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Abstract
Power laws describe brain functions at many levels (from biophysics to psychophysics). It is

therefore possible that they are generated by similar underlying mechanisms. Previously, the

response properties of a collision-sensitive neuron were reproduced by a model which used a

power law for scaling its inhibitory input. A common characteristic of such neurons is that they

integrate information across a large part of the visual field. Here we present a biophysically

plausible model of collision-sensitive neurons with η-like response properties, in which we

assume that each information channel is noisy and has a response threshold. Then, an

approximative power law is obtained as a result of pooling these channels. We show that with

this mechanism one can successfully predict many response characteristics of the Lobula
Giant Movement Detector Neuron (LGMD). Moreover, the results depend critically on noise

in the inhibitory pathway, but they are fairly robust against noise in the excitatory pathway.

Author Summary

Many different animals (from insects to primates) try to escape from collision threats,
because it is very possible that the approaching object is a predator. The corresponding
neurons in the various nervous systems must therefore detect such threats and signal
when it is time to escape. Surprisingly, the neurons of different animals which selectively
respond to approaching objects have very similar properties. It is therefore worthwhile to
understand their underlying computational principles. A common characteristic of such
neurons is that they receive (or integrate) information from the whole visual field. The
integration process is carried out by the dendritic tree of the neuron. Here we present a
computational model in which we assume that each of the input signals is contaminated
by noise, as well as having a response threshold (which has to be crossed in order to evoke
a response). Then, dendritic integration approximates a mathematical function (a power
law) which is essential in our model for explaining the response characteristics of colli-
sion-sensitive neurons. Thus, noise is used in a constructive way for computing collision-
sensitive responses. Power laws are furthermore found in many different contexts, and
may consequently hint at the presence of noise and thresholds.
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Introduction
Noise is usually unwanted in signals, because it may introduce errors in transmitted messages.
Yet, in the nervous system, noise is ubiquitous and ineluctable. In the visual system, for
instance, photons arrive at the retina according to a Poisson process [1], giving rise to photon
noise. The retinal photoreceptors absorb the photons by converting their energy into into a
chemical signal. The chemical signal is then amplified and transduced into an electrical signal.
The latter process introduces transduction noise [2]. Each subsequent stage of (visual) infor-
mation processing adds further cellular, electrical, or synaptic noise [3, 4]. Nevertheless, the
reliability at which organisms perform at the behavioural level evidences that the nervous sys-
tem is designed in a way to handle noise well [5] while reducing power demand [6].

While commonly noise is just a nuisance, it can be used to solve computational problems.
For example, a suitable amount of noise can help to push otherwise undetectable signals across
the response threshold of a neuron (stochastic resonance [7]). In a similar way can noise
smooth the threshold behaviour of a neuron. Assuming a constant noise level, an initially sub-
threshold signal will elicit responses with an increasing probability if the signal amplitude
approaches the firing threshold of the neuron [8, 9]. Threshold smoothing seems to be the cru-
cial mechanism for transforming contrast-invariant, orientation-tuned input to cortical simple
cells into contrast-invariant spike tuning. If spike traces are averaged across trials, then the
threshold-linear relation will be effectively smoothed [10], approximating a power law around
the threshold value [11, 12], and a linear relationship far from threshold. Threshold smoothing
has thus been studied in the context of trial-averaging and in the average response of a neuro-
nal population [8]. Here we propose that threshold smoothing may also occur at the single
neuron level, for example when noisy and thresholded (pre-synaptic) inputs are integrated by
the dendritic tree of a neuron. In this way, the synaptic input will be re-scaled according to an
approximate power law, and we will use this property in a computational model that is aimed
at explaining many characteristics of the Lobula Giant Movement Detector (LGMD) neuron of
the locust.

The LGMD is a well-studied visual neuron that responds best to objects which approach
one of the locust’s compound eyes on a direct collision course [13–15]. During an approach
with constant speed, the response curve of the LGMD gradually increases to a maximum, and
ceases abruptly afterwards [16, 17]. The response maximum (at time tmax) is usually reached
before the projected time of collision (“ttc” or tc). Yet it may also occur at or even after tc, espe-
cially if the approaching object is very fast or very small [18, 19]. The activity peak can further-
more be related to the timing of the locust’s escape jump [20].

The prevailing model for describing LGMD responses is the so-called Eta-function (“η”)
([16]; but see [21]). For simplicity, assume that a circular object (with diameter 2l) approaches
the locust eye with a constant velocity v. Then, η is defined by multiplying two time-dependent
functions. The first one, exp(−αΘ), depends on the angular size Θ(t) that the object projects on
the eye at time t, and acts inhibitory (α is a positive constant). The second function provides

excitatory input to the LGMD, and is denoted by dY=dt ¼ _Y. It represents the angular velocity
or rate of expansion, respectively. So, taken together,

Zð t þ d|ffl{zffl}
�T¼TðtÞ

Þ ¼ _YðTÞ � exp½�aYðTÞ� ð1Þ

where δ accounts for the neuronal delay between stimulation of the eye and the response of the
LGMD. (If not otherwise indicated, δ = 0 is assumed for all subsequent simulations). The η-
function makes two important predictions, which are experimentally supported (ref. [17],
Methods Section): (i) The time Trel = trel−δ between the peak at Tmax = tmax + δ and collision
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(at tc) depends linearly on the halfsize-to-velocity ratio l/v. Because a maximum at Tmax implies
_Z ¼ 0 we have

tc � Tmax|fflfflfflfflffl{zfflfflfflfflffl}
Trel

¼ l
v
a ð2Þ

where the slope α> 0 and the intercept δ� 0 could be experimentally determined (typical val-
ues: α = 4.7, δ = −27ms [17]). (ii) For δ = 0 the maximum of η would coincide with angular size
Θ(tmax) = 2arctan(1/α). The maximum LGMD activity in vivo, however, occurs at Θ(Tmax),
that is δmilliseconds after the stimulus has reached Θ(tmax).

How is η computed at the biophysical level? One hypothesis holds that the LGMD uses a
logarithmic transformation (i.e. logη) in its dendritic tree [22], followed by exponentiation (i.e.
exp[logη]) by means of active membrane conductances in its axon [23]. Accordingly, direct

multiplication is bypassed by subtracting the logarithmically encoded signals log _Y � aY.
Experimental results suggest nevertheless that decoding (of the logarithmically encoded mem-
brane potential) is “approximated” by a third-order power law [22–24], rather than being an
exact exponentiation. Below we see that a power law alone does not suffice, as η would predict
that the LGMD’s response curves to approaching objects would be significantly distorted.

But then, which biophysical principles underlie the computations carried out by the
LGMD? A possible answer comes in the guise of a simple model (“noisy ψ” or “n- ψ”) that is
based on an equation which describes the membrane potential of the LGMD neuron. Like η, n-

ψ also receives Θ(t) and _YðtÞ as input signals. The main difference, however, lies in their
respectively proposed biophysical mechanisms: Whereas η relies on logarithmic encoding and
decoding for implementing multiplication, n- ψ relies on the presence of noisy inhibitory chan-
nels with threshold mechanisms, and the nonlinear properties of the membrane potential
equation Eq (9). In this way, n- ψ emphasizes the importance of signal integration (e.g., across
the LGMD’s dendritic tree) in order to account for many reported experimental observations

Methods and Models

Angular Variables
For simplicity, we assume that a circular object with diameter 2l approaches an observer with a
constant velocity v. If the object starts its approach at a distance x0 then the time to collision
(ttc) is at tc = x0/v (here we do not distinguish between time to contact and time to collision). At
the time t< tc, the object spans an angular size Θ(t) on the retina of the observer,

YðtÞ ¼ 2 arctan
l

xðtÞ ð3Þ

where x(t) = x0−vt. The angular velocity or rate of expansion is defined as the first temporal
derivative,

_YðtÞ ¼ 2lv
x2ðtÞ þ l2

ð4Þ

Maximum of the η-function

The time Tmax = tmax + δ of the maximum of the η-function Z � _Y � expð�aYÞ is obtained
through _Z ¼ ðdZ=dTÞ � ðdTðtÞ=dtÞ ¼ ðdZ=dTÞ ¼ 0. This is equivalent to €Y ¼ a _Y2 and yields
Eq (2). Thus, the relative time of the maximum Trel � tc−Tmax depends linearly on the halfsize-
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to-velocity ratio l/v with slope α and intercept δ. Together with Eq (3), Eq (2) also implies that
the response maximum always occurs at a fixed angular size,

Ymax � YðTmaxÞ ¼ 2 arctan
l

vðtc � TmaxÞ
¼ 2 arctan

1

a
ð5Þ

which only depends on α, but not on time.

Simulation details
The Matlab environment was used for all simulations. The default parameters of the n- ψ-
model were as follows: β = 1, Vinh = −0.005, Vrest = 10−5, Vexc = 1, γ = 500, σ = 0.25, Δ0 = 0.9, z0
= z1 = 0.95, N = 500 (nearly identical n- ψ-predictions are obtained already for N≳ 10). If dif-
ferent values from the latter were used, they would be indicated with each figure. Since Vinh �
Vrest, inhibitory input acted by increasing the effective leakage conductance β (silent or shunt-
ing inhibition). In other words, inhibitory input will not show unless excitatory input is present
at the same time. The seed of the random number generator was chosen identical for each sim-
ulation run. This means that the same sequence of random numbers was generated. Eq (10)
was integrated with the 4th-order Runge-Kutta (“RK”) method using the step size 500μs. The
stimulation time scale was set to Δtstim = 1ms. Or, expressed differently, angular size Θ Eq (3)

and angular velocity _Y Eq (4) were discretized with Δtstim (cf. Eqs (11) and (12). As a conse-
quence, the membrane potential V(t) is far from its steady state V1 Eq (10) at each time t. For
this reason, and in order to maintain the consistency with its predecessor model (= ψ, see ref.
[19]), nrelax = 250 relaxation time steps were intercalated at each t. A relaxation time step is just
an RK step with frozen values of gexc and ginh. V(t) can be driven in this way closer to its equilib-
rium solution. The influence of nrelax on the predictions of n- ψ is broken down in Section C in
S1 Text.

The default parameters for the object approach were diameter 2l = 0.12m, approach velocity
v = 6m/s, initial distance x0 = 0.3m, continuous stimulation (versus discrete stimulation, see

[19]). Notice that Θ and _Y were not computed from video sequences, but directly from Eqs (3)
and (4), respectively.

Results

Can a power law undo logarithmic encoding?

Logarithmic encoding of Eq (1) means log _Y � aY [16, 23]. By doing so, the LGMD could
basically multiply: log(x � y) = log(x) + log(y). The result of multiplication is obtained by apply-
ing exp(�). Accordingly, the LGMD’s membrane potential should be exponentially scaled, but
figure 4d in reference [23] rather suggests a power law. At least mathematically it is clear that
(logη)p is a rather poor approximation of exp(logη). But how would the predictions from η
look like when this approximation was used in the context of approaching objects? In order to
answer that, we “undo” logarithmic encoding with a power law of order p (let gp(t)=predicted
LGMD response):

gpðtÞ ¼ ½ log _YðtÞ � aYðtÞ�p ð6Þ

The extremum of this function is either a maximum (for power law exponents p = 1, 3, 5, . . .)
or a minimum (p = 2, 4, 6, . . .) at _g p ¼ 0, that is

p½ log _Y � aY�p�1
€Y
_Y
� a _Y

 !
¼ 0 ð7Þ
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Because of the factor ð €Y= _Y � a _YÞ the extrema of gp will still occur at the same time points as
those of the η-function, which is good news. The bad news, however, is that the extrema will be
maxima only for odd values of p, where gp(t)� 0 for all t. Thus, if we wanted g1, 3, 5, . . . to be
positive, we would need to add an offset o to Eq (6) (say a such that gp(t) + o� 0). For even val-
ues of p, gp has minima with gp(t)� 0 for all t. In the latter case, an operation such as o − gp(t)
(with o�maxτ[gp(τ)], τ� tc) would be needed to transform the minima into maxima.

If the exponent p is fixed, then the biophysical implementation of o + g1, 3, 5, . . . and o − g2, 4,
6, . . ., respectively, should be feasible. Nevertheless, a general drawback of “undoing” the loga-
rithmic transformation with a power law would be that the maximum of the LGMDmembrane
potential is strongly flattened: The bigger p is, the more (Fig 1a). As a consequence, the reliabil-
ity of detecting the time of peak firing drops already for small noise amplitudes (Fig 2b). The
different phases of escape jumps seem to occur around the peak firing rate of the DCMD [25],
although this does not automatically imply that the peak time is explicitly decoded by the
motor system of the locust. Experimentally measured timings of DCMD peak firing have stan-
dard deviations of� 50ms [20]. The comparatively high variability of the response maximum
as predicted by g3(t) (Fig 2b) stands in contrast to these observations, since standard deviations
are higher than 100ms even for small noise levels. It seems therefore that the sole power law of
Eq (6) cannot reproduce LGMD firing patterns. Is it possible to regain the undistorted,
“LGMD-like” response curves from gp(t)? Reference [17] holds a general mathematical solution
in order to map the η-function to the firing rate of the LGMD. The mapping function is a (here
simplified) sigmoid S(x) = [1+exp( − ax)]−1. The value of a determines whether the activation
from zero to one proceeds in a more linear way (a	 1) or according to step-function (a
 1).
With gp = (logη)p Eq (6) one obtains

SðgpÞ ¼
Zað log ZÞp�1

1þ Zað log ZÞp�1
ð8Þ

Fig 1. Logarithmic encoding of η(t). (a)The logarithmically encoded η-function log _Y � aY is “approximately exponentiated” by a power law with exponent
p according to gp(t) = [logη(t)]p Eq (6). The corresponding curves of gp (with p = 1,2,3,4,5 for l/v = 30ms) are denoted in the legend. For control, the sumP35

p¼1 gp=n! (exponential series: dash-dotted curve), and the η-function without log-encoding (gray curve) are also shown. Note that the curves become flatter
with increasing p (and also with increasing l/v—not shown), what could make the detection of the maxima more uncertain in the presence of noise (cf. Fig 2b).
(b)Applying a sigmoidal function S(x) = [1 + exp( − ax)]−1 (with a = 1) to the properly normalized curves gp(t) (with p = 3) produces curves which resemble true
LGMD responses Eq (8). The curves shown here correspond to different halfsize-to-velocity ratios l/v = 10,20,40,40,50ms (see legend). The peak amplitude
of the curves decreases with increasing halfsize-to-velocity ratio, but also with increasing a and p, respectively (not shown). (c) Identical with figure panel b,
but here all curves S(g3) were re-scaled to the range from 0 to 1. For comparison, the corresponding η-functions are drawn alongside with dashed lines (α =
4.7, δ = 0, and tc = 0.5s in all figure panels).

doi:10.1371/journal.pcbi.1004479.g001

Dendritic Pooling Explains Properties of a Collision-Sensitive Neuron

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004479 October 29, 2015 5 / 17



and specifically S(g1) = ηa/(1+ηa). With an appropriate choice of the parameters a and p,
respectively, the function S(gp) reduces the initial activity compared to the ordinary η-function.
In this way the peak is more pronounced (see Fig 1c). However, with increasing p and a,
respectively, the peak amplitudes of curves with higher l/v decrease relative to low halfsize-to-
velocity ratios (see Fig 1b). The peak values for a set of l/v values could quickly span several
orders of magnitude for already “moderate values” a> 1 (e.g. a = 5) and p> = 1.

What are the possible implications for biology of the mathematical exercise presented in
this section? First, a direct biophysical implementation of η (with logarithmic decoding based
on a power law) seems to be insufficient. At least mathematically, an additional (probably non-
linear) function is required (e.g. based on Eq (8)). In reference [17], it has been demonstrated
that the linearity constraint Eq (2) implies a partial differential equation of the structure x(@f/
@x) = −(@f/@y) with a general solution f = h(x exp( − y)). This means that η is defined up to a
(monotonically increasing) function h that “characterizes the transformation between η and
the firing rate of the LGMD” [17]. In [17] the response curves of the LGMD were fitted with a
sigmoidal function whose parameters depended on the halfsize-to-velocity ratio and also on
the rising phase (i.e. a sigmoid fitted to the curve until the response peak at tmax) and falling
phase (a second sigmoid fitted to the curve after tmax). Nevertheless, to the best of my knowl-
edge, this nonlinearity has not been identified biophysically so far. This prompted me to for-
mulate an alternative model, which is presented below.

“n-ψ”—a model of the LGMD neuron
In this section, we introduce a new model (“n-ψ”) for the LGMD and other collision-sensitive
neurons with η-like response. While n-ψ is biophysically more plausible than η, it is not a bio-
physically detailedmodel (compared with, e.g. [22]). The n-ψ-model is based on its predecessor

Fig 2. How noise interacts with maximum detection. This figure shows how the numerical detection of the global maximum t̂max is affected by adding
noise to the η-function, g3(t), and S(g3). To this end, the root mean square error (RMSE) between t̂max and the theoretical (i.e. noise-free) tmax is determined
across 999 trials. The RMSE is computed as a function of noise amplitude σ (abscissae) and the halfsize-to-velocity ratio l/v (ordinates). Brighter (“hotter”)
colors denote bigger RMSE values (see colorbar; units in milliseconds). Noise is added as follows. Let ξ be a normal-distributed random variable with mean
zero and standard deviation one. Then, (a)η(t) + σξ is the “noisified” η-function (with δ = 0 and α = 4.7), (b)shows the RMSE for g3(t) + σξ, and (c) S(g3) + σξ
(with a = 1 in Eq (8)). The curves of η(t), gp(t) and S(gp) become flatter for higher halfsize-to-velocity ratios (cf. Fig 1). In addition, the curves of gp(t) become
flatter for increasing p, and the curves of S(gp) get flatter for decreasing values of a and p, respectively. Flatter curves are associated with an increased
RMSE. Although g3(t) + σξ is associated with higher RMSE values than η(t) + σξ, the completely “decoded” function S(g3) has a better overall robustness
against additive Gaussian noise than η(t). For each value of l/v, g3(t) and S(g3) were re-scaled before noise was added, in order to match the range of η(t),
and thus normalize the RMSE. For all figure panels, tc = 0.5s and l = 0.06m.

doi:10.1371/journal.pcbi.1004479.g002
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modelC, which used an exact power law for re-scaling the inhibitory input [19]. An important
component of n-ψ is noise: n-ψ generates an approximative power law by pooling of noisy and
thresholded inhibitory inputs. The power law is only approximative because it turns to a linear
relationship sufficiently far from threshold. The pooling process may be implemented in vivo
by integrating synaptic inputs across the dendritic tree. n-ψ is based on a standard RC-circuit
describing the membrane potential V of the LGMD neuron [26]

Cm

dV
dt

¼ b Vrest � Vð Þ þ gexc Vexc � Vð Þ þ ginh Vinh � Vð Þ : ð9Þ

As we do not use a spiking mechanism, we assume that [V]+ �max(V,0) (the half-wave-recti-
fied membrane potential) directly represents the LGMD’s mean firing rate. (For simplicity, we
will omit physical units in what follows). The membrane capacitance Cm is set to unity in all
simulations; β� 1/Rm is the leakage conductance across the cell membrane and Rm is the mem-
brane resistance; gexc � 0 and ginh � 0 are the excitatory and inhibitory synaptic inputs. The
corresponding reversal potentials Vexc and Vinh, respectively, represent upper (Vexc > Vrest) or
lower (Vinh< Vrest) limits to V if the neuron is driven by the associated input gexc or ginh. The
reversal potentials are asymptotically approached for sufficiently high excitatory or inhibitory
drive. Typically one sets Vinh� Vrest � Vexc, what implies Vinh � V(t)� Vexc. Shunting inhibi-
tion is defined by setting a reversal potential equal to the resting potential Vrest. Shunting inhi-
bition essentially increases the leakage conductance, and thus becomes effective only when the
neuron is driven away from Vrest. The time scale of Eq (9) is determined by the membrane time
constant τm � Cm/β. If the synaptic inputs vary on a slower time scale than τm, then the neuron
will reach its equilibrium potential V1 at each instant t according to V(τ) = V1(1 − exp( − τ/
τm)), where V1 is defined as:

V1 � Vrestbþ Vexcgexc þ Vinhginh
bþ gexc þ ginh

: ð10Þ

Without synaptic input, V approaches Vrest with τm. Note that with Cm = 1, the time scale is set
directly by β, where the synaptic inputs are subjected to a higher degree of lowpass filtering for
lower values of β. Slowly varying inputs gexc, ginh > 0 modify the time scale approximately to
τm/(1+(gexc+ginh)/β). With highly dynamic inputs, τm also varies with time.

For the definition of synaptic input we first introduce the low-pass filtered angular size ϑ(t)

and angular velocity _WðtÞ, respectively (see section S8 in [21] for a brief introduction):

Wðt þ DtstimÞ ¼ z0WðtÞ þ ð1� z0ÞYðtÞ ð11Þ

_Wðt þ DtstimÞ ¼ z1 _WðtÞ þ ð1� z1Þ _YðtÞ : ð12Þ

Low-pass-filtering is supposed to model delays and filtering effects as they are introduced by
the pre-synaptic layers (lamina and medulla). The stimulation time scale is fixed by Δtstim, and
0� zi < 1 (i = 1,2) determines the degree of low-pass filtering (no filtering would take place for
zi = 0). The lowpass filtered signals lag behind the original signals (the bigger zi, the more).
This behavior is important to explain experimental observations, where the LGMD’s activity
continues to rise after ttc [14, 18, 19]. Lowpass filtering also reduces stimulus-dependent noise

in the optical variables (Θ and _Y, Eqs (3) and (4), repsectively), particularly when the angular
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size is small [21]. The n-ψ-model is defined by assigning the following synaptic inputs:

gexcðtÞ ¼ _WðtÞ ð13Þ

ginhðtÞ ¼
g
N

XN
i¼1

½WðtÞ þ s � xi � D0�þ : ð14Þ

Where [�]+ = max(�,0). Similar to η Eq (1), n-ψ uses lowpass-filtered angular size for excitation.
Unlike η, however, n-ψ does not use an exponential function but instead sums threshold pro-
cesses. The threshold is set by Δ0. The ξi are random numbers drawn from the standard normal
distribution (Fig 3b). Thus, σ�ξi adds Gaussian noise with standard deviation σ to ϑ. We fur-
thermore require that corr(ξi, ξj) = δij, where corr(�) denotes correlation, and δij is the Kro-
necker delta. The number of threshold processes that are pooled is N, and γ is a synaptic
weight.

Biophysical motivation for ginh
The LGMD’s dendritic tree has one excitatory field and two smaller inhibitory ones. It receives
about 15,000 retinotopically organized excitatory inputs from the medulla [22]. Each of the
inhibitory fields is contacted by some 500 axons originating in the second optic chiasm [27].
Response dynamic and response characteristics are similar in both inhibitory pathways. They
can be distinguished, however, by contrast polarity. The ON-pathway responds to increments
in luminance, and the OFF-pathway responds to luminance decrements. Along the excitatory
visual pathway (ommatidia, lamina, medulla and lobula), the signal-to-noise ratio decreases,
being lowest in the LGMD [4]. In Eq (14), we assume that noise is present in the inhibitory
pathway as well, and that it is uncorrelated for each of the N = 500 inhibitory inputs (“pro-
cesses”) that are pooled by the LGMD. For the sake of clarity we did not incorporate noise in
gexc Eq (13), because the predictions made by n-ψ would not change much if we did so (Section

Fig 3. Threshold smoothing and power law (illustration of Eq (14)). (a)The dependence of ginh on 13 values of W is shown at two different noise levels (σ
= 1 and σ = 3, see legend) along with respective fit of a power law (exponents e = 2.69 and e = 1.73, see legend). For σ = 3, the theoretical prediction is shown
as well (circles; cf. Equation A7 in S1 Text) (b)For W11 = 5 (eleventh data point), the distribution of W11 + σ � ξi − Δ0 is shown from i = 1 to i = N. In order to
compute ginh, these values are first half-wave rectified (what zeros the values which correspond to the white bars in the histogram), and subsequently
averaged (non-zero contribution from values represented by the colored bars). This eventually yields ginh = 2.46 for W11. Thus, non-zero ginh-responses for
some W < Δ0 result from fluctuations with ξi > 0 such that W + ξi > Δ0. If W is decreased, then whole distribution will shift to the left. (c) Power laws were fitted to
the ginh versus W curves and exponents e (circles) along with R2 (triangles) are plotted. These curves are well described by a power law only at intermediate
noise levels, here 1.75� σ� 5.25.

doi:10.1371/journal.pcbi.1004479.g003
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B in S1 Text). Conversely, n-ψ would fail to predict the LGMD’s response characteristics with
noise in the excitatory pathway but without noise in ginh. Since the pooling of noisy threshold
processes approximates a power law, this behaviour of n-ψ is consistent with the schematic
proposed in [22], where both the excitatory and the inhibitory input are scaled according to a
power law (with exponents 2–3 and 2, respectively).

The integrated (or pooled) inhibitory input to the LGMD is supposed to encode angular size
[27, 28]. But Eq (14) rather suggests that ϑ is identical for each inhibitory process, and that only
the noise varies from one input to the next. To see that this is nevertheless a reasonable simpli-
fication, assume that the (noise-free) ϑ(t) at each instant t is just the sum of many individual
ϑi(t), that is ϑ(t) = ∑i ϑi(t), with 1� i� N. The index i could be retinotopically arranged, but
this is not relevant. Then, Eq (14) would read [ϑi(t) + σ � ξi − Δ0]

+, what looks more decent. The
problem is that we do not know the exact distribution of the ϑi(t). Therefore we suppose that it
is uniform, meaning that all ϑi(t) contribute equally. But then, ϑ(t)� Nϑi(t) if ϑi(t) = ϑj(t) for all
i, j. Thus, with uniformly distributed ϑi(t), we can draw 1/N outside the rectification, rescale the
noise level σ and the threshold Δ0 by N, and readily arrive at Eq (14).

Threshold smoothing
The threshold operation [x]+ = max(x,0) is zero for x� 0 and x otherwise. Around x = 0, we
have a discontinuity. If x is set to a suitable negative number, then by adding noise σ � ξ to x we
may obtain non-zero responses. The probability of noise-elicited threshold crossing will
increase as x approaches zero. By computing a mean value/ ∑i[x + σ � ξi]+ across many chan-
nels at some instant in time, one may effectively smooth out the discontinuity at the threshold
and create continuous responses (“threshold smoothing”: In ref. [10] averaging was carried out
across successive trials). Fig 3a shows two representative curves ginh vs. ϑ for the noise levels σ =
1 and σ = 3. The threshold is fixed at Δ0 = 3. Bigger σmean more noise, what in turn causes a
higher degree of threshold smoothing, since non-zero ginh-responses will be obtained already
for ϑ< Δ0. For ϑ> Δ0, ginh gradually approaches a linear response. Around Δ0, a power law
provides a good description of ginh [11, 12]. The two curves in Fig 3a were fit by power laws
with exponents e = 2.7 and e = 1.7, respectively. Fig 3c (circles) illustrates that higher noise lev-
els result in smaller exponents. Nevertheless, a power law is only adequate within a certain
range of σ: the red curve in Fig 3c (triangles) representatively shows the R2 as a goodness of fit
measure. The highest R2 values are obtained around 1.75� σ� 5.25. For smaller σ, the
response curves show less smoothness, while for bigger σ, ginh depends “more linearly” on ϑ.
Mathematically, it can be shown that ginh is composed of three additive terms (Equation A7 in
S1 Text): A linear term plus an error function plus a Gaussian [11, 12]. As a function of ϑ, the
error function and the Gaussian will only vary within a certain interval around Δ0. Outside this
interval, the Gaussian approaches zero and the error function approaches a constant value.

Predicting the response characteristics of the LGMD neuron
LGMD responses have two important properties: A response maximum before collision on the
one hand [16], and linearity on the other [17]. The η-function and n-ψ’s predecessor modelC
successfully predicts these properties (Methods Section). Below we study the corresponding
predictions of n-ψ.

Fig 4a shows that n-ψ has an activity maximum. When the noise level σ is increased (while
keeping the threshold Δ0 constant), then the maximum shifts towards tc, and the amplitude
decreases. Fig 4b confirms the linear dependence of trel on l/v for the n-ψ-model Eq (2). The
noise level σ is decisive for the slope α of the corresponding line fits. Interestingly, α adopts a
maximum value at some noise level. Fig 5 shows the dependence of α on σ and Δ0: The location
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of the maximum α as a function of σ depends also on Δ0. Bigger Δ0 mean that the maximum α
is obtained at smaller σ. Furthermore, the maximum value of α will be higher if Δ0 is bigger.

One can ask how the predictions of n-ψ are influenced by excitatory noise. As it turns out,
excitatory noise distorts the response curves of n-ψ somewhat, and shifts the response maxima
slightly towards tc (Fig. A1 in S1 Text). Nevertheless, excitatory noise has only a negligible
effect on α, and thus does not alter the linear relationship between trel and l/v. (More details are
provided in Section B in S1 Text).

How does n-ψ compare to the η-function when it comes to fitting response curves of the
LGMD?We resampled 36 corresponding curves from the figures of several publications to this
end [21], and fitted the two functions to them. Fig 6a illustrates that η and n-ψ describe the
LGMD responses very well (all fits are shown in Section D.5 in S1 Text). Excellent predictions
are also obtained for non-trial-averaged recording traces (Fig 6b; more examples are shown in
Section D.6 in S1 Text). The 36 response curves were fit, on the average, with a median noise
level σ = 0.4 ± 0.1 (Fig. D3a in S1 Text), and a median threshold Δ0 = 0.9 ± 0.1 (Fig. D3b in S1
Text). These values should be compared with the median α = 3.1 ± 0.7 (D2a in S1 Text) of the
η-function, and the exponent e = 2.7 ± 0.5 of the ψ-model (Fig. D2b in S1 Text).

A “recession” is a stimulation protocol where the object moves away from the eye—just the
opposite to an object approach. DCMD responses to receding objects are significantly smaller
than those to approaching objects [14]. Once an object starts to recede, the DCMD response
reaches an activity maximum, which is smaller than that of a corresponding approach. Subse-
quently, the activity decreases quickly. Thus, the directional sensitivity in DCMD responses is
reflected in overall activity, but also in terms of curve shape. The η-function predicts symmetric
responses (approach vs. recession) [16]. The n-ψ-model, on the other hand, predicts an asym-
metry of 40ms in the timing of the response peaks for the configuration of Fig 4a, because of

Fig 4. Influence of the inhibitory noise level σ. (a)The figure illustrates how an increase of the inhibitory noise level from σ = 0.25 to σ = 0.50 moves the
maximum of n-ψ towards tc = 500ms, thus trel (= the remaining time to collision after the peak) decreases from 133ms to 80ms. Furthermore, the amplitude of
the n-ψ-response decreases. (b)The line fits represent the linear dependence of trel from l/v, where different symbols and line colors, respectively,
correspond to different values of σ. The smallest line fit slopes α see Eq (2) were obtained for σ = 0 and σ = 0.75, that is in the absence of inhibitory noise (α =
1.92) and for the highest tested noise level (α = 1.13). For the intermediate noise levels σ = 0.25 and σ = 0.50, respectively, the biggest slopes were
measured (cf. figure legend; “normal”means that the residuals were normal distributed according to a one sample Kolmogorov-Smirnov test).

doi:10.1371/journal.pcbi.1004479.g004
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lowpass filtering. A perhaps more interesting kind of stimulation is shown in Fig 7, where
_Y ¼ const. A constant angular velocity implies that angular size is linearly increasing with
time. The experimentally obtained response curves of the LGMD to this “linear approach” are
nevertheless decreasing [16]. In that case, n-ψ provides a much better description of the LGMD
data than the η-function, both in terms of goodness-of-fit measures and subjective judgement
(“Chi-by-eye”).

Experimental evidence [23] and modelling [22] suggest a logarithmic scaling of angular

velocity _Y, which provides the excitatory input to the LGMD. The n-ψ-model also predicts

such logarithmic encoding of _Y mainly as a consequence of the reversal potential Vexc > Vrest

in Eq (9). When the excitatory input gexc increases, then the driving potential Vexc−V(t)
decreases. Thus, Vexc represents an upper limit to V(t), which is approached asymptotically.

Fig 5. Line fit slopes. This figure shows how the line fit slopes α depend on σ and Δ0. The proceeding is similar to Fig 4b (where Δ0 was fixed): For each σ
and Δ0, trel was computed as a function of l/v. A line was then fit to these data (with a robust fit algorithm), and its slope α was recorded. If Δ0 is held constant
and we consider α as a function of σ only, then this function adopts a maximum slope. The maxima are situated along a crest, with the corresponding values
being indicated in the figure. Hotter colors indicate higher slopes.

doi:10.1371/journal.pcbi.1004479.g005
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Fig 6. Prediction of LGMD responses by n-ψ. (a)The figure shows the data from figure 3 of reference [17] (locust), where looming dark squares were used
for stimulation (tc = 0.5s: vertical red line). The η-function and n-ψ perfectly match these data. More examples are shown in Section D.5 in S1 Text. (b)DCMD
spike trace in response to an approaching black square (tc = 5s, l/jvj = 30ms, ref. [29]) directed to the eye center of a gregarious locust (final visual angle 50o).
Data show the first stimulation so habituation is minimal. The spike trace (sampled at 104Hz) was full wave rectified, lowpass filtered, and sub-sampled to
1ms resolution. Firing rate was estimated with Savitzky-Golay filtering (“sgolay”), and fit by the η-function and n-ψ, respectively. Both functions fit the firing
rate estimates very nicely. More details and further examples are provided in Section D.6 in S1 Text.

doi:10.1371/journal.pcbi.1004479.g006

Fig 7. LGMD stimulation with constant angular velocity. The original data (legend label “HaGaLa95”) were resampled from ref. [16] and show DCMD
responses to an object approach with _Y ¼ const, what is equivalent to thatΘ increases linearly with time. The η-function (FITTING FUNCTION: A�(t+δ)+o) and n-
ψ Eq (10) were fitted to these data (see Section D in S1 Text for specifics). (a)(Figure 3 Di in [16]) Good fits for n-ψ are obtained with σ = 0.2 and Δ0 = 0.7. n-ψ
follows a sigmoid-like curve that (subjectively) appears to fit the original data better than η. The fitting parameters for ηwere {A, α, δ, o} (“TR:41”), and {σ,Δ0}
for n-ψ(“TR:444”). (b)(Figure 3 Dii in [16]) The fit of n-ψ agrees excellently with the data for σ = 0.15 and Δ0 = 0.6. The fitting parameters for n-ψ were {β, σ,Δ0}
(“TR:44”). Figure D26 in S1 Text shows how the linear approach data could also be predicted by explicitly integrating n-ψ instead of fitting the equilibrium
solution.

doi:10.1371/journal.pcbi.1004479.g007
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The corresponding (saturating)“approach curve” V(gexc) is approximately logarithmically. This
mechanism is identical to the one proposed in [22].

Discussion
This paper introduces the n-ψ-model for a class of collision-sensitive neurons that have an
activity maximum before collision in response to object approaches with constant velocity.
Noise plays a key role for n-ψ, because it approximates a power law in the inhibitory pathway
by means of threshold smoothing Eq (14). Threshold smoothing is predicted as a consequence
of integrating many inhibitory inputs (“channels”). The integration process (or pooling) could
be carried out, for example, by the dendritic tree of the Lobula Giant Movement Detector neu-
ron (LGMD). The only preconditions which have to be met for each channel are the presence
of noise (uncorrelated across channels), and a response threshold. As a consequence, n-ψ
accounts successfully for many response properties of the LGMD, while at the same time it
offers a good balance between biophysical plausibility, computational complexity, and the
physical parameters of collision: n-ψ takes angular size and angular velocity as input (physics),
and connects them with each other by an equation for the LGMD’s membrane potential (bio-
physics, Eq (9)).

How do other models for the LGMD compare to n-ψ? The η-function requires multiplica-

tion and an exponential function, Z ¼ _Y � expð�aYÞ [16], and predicts many of the response
characteristics of the LGMD. For η, the only mechanism for explaining that the response peak
of the LGMD could occur after projected collision is the temporal delay δ in conjunction with
small halfsize-to-velocity ratios. The predecessor model of n-ψ predicts such situations as a
consequence of “extreme” stimulation conditions [19]. Compared to n-ψ, the η-function repre-
sents furthermore a poor fit to the linear approach data shown in Fig 7. Moreover, the formal
arguments that were exposed above suggest that the proposed biophysical implementation of η
(according to [23]) seems to be incomplete. Note that the n-ψ-model predicts the logarithmic
encoding of angular velocity as a by-product (Fig 8). In contrast to η, however, this does not
imply a direct (as opposed to an emergent) implementation of multiplication in the LGMD
[19].

The LGMD has also been modelled with neuronal networks, which consist typically of sev-
eral interacting presynaptic layers (e.g. [22, 30, 31]; real-world video sequences & robotics: e.g.
[32–35]). However, in such network models it is often not straightforward to identify excitatory
and inhibitory input to the (model) LGMD with the physical variables of the object approach
(i.e. angular size and rate of expansion).

Apart from the response peak, the LGMD has another characteristic feature: The time that
remains from the response peak until projected collision trel depends linearly from the object’s
halfsize-to-velocity ratio l/v Eq (2). This characteristic linear relationship is successfully repro-
duced by n-ψ (Fig 4). The slope of corresponding line fits reveals an “inverted-U” behaviour as
a function of the noise level σ: Maximum slopes are attained for intermediate values of σ (Fig
5). Excitatory noise, on the other hand, failed to exert a significant influence on n-ψ (Section B
in S1 Text).

From the linear relationship of Trel = trel−δ vs. l/v (with slope α and intercept δ), the η-func-
tion predicts that the activity maximum (of the LGMD) always occurs shortly after (delayed by
δ) the angular size has reached Θ(tmax) Eq (5). Because Θmax = Θ(tmax+δ) depends only on α,
and because the slope depends on σ in the n-ψ-model (Fig 5), it is possible that noise in the
inhibitory pathway is decisive for setting Θmax. Of course, the rest of the biophysical parame-
ters (like β, Δ0, and such) all have some influence [19]. If one wished to verify this hypothesis,
then it would be necessary to selectively increase or decrease the noise level in the inhibitory
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pathway, and measure α. Noise, however, needs to be injected at the proper site(s), which
would have to lie before thresholding and pooling, respectively, takes place.

Supporting Information
S1 Text.

1. Pooling of Noisy Threshold Units—Mathematical Considerations In this section, a closed
expression for Eq (14) is derived, which is used for fitting the n-ψ-model to neuronal record-
ings in Section D in S1 Text.

2. Noise in the Excitatory Pathway In this section the impact of excitatory noise on the pre-
dictions of n-ψ is studied, where the same threshold smoothing mechanism is used for the

Fig 8. The n-ψ-model is consistent with logarithmic compression. A logarithmic compression of rate of expansion has been shown in refs. [22, 23].
Although logarithmic compression is not explicitly “used” as a computational feature in n-ψ, it nevertheless appears as a “by-product”: The light-colored solid
curves show Eq (9) as a function of angular velocity _Y (= excitatory input) for three constant values of angular sizeΘ (= inhibitory input). Notice that because
of Vinh � Vrest in Eq (9), increasing inhibition alone would be without effect (see Methods Section). The membrane voltage V of n-ψ could be reasonably well
fit by the logarithmic function alog(bV)+c in the considered range of _Y (dashed lines). The values from _Y ¼ 0 to _Y ¼ 2 were excluded from fitting, due to initial
transients. For computing V, _Y was incremented linearly in steps of 0.1. Goodness-of-fit measures and fitting parameters are shown in the figure.

doi:10.1371/journal.pcbi.1004479.g008
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excitatory and the inhibitory synaptic input. This is to say that threshold smoothing is
applied simultaneously to the excitatory and inhibitory pathway. It turns out that the pre-
dictions of n-ψ are reasonably robust with this configuration.

3. Integration time constant dt and nrelax In this section, the influence of the number of
relaxation time steps nrelax and that of the integration time constant dt is studied. Specifi-
cally, corresponding values of nrelax and dt are determined such that n-ψ operates close to
the equilibrium solution Eq (10). The exact values are important as they were shown to
influence the location of the LGMD’s predicted response peak [19].

4. Fitting the n-ψ and the η-Function to Neuronal Recordings The n-ψ-model is fit to sev-
eral recording curves from different studies. The fits are juxtaposed with those of the η-func-
tion. Goodness of fit measures are provided as well, and some fitting results of the
predecessor modelC are also shown. This section presents the results of previously pub-
lished studies in the same fitting framework. A common fitting framework enables a mean-
ingful comparison of the respective predictions of the η-function and the n-ψ-model.

5. List of Symbols A list with mathematical symbols along with corresponding brief descrip-
tions are provided in this section.
(PDF)
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