mortality was greater for patients with higher MICS (U=20.5, p=0.06). The presence of an underlying source may be related to recurrence of BSI (p=0.075).

Table 1: Patient Characteristics

	Daptomycin + β- Lactam (n= 23)	Other therapy (n= 62)	P value
Age, mean (SD)	58 (13)	52 (14)	0.142
Race, n (%)			
Black	5 (22)	27 (44)	0.065
Caucasian	11 (48)	13 (21)	0.014
Hispanic	7 (30)	22 (35)	0.662
Transplant Recipient, n (%)	14 (61)	14 (23)	< 0.001
Pitt Bacteremia Score, mean (SD)	5 (4)	4 (4)	0.087
Charlson Comorbidity Index, mean (SD)	5 (3)	4 (3)	0.013
VRE colonization, n (%)	14 (88) ^a	17 (63) ^a	0.083
Beta-lactam, n (%)			
Ampicillin	8 (35)	N/A	N/A
Ampicillin-sulbactam	3 (13)		
Ceftriaxone	3 (13)		
Cefepime	2 (9)		
Ertapenem	5 (22)		
Ceftaroline	2 (9)		
Daptomycin dose <8mg/kg, n (%)	1 (4)	2 (8)b	0.601
Daptomycin dose considered appropriate, n (%)	18 (78)	19 (76)b	0.852
MIC of Daptomycin via E-test, n (%)			
<1 μg/mL	1 (4)	1 (4)b	0.951
1-2 μg/mL	10 (43)	10 (40) b	0.807
3 μg/mL	8 (35)	7 (28) ^b	0.612
4 μg/mL	2 (9)	2 (8) b	0.930
≥6 μg/mL	0 (0)	0 (0) ^b	N/A
Unknown	2 (9)	5 (20) ^b	0.267
Primary Source, n (%)			
Blood	8 (35)	38 (61)	0.029
Primary Bacteremia	3 (13)	25 (40)	0.017
CLABSI	5 (22)	13 (21)	0.938
Other	15 (65)	24 (39)	0.029
Pulmonary	3 (13)	3 (5)	0.189
Gastrointestinal	7 (30)	14 (23)	0.455
Hepatic/Biliary	3 (13)	0 (0)	0.027
Urinary	2 (9)	7 (11)	0.729
Polymicrobial, n (%)	10 (43)	24 (39)	0.690

n= 16, n= 27; 16 patients had VRE screening in the daptomycin plus beta-lactam group; 27 patients had VRE screening in

Table 2. Primary and Secondary Outcomes

	Daptomycin + in-vitro β-Lactam (n = 23)	Other (n = 62)	P value
Days to microbiological cure, mean (SD)	5 (4)	4 (5)	0.213
Microbiological cure ≤3 days, n (%)	13 (56.5)	42 (67)	0.336
Duration of therapy in days, mean (SD)	23 (15)	15 (15)	0.001
Length of stay in days, mean (SD)	109 (67)	68 (67)	0.007
Length of ICU stay in days mean (SD)	35 (54)	33 (53)	0.002
In-patient 30-day mortality, n (%)	6 (26)	17 (27)	0.902
Infection-related mortality, n (%)	2 (8.7)	6 (9.68)	0.999
Recurrence within 30 days, n (%)	10 (43)	5 (8)	< 0.001

Conclusion: We did not find a significant difference in time-to-microbiological clearance, although patients treated with DAP and a β-lactam had higher CCI and PBS. These results are limited by retrospective design, small sample size, and potential selection bias. Prospective randomized studies are needed to further validate these findings. Disclosures. All Authors: No reported disclosures

1612. Evaluation of the Use of Ceftolozane/Tazobactam for the Treatment of ESBL-producing Enterobacterales Infections Using International Data from SPECTRA (Study of Prescribing Patterns and Effectiveness of Ceftolozane/ Tazobactam Real World Analysis)

Alex Soriano, MD1; Laura A. Puzniak, PhD2; Matteo Bassetti, MD3; Sundeep Kaul, PHD FRCP FFICM⁴; Pamela Moise, PharmD⁵; David Paterson; David Paterson; ¹Hospital Clinic de Barcelona, Barcelona, Catalonia, Spain; ²Merck & Co., Inc., Kenilworth, NJ; ³University of Genoa and Ospedale Policlinico San Martino, Udine, Friuli-Venezia Giulia, Italy; ⁴Harefield hospital, london, England, United Kingdom; ⁵Merck Research Labs, Merck & Co., Inc., Kenilworth, New Jersey

SPECTRA Study Group

Session: P-71. Treatment of Antimicrobial Resistant Infections

Background. There is a paucity of data on outcomes of patients with severe ESBLproducing Enterobacterales infections treated with empiric or directed ceftolozane/ tazobactam (C/T). This study looked at the treatment patterns and outcomes associated with C/T use in the treatment of ESBL-producing *Enterobacterales*.

Methods. Data were collected from an international cohort of 32 hospitals in 6 countries as part of SPECTRA, a retrospective multicenter database of C/T use globally, from 2016 - 2019. All adult patients with an ESBL positive Enterobacterales sterile site culture and treated with ≥ 48 hours of C/T were eligible. Outcomes assessed were clinical success, 30-day mortality from index event and readmission.

Results. There were 59 patients with 121 ESBL positive isolates. Blood and urine were the most common sites of infection at 19.8% each, followed by respiratory (18.2%). E. coli (50%) and K. pneumoniae (30%) were the most common pathogens. On average patients had 2 positive ESBL isolates; median 1; range 1-15. Most patients had the same infection site and ESBL pathogen, however 13 had multi-site ESBL pathogens identified and only 2 had polymicrobial ESBL pathogens. Septic shock

was observed in 14 (24%) patients; 29 (49%) were in the ICU at the onset of infection. The most common comorbid conditions were immunocompromised hosts (37%) and cardiac disease (32%). 29% of patients were transplant recipients, and 28% had a CrCl < 50 ml/min. In most patients (71%), C/T was given as directed therapy (i.e., once culture results were available). C/T was given prior to culture results (i.e., as empiric therapy) in 17 (29%) patients, of which 77% had clinical success. C/T dose was 1.5 g in 49%. Only 2 of 10 patients with a respiratory source received the currently licensed 3 g dose. Overall, clinical success was observed in 36 (61%) patients. 30-day mortality was 12%. Readmissions occurred in 5%, of which 2 were infection related.

Conclusion. The role of newer non-carbapenem antibiotics in the treatment of severe ESBL infections is currently undefined. In a multinational patient database, C/T was found to be effective in severe infections caused by ESBL-producing Enterobacterales. Prospective studies are needed to further define the role of C/T in the setting of frequent drug-resistant Gram-negative pathogens.

Disclosures. Laura A. Puzniak, PhD, Merck (Employee) Matteo Bassetti, MD, Shionogi Inc. (Advisor or Review Panel member) Pamela Moise, PharmD, Merck & Co., Inc. (Employee, Shareholder) David Paterson, Accelerate (Speaker's Bureau) BioMerieux (Speaker's Bureau)BioMerieux (Advisor or Review Panel member)Entasis (Advisor or Review Panel member)Merck (Advisor or Review Panel member)Merck (Grant/Research Support)Merck (Speaker's Bureau)Pfizer (Speaker's Bureau)Shionogi & Co., Ltd. (Grant/Research Support) VenatoRx (Advisor or Review Panel member)

1613. Global 2018 Surveillance of Eravacycline Against Gram-negative Pathogens, Including Multi-drug Resistant Isolates

Virgil Lijfrock, PharMD¹; Steven Morgan, PharMD¹; Sara Hwang, PharMD¹; Ekaterina Efimova, PharMD¹; Kenneth Lawrence, PharmD¹; Stephen Hawser, PhD²; Ian Morrissey, PhD²; ¹Tetraphase Pharmaceuticals, Miami Shores, Florida; ²IHMA, Monthey, Valais, Switzerland

Session: P-71. Treatment of Antimicrobial Resistant Infections

Background. Eravacycline (ERV) is a fully-synthetic, fluorocycline antibacterial approved by the FDA and EMA for treatment of complicated intra-abdominal infections (cIAI) in patients ≥18 years of age. The purpose of this study was to describe the in vitro activity of ERV against Gram-negative pathogens, including multi-drug resistant (MDR) isolates, collected in 2018.

Methods. Isolates were collected during 2018 from various body sites. Minimum inhibitory concentrations (MICs) were determined by CLSI broth microdilution. Antibiotic susceptibility was determined using the most updated CLSI breakpoints, except for ERV and tigecycline (TGC) where FDA breakpoints established in 2018 and 2005 respectively, were used. MDR was defined as resistance to ≥3 antibiotics from aztreonam, a carbapenem (meropenem or ertapenem [ETP]), cefepime/cefotaxime/ ceftazidime/ceftriaxone (any one), gentamicin, levofloxacin, piperacillin-tazobactam TZP, tetracycline or TGC.

Results. Summary MIC data for ERV and select comparators are shown in the Table. ERV MIC_{90} for all-Enterobacteriaceae was 0.5 $\mu g/ml$ and for MDR-Enterobacteriaceae was 1µg/ml. The susceptibilities for all-Enterobacteriaceae were 93%, 95%, 93% and 82% for ERV, TGC, ETP and TZP, respectively. ERV further demonstrated higher rates of susceptibility than ETP and TZP against MDR-Enterobateriaceae, 81% vs 71% vs 38%. ERV MIC_{50/90} for carbapenem-resistant *Acinetobacter baumannii* (CRAB) were 4-fold lower than TGC.

Organisms (N)	ERV MIC _{50/90}	TGC MIC _{50/90}	ETP MIC _{50/90}	TZP MIC _{50/90}	
Enterobacteriaceae (3395)	0.25/0.5	0.5/2	0.015/0.5	2/128	
C. freundii (463)	0.25/0.5	0.5/2	0.015/0.5	4/128	
E. cloacae (509)	0.25/1	0.5/2	0.06/1	4/128	
E. coli (515)	0.12/0.25	0.25/1	0.015/0.06	2/32	
K. oxytoca (508)	0.25/0.25	0.25/2	0.015/0.03	2/>128	
K. pneumoniae (535)	0.25/1	0.5/2	0.015/0.5	4/>128	
MDR-Enterobacteriaceae (669)	0.25/1	0.5/2	0.25/8	64/>128	
CRAB (496)	0.5/1	2/4	NT	>128/>128	
Inits in µg/mL; MIC5090 - minimum inhibitory concentration required to inhibit growth of 50/90% of					

isolates; NT - not tested

Conclusion. ERV in vitro activity was demonstrated and comparable susceptibility rates were observed for clinically important Gram-negative pathogens, including resistant isolates. Overall, ERV MIC₉₀ values were 2- to 8- fold lower than TGC. this study further highlights the in vitro activity of ERV against Gram-negative pathogens identified in patients with cIAI.

Disclosures. Virgil Lijfrock, PharMD, Tetraphase (Employee) Steven Morgan, PharMD, Tetraphase Pharmaceuticals (Employee) Sara Hwang, PharMD, Tetraphase Pharmaceuticals (Employee) Ekaterina Efimova, PharMD, Tetraphase Pharmaceuticals (Employee) Kenneth Lawrence, PharmD, Tetraphase Pharmaceuticals (Employee) Stephen Hawser, PhD, Tetraphase Pharmaceuticals (Scientific Research Study Investigator) Ian Morrissey, PhD, Tetraphase Pharmaceuticals (Scientific Research Study Investigator)

1614. Gwt1 Inhibitor, APX2104, Protects Against Invasive Aspergillosis in Neutropenic Mouse Model

Shareef Shaheen, n/a¹; John Allen, IV, n/a¹; D. Chris Cole, n/a¹; Yohannes Asfaw, D.V.M²; Praveen Juvvadi, PhD¹; E. Keats Shwab, PhD¹; Mili Kapoor, PhD³; Karen Shaw, PhD3; William Steinbach, MD2; Duke University Medical Center, Durham, North Carolina ²Duke University, Durham, North Carolina ³Amplyx Pharmaceuticals, San Diego, California

h= 25; 25 patients received daptomycin in the other freque without a beta-lactam that has previously been cited in the literature as demonstrating in-vitro activity against VRE when combined with daptomycin