support vector regression
model for prediction of the corrosion rate of 3C steel under five different seawater environmental factors,
including temperature, dissolved oxygen, salinity, pH value, and oxidation-reduction potential [26].
Nevertheless, the machine learning methods are considered to be black boxes. Therefore, researchers
mainly focus on modeling and prediction of the target properties [27]. For instance, Jian et al.
used the artificial neural network method to distinguish the type of corrosion from electrochemical
noise signals [28]. Many machine learning algorithms also have significant advantages in analyzing
correlations between target variables [29,30]. For instance, Gong et al. used machine learning methods
to construct polarization curves and electrochemical impedance spectra and found that the sulfide
concentration had the most significant influence on the polarization curve, followed by the chloride
ion concentration; the temperature influence was the smallest [31]. Therefore, machine learning is
considered to play a greater role in the analysis of the influencing factors on atmospheric corrosion.

In this study, the corrosion rate of low-alloy steel under open and sheltered environments at
three different atmospheric exposure test sites was estimated. The random forest algorithm was used
to establish the corrosion rate prediction models, which can map the elemental and environmental
factors to the corrosion rate of low-alloy steel samples. Meanwhile, the determinant factors of
environmental corrosivity and the importance of the environmental factors in each exposure test site
were analyzed. In order to investigate the feasibility of applying the corrosion rate prediction model
in new environments, the factors affecting the prediction accuracy of the random forest model were
demonstrated and discussed. Based on the above results, this study aims to prove the advantages
of machine learning methods in corrosion research and provide effective methods for corrosion
data utilization.



Materials 2020, 13, 3266 3 of 13

2. Materials and Methods

2.1. Corrosion Data and Exposure Test Environments

Corrosion data of thirteen different low-alloy steel were collected from the National Institute of
Materials Science (NIMS) Materials Database (MatNavi) [32]. In the original dataset, the content of
some trace alloy elements was not recorded (or recorded below a detection threshold). Here, we used
the minimum detection threshold of an element in the dataset as the detection content to replace the
above-mentioned records. The chemical compositions of low-alloy steel are listed in Table 1.

Table 1. Chemical compositions (wt.%) of selected low-alloy steel from the MatNavi database.

Steel C Si Mn P S Cu Cr Ni

Fe-1Ni 0.0010 0.0030 0.0100 0.0003 0.0001 0.0090 0.0050 0.9800
Fe-3Ni 0.0010 0.0030 0.0100 0.0005 0.0002 0.0090 0.0050 3.0200
Fe-5Ni 0.0010 0.0030 0.1100 0.0006 0.0003 0.0090 0.0050 5.0100
Fe-1Cr 0.0050 0.0030 0.0700 0.0010 0.0002 0.0090 1.0100 0.0030
Fe-3Cr 0.0060 0.0030 0.0500 0.0007 0.0001 0.0090 3.0500 0.0030
Fe-5Cr 0.0030 0.0030 0.1100 0.0003 0.0010 0.0090 5.0300 0.0030

Fe-0.4Cu 0.0010 0.0030 0.0030 0.0006 0.0007 0.4300 0.0050 0.0030
Fe-1Cu 0.0011 0.0030 0.0030 0.0002 0.0001 1.0000 0.0050 0.0030
Fe-2Cu 0.0011 0.0030 0.0030 0.0002 0.0001 1.9800 0.0050 0.0030
Fe-3Cu 0.0013 0.0030 0.0030 0.0002 0.0001 2.9700 0.0050 0.0030

SM490A 0.1400 0.2500 1.3500 0.0120 0.0030 0.0090 0.0400 0.0030
SMA490 0.1300 0.2600 1.0100 0.0110 0.0050 0.3200 0.4800 0.1000
SPA-H 0.0900 0.4300 0.3800 0.1020 0.0050 0.3000 0.6700 0.1800

The specimens were tested at three different atmospheric exposure test sites, which are
representative geographic locations in Japan: Tsukuba (rural environment), Choshi (rural/coastal
environment), and Miyakojima (subtropical coastal environment). At each exposure test site, one open
and one sheltered test environment was arranged. Under the open environment, the specimens
were set up horizontally as well as on a surface with 45-degree inclination to the south. Under the
sheltered environment, the specimens were horizontally set up under the roof of the shelter. In addition,
the open and sheltered environments at each exposure test site had precisely the same environmental
conditions. The exposure tests, including test specimen preparation, requirements for exposure test
sites, exposure test apparatus and measurement of environmental factors were all performed according
to the standard method [33]. The exposure test was started in 1998 for all the Fe-Ni and Fe-Cr samples,
in 2003 for all the Fe-Cu samples, and in 2002 for all the SM490A, SMA490 and SPA-H samples. In this
study, the results of the 1-, 2-, 3- and 10-year exposure tests were collected. During the exposure test
period, eight environmental parameters were monitored, and their annual averages were individually
calculated. For each exposure test site, Table 2 lists the range of the annual mean environmental
parameters of all the 1-, 2-, 3- and 10-year specimens.

Table 2. Annual mean environmental parameters of all the 1-, 2-, 3- and 10-year specimens at the three
atmospheric exposure test sites.

Environmental
Parameter

Exposure Test Site Description
Tsukuba Choshi Miyakojima

T 14.5–15.5 14.7–15.3 23.9–24.0 ◦C; mean air temperature
RH 74.6–77.5 77.6–79.0 78.5–79.0 %; mean relative humidity

TOW 4088–4670 4629–4908 5113–5249 h; time of wetness
Precipitation 1103–1344 1511–1791 1899–2314 mm; precipitation

Wind 1.5–2.5 3.0–3.5 4.2–4.7 m/s; mean velocity of wind
Solar 4183–6274 4193–4901 5229–5260 MJ/m2; solar radiation

Cl- 2.8–3.3 32.0–32.3 45.8–49.2 mg NaCl/m2
·d; chloride

deposition rate
SO2 3.7–5.3 4.9–5.1 2.1–2.4 mg SO2/m2

·d; SO2 deposition rate
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The corrosion rate (annual corrosion depth calculated from the weight loss of base metal after
removing the corrosion products; micrometre per year, µm/a) of steel samples versus exposure time is
plotted in Figure 1. Each dot denotes the mean corrosion rate of all thirteen low-alloy steels, and the error
bar equals their standard deviation. Except for a few completely corroded specimens (e.g., the 10-year
specimen of Fe-1Ni and Fe-1Cr steel in Miyakojima), the corrosion data of 306 specimens (153 samples
each under the open and sheltered environments) were collected.
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Figure 1. Mean corrosion rate of 13 different low-alloy steels versus exposure time. All the specimens
were tested under the open and sheltered environments at the exposure test site (a) Tsukuba, (b) Choshi
and (c) Miyakojima, individually.

2.2. Random Forest Algorithm

The random forest (RF) algorithm is a collection of decision trees to perform classification or
regression analysis. Each decision tree (i.e., classification and regression trees, CART) starts from
a root node and consists of multiple layers of nodes. Its input data is a subset of the training data,
drawn randomly from the original dataset [34]. Every node corresponds to a feature and has a
threshold. The input data are divided into two subsets according to their response to the node. Then,
each subset is individually transferred to the next node (e.g., left and right child-node). The input data
for a decision tree are tested and split repeatedly until they reach the terminal node, while the terminal
node outputs a specific value. Since each tree is assigned a different subset of the training data and
features, the RF becomes a forest of different decision trees. After training based on the training data,
the hyperparameters (e.g., number of decision trees, number of features assigned to each decision tree,
etc.) of the RF are optimized to mapping the input data to its target outcome. When the test data
is fed to all the decision trees, the prediction results are obtained by averaging all the tree outputs
(in regression tasks). Due to the existence of multiple decision trees, the robustness of the RF model is
enhanced by pooling all these decision trees.

As an important by-product in the training of the RF model, the importance score provides a
ranking of all features [35]. In the regression analysis, the variance reduction is used as a selection
criterion; the impurity decrease strategy is employed to calculate the variances. At each node within
the decision tree, the impurity (i.e., G(x,v) in Equation (1)) is calculated to measure how well a potential
split is separating the samples of the two classes in this particular node.

G(x, v) =
1

Ns

 ∑
yi∈Xle f t

(
yi − yle f t

)2
+

∑
yi∈Xright

(
yi − yright

)2

 (1)

where, x is the feature to be split on the node; v is the threshold value; Ns is the number of input data in
the node; Xleft and Xright are the subset data in the left and right child-nodes; yi is the target value of
samples; yleft and yright are the mean target value of samples in the left and right child-nodes. Then,
the importance of a node can be calculated as:

nk = wk·Gk −wle f t·Gle f t −wright·Gright (2)
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where, wk, wleft and wright are the ratio between sample quantities in node k, the left child-node, the right
child-node and the total training samples quantity; Gk, Gleft, and Gright are the impurities of node k and
the two child-nodes. For a forest, the importance of a feature can be calculated as:

fi =

∑
j∈nodes split on f eature i n j∑

k∈all nodes nk
(3)

In order to make the sum of all features’ importances equal to 1, the importance is normalized:

f ′i =
fi∑

j∈all f eatures f j
(4)

The importance indicates how much the feature affects the prediction results. It is often used as
an efficient tool in the feature screening and correlation analysis [36].

2.3. Model Setting and Performance Evaluation

In this study, a total of seventeen features were set as the input of corrosion rate prediction models:
eight elemental features, C, Si, Mn, P, S, Cu, Cr, Ni (wt.%); eight environmental features (Table 2);
and the exposure time (year). The corrosion rate (µm/a) was the target output. The coefficient of
determination (R2) and mean absolute error (MAE) were used to evaluate the accuracy of the corrosion
rate prediction model [37]. They are formulated as:

R2 = 1−
SSres

SStot
= 1−

∑n
i=1(yi − fi)

2∑n
i=1(yi − y)2 (5)

MAE =
1
n

n∑
i=1

∣∣∣ fi − yi
∣∣∣ (6)

where SSres denotes the residual sum of squares; SStot denotes the total sum of squares; n is the
number of samples; fi is the predicted corrosion rate; yi is the target corrosion rate; and y is the mean
target corrosion rate of all samples. Larger values of R2 normally indicate higher prediction accuracy.
The MAE can better reflect the actual situation of the prediction error.

All the regression analysis work was conducted using Anaconda (an open-source Python
distribution platform), TensorFlow and the scikit-learn toolkit.

3. Results and Discussion

3.1. Random Forest Prediction Model

As shown in Figure 2, the RF models were established on the basis of corrosion data at the exposure
test sites of Tsukuba, Choshi, and Miyakojima. Due to the reported conclusions about the significant
difference of steel’s corrosion behavior under open (i.e., unsheltered) and sheltered environments,
we established the RF model for open and sheltered environments, respectively [38].

Based on 153 specimens under open (or sheltered) environment at the exposure test sites of
Tsukuba, Choshi and Miyakojima, the corrosion data were randomly divided into a training set (70% of
total, 107 samples) and a test set (30% of total, 46 samples). During training, the RF model was supposed
to catch the relationship between the 17 input features (i.e., eight elemental features, listed in Table 1;
eight environmental features, listed in Table 2; and the exposure time) and the corrosion rate, based on
the data contained in the training set. The RF model then acquired the ability to predict the corrosion
rate, and was verified by the test sets. As listed in Table 3, the R2 and MAE results of each RF model in
response to both the training set and the test set were also calculated. Basically, the RF model showed
similar prediction accuracy for both training and test set samples. However for samples with a high
corrosion rate under both open (>80 µm/a) and sheltered (>100 µm/a) environments, the prediction
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accuracy was slightly lower than other samples (Figure 2). This might be due to the imbalanced
data distribution, which limited the fitting effect of the machine learning model on these data [39].
Usually, this problem can be solved by adding more related data in the training set. The above results
confirmed that the random forest algorithm successfully achieved the mapping between the input
features and the corrosion rate, and correctly grasped the correlation between them. Therefore, the RF
model was considered to have reliable modeling capability and could support the subsequent analysis
in this study.Materials 2020, 13, x FOR PEER REVIEW 6 of 13 
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Figure 2. The random forest algorithm-based corrosion rate prediction models for steel samples under
(a) open environment and (b) sheltered environment at the exposure test sites of Tsukuba, Choshi
and Miyakojima.

Table 3. The predictive accuracy of random forest models for steel samples under open and sheltered
environments at the exposure test sites of Tsukuba, Choshi, and Miyakojima.

Samples R2 MAE (µm/a)

Training Set Test Set Training Set Test Set

Open environ. 0.95 0.89 3.3 4.6
Shelt. environ. 0.97 0.86 4.3 10.0

3.2. Determining the Factors of Environmental Corrosivity

In order to explore the determinants of the environmental corrosivity among the atmospheric
environments at Tsukuba, Choshi, and Miyakojima, all the corrosion data under the open environment
were divided into four subsets according to the exposure time of the steel samples (i.e., 1-, 2-, 3- and
10-year). Each subset included the data from all three exposure test sites. The RF models were
established for each subset of corrosion data (input features: 8 elemental and 8 environmental
features; here, the exposure time became a constant and was excluded), and the corresponding feature
importance results were summarized. As shown in the stacked area chart in Figure 3a, the green area
denotes the sum of all eight alloying elements’ feature importance values and the orange area is the
sum of all eight environmental parameters’ feature importance values. Here, the sum of elemental and
environmental features’ importance values always equals to 1.0 (Equation (4)). It can be seen that the
sum of all elemental feature importances increased from 0.15 to almost 0.25 in ten years of exposure.
In other words, the influence of environmental factors was slightly decreased in a long-term exposure.
As reported in the literature, the protective rust layer formed on the surface of low-alloy steel usually
helps improve its corrosion resistance in the atmospheric environment [18]. It also could be confirmed
from the results in Figure 1. In all three exposure test sites, the mean corrosion rate of thirteen different
low-alloy steel gradually decreased along with exposure time.
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individual environmental features. The feature importances derived from the random forest models
were established on the basis of steel samples in 1-, 2-, 3- and 10-year exposure tests under the (a) open
and (b) sheltered environment.

Meanwhile, the importance of each environmental feature was drawn in the line plot (Figure 3a).
For these environmental features, their importance value changed with exposure time. This might
be due to the different values of the environmental factor or the role of the rust layer on the sample
surface. For convenience, we employed the mean importance value of each environmental feature to
find out the key environmental factors that determine the environmental corrosivity. As depicted in
Figure 3a, the Cl− deposition rate, SO2 deposition rate, air temperature and wind speed were the four
most important environmental factors that determined the environmental corrosivity. Belonging to
the subtropical coastal environment, Miyakojima has the highest Cl− deposition rate, air temperature,
and wind speed (Table 2). Choshi, the rural/coastal environment, has the highest SO2 deposition
rate and high Cl− deposition rate and air temperature. Tsukuba (rural environment) has the mildest
climate. Consistent with the level of these environmental factors (which were the determinants of
environmental corrosivity), the mean corrosion rate of the steel samples also decreased sequentially
from Miyakojima to Choshi to Tsukuba (Figure 1).

According to the above method, the results of steel samples under the sheltered environment
are depicted in Figure 3b. Unlike the open environment, the sum of environmental parameters’
feature importances always remained above 0.8 and even slightly increased in the long-term exposure.
According to the literature, surfaces sheltered from the sun and rain tend to form a loose and
non-compact oxide, while surfaces openly exposed to the sun and rain produce strong adherent
layers [18]. Thus, the protectiveness of the rust layer formed under the sheltered environment was low.
As shown in the line plots, the four determining factors of environmental corrosivity under the sheltered
environment were: Cl− deposition rate, precipitation, wind speed, and solar radiation. In addition
to the dominating role of chloride ions, precipitation helped keep the rust film wet and the wind
accelerated the transfer of chlorides from seawater to the sample surface [40]. Since the roof blocked the
deposition of particulate matter in the air (common attachments of sulfur dioxide), the actual deposition
rate of sulfur dioxide on the sample surface was significantly reduced. Meanwhile, the roof protects
the sample surface from rain. As a result, the dust containing sulfur dioxide can be better accumulated
on the sample surface. Therefore, reasons for the changes of sulfur dioxide’s importance in long-term
exposure need to be experimentally demonstrated. At the same time, reasons for the distinct difference
of solar radiation’s importance rating between open and sheltered environments also need to be further
demonstrated. Consistent with the corresponding level of the above four dominating environmental
factors (Table 2), the environmental corrosivity at the exposure test sites from strong to weak was:
Miyakojima, Choshi, Tsukuba (Figure 1). However, in Miyakojima and Choshi, the corrosion rate of
steel samples gradually increased over the long term of exposure. This phenomenon might be due to



Materials 2020, 13, 3266 8 of 13

the accumulation of chlorides in the loose rust layer, which was never washed away [18]. The chlorides
could easily reach the substrate surface and form very corrosive environments when the rust layer
was wet.

3.3. Determining the Factors of Corrosion Rate in Different Exposure Test Sites

Compared with the environmental differences at different exposure test sites, the environmental
parameters at a specific location usually fluctuated within certain ranges. Therefore, analyzing the
ranking of environmental feature importance is also helpful to understand the corrosion behavior of
steel in a particular location. The thirteen types of steel were divided into three batches, and their
exposure tests at each test site started in different years (i.e., each test site had three different groups of
environmental parameters). We divided the corrosion data into six subsets according to the exposure
test site and open/sheltered environment. For each subset of corrosion data, an RF model was
established and the feature importance was summarized.

As shown in Figure 4, the feature importance sequence under the open environment was closely
related to the climate characteristics of the exposure test site. The deposition rates of chlorides and SO2

were low in Tsukuba (Table 2). Then, the corrosion rate is more affected by the change of factors like air
temperature and precipitation which lead to a time of wetness and provided a wet environment on
the substrate surface for electrochemical corrosion. Choshi had the highest SO2 deposition rate and
high chloride deposition rate. Miyakojima had the highest chloride deposition rate, and the wind,
and solar radiation also provided the extra pathways of chlorides transfer. Meanwhile, the high levels
of precipitation directly influenced the wet condition of the rust layer. So, the samples at these test
sites are sensitive to the corresponding factors.
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Figure 4. The environmental feature importance on the corrosion rate of steel samples under the open
and sheltered environment at the exposure test site (a) Tsukuba, (b) Choshi, and (c) Miyakojima.

Unlike the open environment, the environmental feature sequence of steel samples under the
sheltered environment did not show a strong correlation with the climate characteristics of the test
site. Although steel samples under both the open and sheltered environments were tested in the
same locations, the roof of the shelter significantly changed the actual environmental parameters
(e.g., precipitation, chloride deposition rate, etc.) near the steel samples. At first, the corrosion
rate of the steel samples was still mainly determined by the levels of corresponding chloride ions
and SO2 deposition rates (Figure 1). The content of accumulated chlorides in the rust layer was
still directly determined by the deposition rate in the corresponding environment. Secondly, the
sheltered environment made the steel samples in a specific test site became more sensitive to factors
like precipitation, time of wetness, and RH. The sheltered environment might reduce the direct effect
of changes in the chloride deposition rate. However, the loose rust layer became more sensitive to the
changes of factors like precipitation, time of wetness, and relative humidity, which would promote
condensation and storage of water inside the rust layer.



Materials 2020, 13, 3266 9 of 13

3.4. Generalization Ability of the Corrosion Rate Prediction Model

Compared with conventional time-consuming and costly atmospheric exposure tests, the corrosion
rate prediction model was more effective. In this study, we investigated the factors that affected
the generalization ability of corrosion rate prediction models. The corrosion data of Tsukuba and
Miyakojima were employed in the model training, and the corrosion data of Choshi were used to verify
the model’s generalization ability. Due to the significant differences in the corrosion behavior of the
steel samples, we established corrosion rate prediction models for the open and sheltered environments,
respectively. Besides the RF algorithm, the support vector regressor (SVR) and an artificial neural
network (ANN) were also employed to compare their generalization abilities. As listed in Table 4,
the overall performance of the RF model was better.

Table 4. The predictive accuracy of the random forest (RF), support vector regressor (SVR), and artificial
neural network (ANN) models for steel samples under open and sheltered environments. The samples
in the exposure test sites of Tsukuba and Miyakojima were used to train the models and verify their
prediction accuracy. The samples in the exposure test site of Choshi were used to demonstrate the
generalization ability of the models.

Environment &
Algorithm

R2 MAE (µm/a)

Tsukuba + Miyakojima Choshi
Evaluation

Set

Tsukuba + Miyakojima Choshi
Evaluation

Set
Training

Set Test Set Training
Set Test Set

Open
environ.

RF 0.96 0.70 0.50 3.1 7.6 8.0
SVR 0.77 0.74 0.39 8.8 10.9 8.6

ANN 0.81 0.68 0.31 8.4 8.7 8.9

Sheltered
environ.

RF 0.97 0.92 −1.45 4.6 6.1 26.2
SVR 0.90 0.78 0.03 12.9 17.3 17.4

ANN 0.90 0.79 −1.77 7.7 12.0 31.8

The corrosion rate prediction results of the RF model under the open environment are depicted
in Figure 5. For the corrosion data of Tsukuba and Miyakojima, the model showed good prediction
accuracy to both the training and test sets. It means that that the RF algorithm has successfully
achieved an accurate mapping between the input features (i.e., elemental and environmental factors)
and the corrosion rate of steel samples. When applying the RF model to a new test site (i.e., Choshi),
it still exhibited a reasonable prediction accuracy. This may be due to the fact that under the open
environment, the steel samples of Choshi had similar corrosion behavior with that at Tsukuba and
Miyakojima (i.e., the corrosion rate decreases with exposure time, as seen in Figure 1). The climatic
conditions in Choshi are basically between those of Tsukuba and Miyakojima (Table 2). In other words,
the training data (from Tsukuba and Miyakojima) were representative and supported the predictive
performance of the RF model in Choshi.

Figure 6 shows the results of the RF model for steel samples under the sheltered environment.
Although the steel samples of Tsukuba and Miyakojima had different corrosion behavior (Figure 1),
the RF model still successfully made accurate predictions to both the training and test sets. But the
prediction accuracy became very poor when applying the RF model to the steel samples of Choshi.
This may be due to the fact that under the sheltered environment, only the steel samples of Choshi
and Miyakojima had similar corrosion behavior (Figure 2). There was also a relatively significant
difference between the climate conditions of Choshi and Miyakojima. Therefore, the representativeness
of the training set was found to be insufficient. Therefore, it limited the generalization ability of the RF
model severely.
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Figure 5. The random forest algorithm-based corrosion rate prediction model for steel samples under
the open environment. (a) The model was trained and tested by the corrosion data of Tsukuba and
Miyakojima. (b) The model’s generalization ability was evaluated by verifying its prediction accuracy
to the same steel samples in Choshi.

Materials 2020, 13, x FOR PEER REVIEW 10 of 13 

 

Figure 5. The random forest algorithm-based corrosion rate prediction model for steel samples under 

the open environment. (a) The model was trained and tested by the corrosion data of Tsukuba and 

Miyakojima. (b) The model’s generalization ability was evaluated by verifying its prediction accuracy 

to the same steel samples in Choshi. 

Figure 6 shows the results of the RF model for steel samples under the sheltered environment. 

Although the steel samples of Tsukuba and Miyakojima had different corrosion behavior (Figure 1), 

the RF model still successfully made accurate predictions to both the training and test sets. But the 

prediction accuracy became very poor when applying the RF model to the steel samples of Choshi. 

This may be due to the fact that under the sheltered environment, only the steel samples of Choshi 

and Miyakojima had similar corrosion behavior (Figure 2). There was also a relatively significant 

difference between the climate conditions of Choshi and Miyakojima. Therefore, the 

representativeness of the training set was found to be insufficient. Therefore, it limited the 

generalization ability of the RF model severely. 

 

Figure 6. The random forest algorithm-based corrosion rate prediction model for steel samples under 

the sheltered environment. (a) The model was trained and verified by the corrosion data of Tsukuba 

and Miyakojima. (b) The model’s generalization ability was evaluated by verifying its prediction 

accuracy to the same steel samples in Choshi. 

3.5. Factors Affecting the Regression Analysis Results 

The machine learning algorithm showed a strong capacity in the regression analysis of multiple 

variables. Both the elemental and environmental factors were successfully mapped into the corrosion 

rate of low-alloy steel samples. Based on that, the corrosion rate of a steel sample can directly be 

predicted by inputting its chemical composition and the environmental parameters into the model. 

The models can also be used in the evaluation of environmental corrosivity and the analysis of a 

specific environmental factor’s influence. Especially for big datasets and statistical analysis issues in 

corrosion research, the machine learning methods provide a more effective method than traditional 

regression analysis. Due to the advantages of machine learning in multi-features regression and small 

data modeling, it comprises a useful tool in the use of corrosion data from various geographic 

locations and environments.  

As a modern data processing tool, the essence of machine learning lies in digging into useful 

information from the dataset. Therefore, the reliability of the analysis results is significantly 

dependent on the representativeness and accuracy of the raw data. In this study, we did not discuss 

the specific importance sequence of environmental factors (Figure 4). As the volume of the corrosion 

data at each exposure test site is very limited, the particular ranking of features with small importance 

values is sensitive to the raw data and model optimization. Thus, more relevant corrosion data must 

be added before an in-depth analysis can be performed. When verifying the generalization ability of 

the RF model, the prediction accuracy is also not satisfactory for steel samples under both the open 

and sheltered environments in Choshi. According to the scientific knowledge, the steel samples 

showed different corrosion mechanisms in the three exposure test sites which are characterized as 

typical rural, rural/coastal and subtropical coastal environments. The volume and representativeness 

Figure 6. The random forest algorithm-based corrosion rate prediction model for steel samples under
the sheltered environment. (a) The model was trained and verified by the corrosion data of Tsukuba
and Miyakojima. (b) The model’s generalization ability was evaluated by verifying its prediction
accuracy to the same steel samples in Choshi.

3.5. Factors Affecting the Regression Analysis Results

The machine learning algorithm showed a strong capacity in the regression analysis of multiple
variables. Both the elemental and environmental factors were successfully mapped into the corrosion
rate of low-alloy steel samples. Based on that, the corrosion rate of a steel sample can directly be
predicted by inputting its chemical composition and the environmental parameters into the model.
The models can also be used in the evaluation of environmental corrosivity and the analysis of a
specific environmental factor’s influence. Especially for big datasets and statistical analysis issues in
corrosion research, the machine learning methods provide a more effective method than traditional
regression analysis. Due to the advantages of machine learning in multi-features regression and small
data modeling, it comprises a useful tool in the use of corrosion data from various geographic locations
and environments.

As a modern data processing tool, the essence of machine learning lies in digging into useful
information from the dataset. Therefore, the reliability of the analysis results is significantly dependent
on the representativeness and accuracy of the raw data. In this study, we did not discuss the specific
importance sequence of environmental factors (Figure 4). As the volume of the corrosion data at each
exposure test site is very limited, the particular ranking of features with small importance values is
sensitive to the raw data and model optimization. Thus, more relevant corrosion data must be added
before an in-depth analysis can be performed. When verifying the generalization ability of the RF
model, the prediction accuracy is also not satisfactory for steel samples under both the open and
sheltered environments in Choshi. According to the scientific knowledge, the steel samples showed
different corrosion mechanisms in the three exposure test sites which are characterized as typical
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rural, rural/coastal and subtropical coastal environments. The volume and representativeness of the
current corrosion data were obviously insufficient to support the model for a wide range of uses.
Accumulating more experimental data or comprehensively using corrosion data from multiple sources
is a feasible way to enrich the dataset. However, the precision of corrosion data, which regards the
measurement methods of the environmental factors and corrosion rate, should always be kept in mind
when collecting and utilizing the corrosion data.

4. Conclusions

Based on the corrosion data of thirteen different low-alloy steels under open and sheltered
environments at the exposure test sites of Tsukuba (rural environment), Choshi (rural/coastal
environment) and Miyakojima (subtropical coastal environment), the random forest algorithm was
used to establish the prediction of the corrosion rate. The random forest model successfully mapped
17 input features (i.e., eight elemental features, eight environmental features, and the exposure time)
to the corrosion rate, and achieved accurate corrosion rate prediction. Depending on the feature
importance results, the determinant factors of the environmental corrosivity were: Cl− deposition rate,
SO2 deposition rate, air temperature and wind speed for the open environment, and Cl− deposition rate,
precipitation, wind speed and solar radiation for the sheltered environment. At each specific exposure
test site, the environmental feature importance sequence under the open environment was found
to be closely related to the corresponding climate characteristics. Under the sheltered environment,
the steel samples were more sensitive to factors like precipitation, time of wetness and RH. Besides the
ability to analyze the corrosion behavior, the random forest model could also be used as a corrosion
rate prediction tool. The volume and representativeness of the training data were supposed to be an
important guarantee for the model’s generalization ability. Based on the above conclusions, the machine
learning algorithms were considered to be promising tools in corrosion data utilization.
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