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Abstract
Cost-effectiveness analysis has been advocated and is widely used to inform policy and decision makers in setting priorities 
for resource allocation. Since the costs and effects of health care interventions are uncertain, much research interest has 
focused on handling uncertainty in cost-effectiveness analysis. The most widely used method to summarize uncertainty in 
cost-effectiveness analysis is the cost-effectiveness acceptability curve, which estimates the probability that an intervention 
is cost effective for a wide range of threshold ratios. However, by estimating the uncertainty associated with incremental 
costs and effects, information about the uncertainty associated with the costs and effects of the individual programs is lost, 
which may be important to inform risk-averse decision makers. In the present paper, we suggest to penalize the expected 
net monetary benefit (NMB) of a program for its downside risk (i.e. bad risk), which preserves the uncertainty of the indi-
vidual programs and rank orders programs according to their risk-adjusted NMB. The cost-effectiveness risk-aversion curve 
(CERAC) is introduced, which estimates the net benefit-to-risk ratio for a wide range of threshold rations. The CERAC is 
a helpful additional tool to inform decision and policy makers who are risk averse, and can easily be constructed using the 
results of a cost-effectiveness analysis.
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Key Points for Decision Makers 

Uncertainty surrounding the costs and effects in cost-
effectiveness analysis is typically described using the 
cost-effectiveness acceptability curve (CEAC), which 
may not be appropriate to inform decision makers who 
are risk averse.

Decision makers who may need to meet budgetary con-
straints and health outcome targets may be naturally risk 
averse towards both costs and effects.

The present paper introduces the cost-effectiveness risk-
aversion curve that penalizes the expected net benefit of 
a program for its downside deviation for a wide range 
of threshold cost-effectiveness ratios, and may provide 
an alternative helpful tool to inform risk-averse decision 
makers.

1  Introduction

Cost-effectiveness analysis of health care interventions has 
been advocated and widely adopted as a tool to help pol-
icy and decision makers in setting priorities for resource 
allocation [1]. The analytical decision criterion in cost-
effectiveness analysis is the incremental cost-effective-
ness ratio (ICER), i.e. the difference in costs divided by 
the difference in effects between two or more mutually 
exclusive treatment strategies [2, 3]. This decision rule 
follows from a linear programming approach to solving a 
constrained optimization problem where aggregate health 
outcomes are maximized subject to a budget constraint [2, 
4–6]. Following this decision rule, programs are ranked 
according to their ICER and implemented in ascending 
order, until the budget is exhausted. The ICER of the last 
implemented program then represents the shadow price of 
the constrained budget.

This decision rule has been introduced under conditions 
of certainty, i.e. in the absence of uncertainty associated 
with costs and effects [2]. However, costs and effects are 
subject to stochastic variability and much research inter-
est has focused on how to deal with uncertainty in cost-
effectiveness analysis [7–12]. The two most widely used 
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methods are the cost-effectiveness acceptability curve 
(CEAC) and net monetary benefits (NMB) [6, 7]. While 
the CEAC summarizes the joint distribution of incre-
mental costs and effects on the cost-effectiveness plane 
(CEP), displaying the probability that the intervention 
is cost effective for a wide range of threshold cost-effec-
tiveness ratios (λ), the NMB approach linearly transforms 
the costs and effects of health interventions by multiply-
ing the effects of an intervention with the threshold cost-
effectiveness ratio (λ) and subtracting the costs thereof. 
This facilitates statistical analysis of the results of a cost-
effectiveness analysis, and the probability that a program 
has the highest expected NMB can be calculated.

However, both approaches do not incorporate the deci-
sion maker’s preferences over expected return and risk 
when choosing between treatment alternatives. O’Brien 
and Sculpher were the first to introduce the idea of con-
sidering an investment in a health care program as an 
investment in a risky asset, and suggested to elicit the 
decision-maker’s trade-off between expected return and 
risk for ranking health care programs in the presence of 
uncertainty [13]. If a decision maker was risk neutral, he 
would solely base his decision on the expected ICER or 
expected NMB, and the analysis of uncertainty would be 
irrelevant [14]. However, decision makers may be risk 
averse towards costs and effects [13, 15–18]. Since health 
is not a transferable good, decision makers may be risk 
averse towards health outcomes [18]. In addition, a sub-
societal decision maker, such as a third-party payer, may 
also be risk averse towards costs as budgetary constraints 
must be met [11, 19]. The risk of ending up with lower-
than-expected health outcomes or exceeding the expected 
budget may therefore be relevant for rational decision 
makers with risk aversion.

Methods developed in financial economics to handle dif-
ferent investment opportunities with uncertain outcomes 
may offer an armamentarium to deal with uncertainty in 
cost-effectiveness analysis. One possibility to facilitate com-
parison of health care programs with different risk-return 
characteristics, without requiring to explicitly derive a utility 
function over expected return and risk, is to construct a risk-
adjusted league table of expected returns using a modifica-
tion of the Sharpe ratio that describes the extra return we 
may achieve per unit of risk [20, 21]. This approach assumes 
that a risk-averse decision maker prefers higher expected 
returns per unit of risk, ceteris paribus. However, one limi-
tation of this method is that it does not distinguish between 
good and bad risks. While a program’s performance above 
expected returns may be desirable (good risk), risk aversion 
only applies to outcomes that fall below expected returns 
(bad risk). Furthermore, good risk is already accounted for 
in estimating expected returns, as programs with the same 
downside variation but different upside variations will also 

have different expected returns. In the present paper we 
therefore present a risk-adjusted approach to handle uncer-
tainty in cost-effectiveness analysis that explicitly incorpo-
rates bad risk in decision making.

2 � Uncertainty in Cost‑Effectiveness Analysis

Since incremental costs and effects may be subject to uncer-
tainty, the interpretation of confidence intervals for ICERs 
may be ambiguous. The ICER may include negative values 
that may stem from negative incremental costs, indicating 
cost savings (which is desirable), or from negative incremen-
tal effects, indicating a loss in health outcomes (which is not 
desirable) [8, 12, 22, 23]. Furthermore, a positive ICER may 
result from an intervention that frees resources but leads to 
lower health outcomes, or from an intervention that costs 
more and is more effective. This ambiguity has led to the 
development of the CEAC, which estimates the probability 
that the joint distribution of incremental costs and effects of 
an intervention falls below the threshold value λ, which is 
usually interpreted as the decision maker’s maximum will-
ingness to pay (WTP) per health outcome [22]. The joint 
distribution of incremental costs and effects is first plotted 
on the CEP, and the probability that the intervention is cost 
effective is then estimated as a function of λ, denoting a line 
through the origin of the CEP, which is rotated anticlockwise 
[7, 12].

However, the CEAC provides no information about the 
magnitude of ‘bad’ outcomes, i.e. all outcomes that exceed 
λ are treated as equally bad. To make our conceptual point, 
consider the two health care programs A and B (scenario 
1), as indicated in Table 1. Both programs have the same 
mean costs ($60,000) and effects (10 quality-adjusted life-
years [QALYs]), but program A exhibits higher variability 
in costs and effects than program B. The joint distribution 
of total costs and effects for each program are shown in 
Fig. 1. A risk-neutral decision maker would be indifferent 
between the two programs; however, decision makers may 
be naturally risk averse towards outcomes that may exceed 
λ. As can be seen from Fig. 1, program A exhibits a greater 
downside variation of health outcomes (outcomes that 
fall in the south-west and south-east quadrants), as well 
as an upside variation of costs (outcomes that fall in the 
north-east and south–east quadrants). Whereas outcomes 
in the south–east quadrant are not desirable, the nature 
of the outcomes in the north–east and south–west quad-
rants depends on the trade-off between costs and effects, 
as determined by λ.

NMBs have been introduced to address the limitations 
of ratio statistics by linearly transforming the costs and 
effects for each intervention. The average NMB for each 



163cost-effectiveness risk-aversion curve

intervention can be estimated as µE λ − µC, where µE denotes 
the mean effects, µC denotes the mean costs, and λ denotes 
the threshold ratio. The distributions of the NMB for pro-
grams A and B, assuming λ = $50,000/QALY, are shown 
in Fig. 2. Since costs and effects for programs A and B are 
normally distributed in our example, the NMB of the two 
interventions are also normally distributed with a mean of 
$440,000. As can be seen from Fig. 2, program A exhibits a 
higher downside variation of NMB than program B, indicat-
ing that the magnitude of potentially bad outcomes is higher.

Note that this information is not provided by the joint 
distribution of incremental costs and effects on the CEP. 
From the joint distribution on the CEP, as shown in Fig. 3, 
estimated by sampling 10,000 times from the distributions 
for the costs and effects defined in Table 1 (scenario 1), we 
are unable to disentangle whether program A or program B 
exhibits a higher downside variation, or ‘bad risk’, since for 
two normal distributions the variance of the mean difference 
is the sum of the variance of each individual distribution, 
i.e. information about the variance of each individual dis-
tribution is lost on the CEP. However, the variance of costs 

and effects of each individual program is important for a 
risk-averse decision maker for choosing between program 
A and program B. Furthermore, the CEAC for A versus 
B, as shown in Fig. 4, only informs us about the probabil-
ity that each program is cost effective, irrespective of the 
downside variation of the NMB of the individual programs. 
The CEAC in our hypothetical example corresponds to a 
horizonal line at 0.5, and provides no information about the 
magnitude of the downside variation of the two programs 
that are compared. Following the CEAC, a decision maker 
would be indifferent between program A and program B. 

3 � The Sortino Ratio

In financial economics, a number of methods have been devel-
oped to adjust the expected return of an investment in a risky 
asset for its volatility, since the future returns in stocks and 
bonds are uncertain. The most widely known measure is the 
Sharpe ratio, which has been introduced by Nobel Prize lau-
reate William F. Sharpe [21]. The Sharpe ratio is the average 
return earned in excess of the risk-free rate per unit of volatil-
ity of an asset. The greater the value of the Sharpe ratio, the 

Table 1   Costs and effects of 
six hypothetical health care 
programs

µC mean costs, ơC standard deviation of costs, µE mean effects, ơE standard deviation of effects
Normal distributions for costs and effects are assumed. Correlation between the costs and effects of each 
program is denoted by ƿ

Program µC
($)

ơC
($)

µE
(QALY)

ơE
(QALY)

ƿ

Scenario 1 A 60,000 20,000 10 1.1 0.4
B 60,000 10,000 10 0.8 0.4

Scenario 2 C 50,000 5000 15 2 0.4
D 150,000 20,000 20 8 0.4

Scenario 3 E 50,000 20,000 15 8 0.4
F 150,000 5000 20 2 0.4
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Fig. 1   Bivariate 95% credible ellipses for costs and effects. The 
95% credible ellipses for two programs with identical mean costs 
($60,000) and effects (10 QALYs) are shown. Program A has a 
higher variability in costs and effects than program B (scenario 1 in 
Table 1), QALY quality-adjusted life-year, NW north–west, NE north–
east, SW south–west, SE south–east
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Fig. 2   Boxplot of NMB at lambda $50,000/QALY. The distribution 
of NMB for program A shows a higher downside (and upside) varia-
tion than program B (scenario 1 in Table 1). NMB net monetary ben-
efit, QALY quality-adjusted life-year
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more extra return we earn per unit of risk. The Sharpe ratio has 
also been named the reward-to-variability ratio and its applica-
tion in health care finance has been discussed previously [20]. 
However, a limitation of the Sharpe ratio is that it measures 
total volatility of an asset, while naturally risk-averse investors 
are usually only concerned with the downside risk of an asset, 
since the upside volatility of an asset is considered desirable.

The Sortino ratio addresses this limitation of the Sharpe 
ratio and only considers the downside risk in evaluating the 
risk-return characteristics of an asset [24, 25]. The Sortino 
ratio S is defined as (Eq. 1):

where 
−

Rp denotes the mean return of the portfolio, TR 
denotes the target return or minimal acceptable return, and 
DD denotes the downside deviation, where (Eq. 2)

(1)S =

−

Rp −TR

DD

The DD is the root-mean-square of the downside devia-
tions of the portfolios return from the target return where all 
returns above the target return are set to zero. The target return 
may be based on expected returns using historical data, but an 
investor could define any target return below which a portfo-
lio’s return would be treated as underperformance. Note that 
the DD divides the variance of bad risks by all observations 
(n) and not only those that exhibit a downside variation. The 
smaller the number of observations with downside risk, the 
smaller the DD will be. Furthermore, the smaller the devia-
tion of the portfolio’s return from the target return, the smaller 
the DD will be. The Sortio ratio therefore informs us about 
the expected return per unit of bad risk, i.e. investments with 
a higher Sortino ratio are preferable over investments with a 
lower Sortino ratio, i.e. investments are penalized for the bad 
risk associated with it.

4 � The Net Benefit‑to‑Risk Ratio

In health care finance, we can also define downside risk 
as the risk of experiencing an NMB below the expected 
NMB (or a target NMB) of a program. If we consider a 
health care program as an investment in a risky asset, since 
costs and effects are uncertain, we can penalize expected 
NMB for the bad risk associated with those respective 
programs and define a net benefit-to-risk ratio SNMB, as 
shown in Eq. 3:

where µNMB denotes the expected NMB of a program and 
DDNMB denotes its downside deviation. The DDNMB can be 
written as (Eq. 4):

(2)DD =

√

√

√

√

1

n

n
∑

i=1

(

Rpi − TR
)2
f (t)

f (t) = 1 if Rpi < TR

f (t) = 0 if Rpi ≥ TR

(3)SNMB =
�NMB

DDNMB

(4)DDNMB =

√

√

√

√

1

n

n
∑

i=1

(

NMBi − �NMB

)2
f (t)

f (t) = 1 if NMBi < 𝜇NMB

f (t) = 0 if NMBi ≥ �NMB

−10 −5 0 5 10

Incrementals effects in QALY

In
cr

em
en

ta
l c

os
ts

 in
 $

10
00

−
10

0
−

50
0

50
10

0

Fig. 3   Cost-effectiveness plane (program A versus program B). Joint 
distribution of incremental costs and effects of program A versus pro-
gram B (scenario 1 in Table 1). The 95%, 50%, and 5% credible ellip-
ses are shown. QALY quality-adjusted life-year
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Fig. 4   CEAC (program A versus program B). The CEAC corre-
sponds to a horizonal line at 0.5 for all threshold ratios, suggesting 
equality of programs A and B. CEAC cost-effectiveness acceptability 
curve, WTP willingness to pay, QALY quality-adjusted life-year
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where NMBi denotes a sample observation, e.g. from 
bootstrapping mean costs and effects of a program. For all 
bootstrap samples, the expected NMB (µNMB) is subtracted 
thereof and set to zero if it is positive (i.e. overperformance). 
For all samples where the NMB falls below the expected 
NMB, we estimate the difference and square it. The root 
of the mean squared differences of all sample observations 
corresponds to the DDNMB, in analogy to the downside risk 
of the Sortino ratio. Hence, the expected NMB of a pro-
gram, µNMB, is penalized for the bad risk associated with 
it. Note that DDNMB will be higher if either the number of 
observations n below µNMB is higher and/or the magnitude 
of deviations below µNMB is higher. When estimating the 
mean NMB within the context of a clinical trial, the number 
of samples that fall below µNMB is usually 50% due to the 
central limit theorem. However, in a modeling study that 
estimates the cost effectiveness of health care interventions, 
the distribution of the sample observations around the µNMB 
may be asymmetrical.

A risk-averse decision maker would prefer a health 
care program with a higher net benefit-to-risk ratio SNMB, 
ceteris paribus. It may be argued that the value of the 
decision-maker’s maximum WTP (λ) per unit of health 
outcome is not known. However, the net benefit-to-risk 
ratio can be calculated for a wide range of threshold ratios, 
as is usually also done when constructing the CEAC. The 
resulting curve may be defined as the cost-effectiveness 
risk-aversion curve (CERAC) as it explicitly incorporated 
risk aversion into the analysis.

For a stylized example, consider again the two health 
care programs listed in Table 1 (scenario 1). Program A 
exhibits a higher variability than program B for both costs 
and effects. This translates into a higher downside devia-
tion DDNMB of the NMB, which is shown in Fig. 2, for a 
threshold ratio of $50,000/QALY. The expected NMB for 
both programs A and B is $440,000; however, the DDNMB 
for program A is $35,648, whereas for program B it is 
$26,557. This translates into a net benefit-to-risk ratio of 
12.4 and 16.6, respectively. Program B therefore offers 
more expected return per unit of bad risk, the incremental 
net benefit-to-risk ratio being 4.2, indicating that program 
B yields, on average, 4.2 NMB more per unit of bad risk 
than program A, assuming λ = $50,000/QALY.

Calculating the net benefit-to-risk ratio SNMB for each 
individual program and for all possible λ, allows us to 
construct the CERACs (Fig. 5). From Fig. 5 it becomes 
obvious that program B offers more expected NMB per 
unit of bad risk for all possible λ and should therefore be 
preferred by a risk-averse decision maker. The distance 
between the two CERACs reflects the incremental net ben-
efit-to-risk ratio. Note that any negative net benefit-to-risk 
ratio is the result of a negative NMB, as the downside risk 
of the NMB of a health care program is always positive 

by definition. The CERAC therefore cuts the x-axis where 
the expected NMB turns to zero, but could be extended 
to include negative values. The CERAC is monotonically 
increasing and horizontally asymptotes to the ratio of the 
slopes of the expected NMB and DDNMB lines when plot-
ted against λ as λ increases.

5 � A Further Example

We have used a very simplistic example above to illustrate 
that the joint distribution of incremental costs and effects on 
the CEP and CEAC do not provide sufficient information for 
a risk-averse decision maker for choosing between programs 
with the same expected NMB but different downside vari-
ation, whereas the CERAC indeed helps us to distinguish 
between programs with different risk-return characteristics. 
We now illustrate two scenarios where the program with the 
higher expected NMB may have the lower net benefit-to-risk 
ratio, and vice versa.

Consider scenario 2 as shown in Table 1. Program D is 
now compared with program C, the mean incremental cost 
is $100,000 and the mean incremental effect is 5 QALYs, 
with the mean ICER being $20,000/QALY gained. Hence, at 
a threshold ratio greater than $20,000/QALY, a risk-neutral 
decision maker would prefer program D over program C. 
The joint distribution of incremental costs and effects, as 
shown in Fig. 6, has been estimated by sampling 10,000 
times from the distributions for costs and effects as defined 
in Table 1 (scenario 2). For this sampling exercise, we have 
truncated the normal distribution at zero to exclude negative 
values for costs and effects. The corresponding CEAC in 
Fig. 7 shows that at a threshold ratio greater than $20,000/
QALY, program D becomes the preferred strategy, with 
a higher probability of being cost effective. However, by 
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Fig. 5   CERAC. The CERAC for programs A and B shows that the 
net benefit-to-risk ratio for program B is always preferred to pro-
gram A for all threshold ratios. The CERAC cuts the x-axis when the 
expected NMB exceeds zero. CERAC​ cost-effectiveness risk-aversion 
curve, NMB net monetary benefit, WTP willingness to pay, QALY 
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summarizing the joint distribution of incremental costs and 
effects using the CEAC, we cannot tell which program has 
the greatest downside variation with respect to costs and 
effects. From Table 1 (scenario 2), it is obvious that program 
D has a much greater variation for both costs and effects 
than program C. The CERAC therefore favors program C 
over program D for all threshold ratios (Fig. 8), although 
program D has a higher expected NMB for threshold ratios 
greater than $20,000/QALY.  

As a contrasting example, consider now scenario 3 
(Table 1). The expected costs and effects of the two pro-
grams to be compared are identical to those in scenario 2, 
but now with reversed uncertainties, i.e. standard deviation 
of costs and effects for program E is greater than for program 
F (Table 1, scenario 3). The joint distribution of incremental 
costs and effects of program F versus program E is iden-
tical to that of program D versus program C (Fig. 6) and 
therefore leads to the same CEAC (Fig. 7). This is because 
the variance of the incremental distribution for costs and 
effects is the sum of the variances of the two programs to 
be compared. However, since program E now has a much 
greater standard deviation for costs and effects than program 
F, the CERAC now favors program F over program E for 
threshold ratios greater than $8561/QALY where the two 
CERACs cross (Fig. 9). That is, scenarios 2 and 3 lead to the 
same CEAC but vastly different CERACs. Furthermore, note 
that program F becomes the preferred program, compared 
with program E, at a lower threshold ratio than if we were 
to use the expected NMB as a decision criterion ($8561 vs. 
$20,000 per QALY).

6 � Discussion

Much research interest has focused on handling uncertainty 
in cost-effectiveness analysis. While most approaches elabo-
rate on how uncertainty can be described in cost-effective-
ness analysis, the explicit incorporation of risk aversion in 
decision making has gained much less attention [11, 13, 
15–18, 26]. However, risk aversion towards big losses may 
be a rational behavior that merits more attention as health is 
generally considered as the highest good of mankind.

Different authors have motivated the perspective of a 
risk-averse decision maker at the societal and subsocietal 
level. Ben-Zion and Gafni [18] argue that health is not a 
transferable good, as is the case with other public invest-
ment opportunities, e.g. patients with loss of vision due to 
diabetic retinopathy cannot ‘share’ their disease with other 
individuals. Furthermore, those who benefit from health 
care cannot share their benefit with other individuals. Since 
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diseases and the benefit of health care accrue to individuals 
and are not transferable, decision makers at the societal level 
may therefore be risk averse towards health outcomes [18, 
27]. O’Brien and Sculpher argue that most health care man-
agers operate at a subsocietal level and have to meet budg-
etary constraints as well as outcome performance targets 
[13]. Hence, health care managers at insurance companies 
for example who need to allocate available resources are 
naturally risk averse towards both costs and effects. This is 
in line with the cost-containment and reduction strategies of 
most health insurance companies when considering whether 
health care interventions for patients should be paid for or 
not [19]. Even though risk aversion towards costs and effects 
may seem to be a rational behavior, current approaches to 
handle uncertainty in cost-effectiveness analysis do not take 
this into account. The CEAC provides no information about 
the risk-return characteristics of the individual programs and 
only informs us about probabilities in the sense of frequen-
tist or Bayesian statistics when comparing costs and effects 
of two treatment strategies [12, 28].

One reason for the limited use of methods to analyze the 
results of a cost-effectiveness analysis under risk aversion 
may be that a preference function over expected return and 
risk is usually needed. For example, O’Brien and Sculpher 
assume a concave utility function over expected return 
and risk, implying a diminishing marginal rate of substi-
tution between expected return and reduced risk, without 
explicitly specifying such a utility function [13]. Zivin sug-
gested a model where costs are certain and effects uncer-
tain, and modeled a linear mean-variance utility function 
with constant absolute risk aversion over health effects [16]. 
Although this approach may seem plausible and assumes 
risk neutrality towards costs, it assumes a utility function 
over the mean-variance dimensions of health effects. How-
ever, decision makers are rarely explicit about their utility 

function over uncertain costs and effects, and the explicit 
elicitation of such preferences may prove to be a difficult task 
in practice. Similarly, in an alternative model considering 
risk aversion in cost-effectiveness analysis, Elbasha assumes 
a negative exponential utility function over NMB, thereby 
including both uncertain costs and effects into the analysis 
[17]. Although this model considers both uncertain costs and 
effects, it also requires that a utility function is assumed that 
should reflect the decision maker’s risk attitude, which might 
be difficult to elicit in practice. In the paper by Al et al., 
the decision rule of cost-effectiveness analysis has been dis-
cussed in the presence of uncertain costs and effects [11]. 
Al et al. emphasized the difficulty of specifying a decision 
maker’s explicit utility function over uncertain costs and 
effects, and suggested different approaches to handle risk 
aversion in cost-effectiveness analysis. For example, within 
the context of optimization problems, expected health out-
comes may be maximized, with a limited risk of exceeding 
the budget, implying risk neutrality towards health outcomes 
and risk aversion towards costs [11]. Alternatively, assuming 
risk neutrality towards costs and risk aversion towards health 
outcomes, expected costs may be minimized subject to the 
constraint that the probability of some aspiration level for 
health outcomes may be exceeded with a high probability 
[11]. Constrained optimization in the presence of uncertain 
costs and effects is a useful tool to analyse different budget 
allocation scenarios and their impact on aggregate overall 
health [11, 29]. However, constrained optimization may also 
imply preference functions over uncertain costs and effects 
and their practical application may be difficult. Furthermore, 
constrained optimization assumes that information on uncer-
tain costs and effects is available for all programs, which is 
rarely the case in practice.

An alternative to specifying a preference function over 
uncertain costs and effects is to use risk-adjusted perfor-
mance measures. Their use in finance has become standard 
repertoire for analysing risky assets and they do not require 
the analyst to elicit a preference function over expected 
return and risk [21, 24, 25]. Risk-adjusted performance 
measures assume that the investor is risk averse and pre-
fers higher expected returns per unit of risk, ceteris paribus. 
However, risk may be classified as ‘good risk’ and ‘bad risk’. 
While overperformance may be desirable (i.e. good risk), 
risk aversion only applies to bad risk, i.e. the probability 
of underperforming relative to some outcome targets. The 
application of risk-adjusted performance measures in health 
care, considering overall risk, has been discussed previously 
[20]. However, in health care finance, it seems counterin-
tuitive to penalize expected net benefits for upside risk, as 
does the Sharpe ratio. In addition, it should be noted that 
the Sharpe and Sortino ratios may lead to the same rank-
ing of investment opportunities when returns are normally 
distributed, but this is not necessarily the case when return 

0 20000 40000 60000 80000

0
5

10
15

20

Maximum WTP in $/QALY

N
et

 b
en

ef
it−

to
−

ris
k 

ra
tio

Program E
Program F

Fig. 9   CERAC (program E versus program F). The two CERACs 
cross at $8561/QALY, where program F becomes the preferred strat-
egy. Below a threshold ratio of $8561/QALY, program E is the pre-
ferred strategy, with a higher net benefit-to-risk ratio. CERAC​ cost-
effectiveness risk-aversion curve, WTP willingness to pay, QALY 
quality-adjusted life-year



168	 P. Sendi 

on investment follows a skewed distribution. In the present 
paper, we therefore only considered downside risk, as this is 
the only component of risk where risk aversion applies. In 
addition, penalizing expected NMB for downside deviation 
also seems to be in line with the concept of loss aversion 
or endowment effect, as empirical evidence suggests that 
individuals and decision makers weigh losses higher than 
equivalent gains [30–33].

Using risk-adjusted performance measures as opposed 
to preference functions such as utility functions or pros-
pect theory value functions [34] may seem to represent an 
ad hoc approach to handling the risk-return characteristics 
of programs in health care finance. To this end, it should 
be noted that preference functions as well as risk-adjusted 
performance measures both represent mathematical 
approaches to handle the risk and return characteristics of 
different investment opportunities [35]. Hence, whereas 
preference functions require that a decision maker is 
explicit about his preferences over uncertain costs and 
effects, risk-adjusted performance measures imply a pref-
erence function without being explicit about such a func-
tion. In a study by Plantinga and de Groot, the authors 
compared the rank correlation of different risk-adjusted 
performance measures with explicit preference functions 
such as the quadratic utility function or different pros-
pect theory value functions with varying levels of risk 
aversion [35]. The authors found that the Sortino ratio 
correlated well with intermediate to high levels of risk 
aversion, whereas the Sharpe ratio better corresponded 
to low levels of risk aversion [35]. However, empirical 
research in health care finance is needed to evaluate what 
preference function best matches the net benefit-to-risk 
ratio and is implicit in using the CERAC. To this end, 
moving away from the assumption of risk neutrality in 
health care finance towards risk-adjusted approaches to 
handle uncertainty in cost-effectiveness analysis seems 
to be reasonable in many settings faced with budget con-
straints and the need to meet health outcome targets [13].

7 � Conclusion

We believe the CERAC is a useful instrument to inform 
decision makers with risk aversion. It can be easily extended 
to compare multiple health care interventions and allows to 
quantify downside risk in a meaningful way without requir-
ing an explicit utility function. In addition, it is straightfor-
ward to integrate in practice when analysing uncertainty in 
cost-effectiveness analysis of health care interventions.

Acknowledgements  The constructive comments of the editor and two 
anonymous referees is gratefully acknowledged.

Declarations 

Funding  Open access funding provided by University of Basel.

Conflicts of interest  Pedram Sendi has no conflicts of interest to de-
clare.

Open Access  This article is licensed under a Creative Commons Attri-
bution-NonCommercial 4.0 International License, which permits any 
non-commercial use, sharing, adaptation, distribution and reproduction 
in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other 
third party material in this article are included in the article’s Creative 
Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons 
licence and your intended use is not permitted by statutory regula-
tion or exceeds the permitted use, you will need to obtain permission 
directly from the copyright holder. To view a copy of this licence, visit 
http://creat​iveco​mmons​.org/licen​ses/by-nc/4.0/.

References

	 1.	 Weinstein MC, Stason WB. Foundations of cost-effective-
ness analysis for health and medical practices. N Engl J Med. 
1977;296:716–21.

	 2.	 Weinstein M, Zeckhauser R. Critical ratios and efficient allocation. 
J Public Econ. 1973;2:147–57.

	 3.	 Karlsson G, Johannesson M. The decision rules of cost-effective-
ness analysis. Pharmacoeconomics. 1996;9:113–20.

	 4.	 Birch S, Gafni A. Cost effectiveness/utility analyses. Do current 
decision rules lead us to where we want to be? J Health Econ. 
1992;11:279–96.

	 5.	 Sendi P. Bridging the gap between health and non-health invest-
ments: moving from cost-effectiveness analysis to a return on 
investment approach across sectors of economy. Int J Health Care 
Finance Econ. 2008;8:113–21.

	 6.	 Stinnett AA, Mullahy J. Net health benefits: a new framework 
for the analysis of uncertainty in cost-effectiveness analysis. Med 
Decis Mak. 1998;18:S68-80.

	 7.	 van Hout BA, Al MJ, Gordon GS, Rutten FF. Costs, effects and 
C/E-ratios alongside a clinical trial. Health Econ. 1994;3:309–19.

	 8.	 Fenwick E, Claxton K, Sculpher M. Representing uncertainty: 
the role of cost-effectiveness acceptability curves. Health Econ. 
2001;10:779–87.

	 9.	 Fenwick E, O’Brien BJ, Briggs A. Cost-effectiveness acceptabil-
ity curves–facts, fallacies and frequently asked questions. Health 
Econ. 2004;13:405–15.

	10.	 Tambour M, Zethraeus N, Johannesson M. A note on confidence 
intervals in cost-effectiveness analysis. Int J Technol Assess 
Health Care. 1998;14:467–71.

	11.	 Al MJ, Feenstra TL, Hout BAV. Optimal allocation of resources 
over health care programmes: dealing with decreasing marginal 
utility and uncertainty. Health Econ. 2005;14:655–67.

	12.	 Al MJ. Cost-effectiveness acceptability curves revisited. Pharma-
coeconomics. 2013;31:93–100.

	13.	 O’Brien BJ, Sculpher MJ. Building uncertainty into cost-effec-
tiveness rankings: portfolio risk-return tradeoffs and implications 
for decision rules. Med Care. 2000;38:460–8.

	14.	 Claxton K. The irrelevance of inference: a decision-making 
approach to the stochastic evaluation of health care technologies. 
J Health Econ. 1999;18:341–64.

http://creativecommons.org/licenses/by-nc/4.0/


169cost-effectiveness risk-aversion curve

	15.	 Sendi P, Al MJ, Rutten FFH. Portfolio theory and cost-effective-
ness analysis: a further discussion. Value Health. 2004;7:595–601.

	16.	 Zivin JG. Cost-effectiveness analysis with risk aversion. Health 
Econ. 2001;10:499–508.

	17.	 Elbasha EH. Risk aversion and uncertainty in cost-effective-
ness analysis: the expected-utility, moment-generating function 
approach. Health Econ. 2005;14:457–70.

	18.	 Ben-Zion U, Gafni A. Evaluation of public investment in health 
care. Is the risk irrelevant? J Health Econ. 1983;2:161–5.

	19.	 Sendi PP, Briggs AH. Affordability and cost-effectiveness: 
decision-making on the cost-effectiveness plane. Health Econ. 
2001;10:675–80.

	20.	 Sendi P, Al MJ, Zimmermann H. A risk-adjusted approach to 
comparing the return on investment in health care programs. Int 
J Health Care Finance Econ. 2004;4:199–210.

	21.	 Sharpe WF. Mutual fund performance. J Bus. 1966;39:119–38.
	22.	 Briggs A, Fenn P. Confidence intervals or surfaces? Uncertainty 

on the cost-effectiveness plane. Health Econ. 1998;7:723–40.
	23.	 Barton GR, Briggs AH, Fenwick EAL. Optimal cost-effectiveness 

decisions: the role of the cost-effectiveness acceptability curve 
(CEAC), the cost-effectiveness acceptability frontier (CEAF), 
and the expected value of perfection information (EVPI). Value 
Health. 2008;11:886–97.

	24.	 Sortino FA, Van Der Meer R. Downside risk. J Portf Manag. 
1991;17:27–31.

	25.	 Sortino FA, Van Der Meer R, Plantinga A. The dutch triangle: a 
framework to measure upside potential relative to downside risk. 
J Portf Manag. 1999;26:50–8.

	26.	 Zivin JG, Bridges JF. Addressing risk preferences in cost-effec-
tiveness analyses. Appl Health Econ Health Policy. 2002;1:135–9.

	27.	 Arrow KJ, Lind RC. Uncertainty and the evaluation of public 
investment decisions. J Nat Resour Policy Res. 2014;6:29–44.

	28.	 Briggs AH. A Bayesian approach to stochastic cost-effectiveness 
analysis. Health Econ. 1999;8:257–61.

	29.	 Sendi P, Al MJ. Revisiting the decision rule of cost-effective-
ness analysis under certainty and uncertainty. Soc Sci Med. 
2003;57:969–74.

	30.	 Severens JL, Brunenberg DEM, Fenwick EAL, O’Brien B, Joore 
MA. Cost-effectiveness acceptability curves and a reluctance to 
lose. Pharmacoeconomics. 2005;23:1207–14.

	31.	 O’Brien BJ, Gertsen K, Willan AR, Faulkner LA. Is there a kink 
in consumers’ threshold value for cost-effectiveness in health 
care? Health Econ. 2002;11:175–80.

	32.	 Rotteveel AH, Lambooij MS, Zuithoff NPA, van Exel J, Moons 
KGM, de Wit GA. Valuing healthcare goods and services: a sys-
tematic review and meta-analysis on the WTA-WTP disparity. 
Pharmacoeconomics. 2020;38:443–58.

	33.	 Brown TC. Loss aversion without the endowment effect, and other 
explanations for the WTA-WTP disparity. J Econ Behav Organ. 
2005;57:367–79.

	34.	 Tversky A, Kahnemann D. Advances in prospect theory: 
cumulative representation of uncertainty. J Risk Uncertain. 
1992;5:297–323.

	35.	 Plantinga A, de Groot JS. Risk-adjusted performance measures 
and implied risk attitudes. J Perform Meas. 2002;6:9–20.


	Dealing with Bad Risk in Cost-Effectiveness Analysis: The Cost-Effectiveness Risk-Aversion Curve
	Abstract
	1 Introduction
	2 Uncertainty in Cost-Effectiveness Analysis
	3 The Sortino Ratio
	4 The Net Benefit-to-Risk Ratio
	5 A Further Example
	6 Discussion
	7 Conclusion
	Acknowledgements 
	References




