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Abstract: Water-rich conductive hydrogels with excellent stretchability are promising in strain sensors
due to their potential application in flexible electronics. However, the features of being water-rich
also limit their working environment. Hydrogels must be frozen at subzero temperatures and dried
out under ambient conditions, leading to a loss of mechanical and electric properties. Herein, we
prepare HAGx hydrogels (a polyacrylic acid (HAPAA) hydrogel in a binary water–glycerol solution,
where x is the mass ratio of water to glycerol), in which the water is replaced with water–glycerol
mixed solutions. The as-prepared HAGx hydrogels show great anti-freezing properties at a range of
−70 to 25 ◦C, as well as excellent moisture stability (the weight retention rate was as high as 93% after
14 days). With the increase of glycerol, HAGx hydrogels demonstrate a superior stretchable and self-
healing ability, which could even be stretched to more than 6000% without breaking, and had a 100%
self-healing efficiency. The HAGx hydrogels had good self-healing ability at subzero temperatures.
In addition, HAGx hydrogels also had eye-catching adhesive properties and transparency, which is
helpful when used as strain sensors.

Keywords: antifreeze hydrogels; hydrophobic associated polyacrylic acid; ultra-stretchable; self-
healing; sensors

1. Introduction

Hydrogels are a promising and versatile material. Water-rich properties and cross-
linked polymer networks endow the materials with liquid-like transport properties and
solid-like mechanical properties, respectively [1,2]. Based on these intrinsic traits, hydro-
gels have developed a lot of applications in different fields, such as in flexible electronics [3],
drug delivery [4], tissue engineering [5], waste treatment [6,7], and superabsorbent materi-
als [8]. Due to the outstanding performance in artificial nerves [9], flexible robotics [10],
solid electrolytes [11–14], conductors [15], tactile sensors [16], environment sensors [17,18],
human–machine interface [9,19], optoelectronics [20,21], and energy applications [22–25],
flexible electronics have earned more extensive and particular attention during practical
utilization [26].

However, most water-rich hydrogels used for electronic sensors can freeze, turning
hard and fragile at subzero temperatures, which restricts the transport of conductive ions
and makes them lose their excellent original properties [27,28]. Not coincidentally, the
hydrogels cannot avoid dehydration and quickly dry out under ambient conditions [29].
Hence, such hydrogels cannot be used directly and usually need to be encapsulated to
prevent water evaporation. Subzero temperature and dehydration intolerance remain big
challenges and seriously impede their development.

Fortunately, with the efforts of many researchers, two main strategies have gradually
been developed to achieve the anti-freezing property of hydrogels. One is dependent
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on the colligative properties of a mixed solution [30], which is made by mixing high
concentrations of salts with the aqueous solution to depress the freezing point. For example,
calcium chloride (CaCl2) and lithium chloride (LiCl) were extensively used to prevent
ice formation [31,32]. Vlassak and co-workers [33] prepared a polyacrylamide (PAAm)
hydrogel with the freezing point at −57 ◦C through the addition of CaCl2. The other
strategy is to replace the water-rich hydrogels with organohydrogels [32,34,35] by changing
the traditional water phase with a binary mixed solution of water and organic solvents, such
as ethylene glycol (EG) and glycerol water solution. With the addition of glycerol/H2O
organic solvent, Lu prepared the PAAm-PAA hydrogels, which worked well even at a
temperature of −20 ◦C [36]. Similarly, Li designed a multifunctional glycerol/H2O PAAm
hydrogel with a lowest transition temperature of −25.59 ◦C [37]. Liu also reported that
when the mass ratio of EG to H2O was 2:1, the PVA hydrogel could still maintain flexibility
and strain sensitivity even when the temperature was as low as −40 ◦C [38]. Not only can
the organohydrogels endow the hydrogels with anti-freezing properties, they also avoid the
severe water dehydration problem under ambient conditions. In addition, good self-healing
ability is important for the hydrogels’ life extension and maintenance [39,40]. However,
to the best of our knowledge, the self-healing ability of many anti-freezing hydrogels
reported is relatively poor. Thus, for anti-freezing hydrogels, a better self-healing capability
is necessary for practical applications.

Herein, based on the existing research and unsolved problems, we found that by
replacing the water with a binary water–glycerol solution in the hydrophobic associated
polyacrylic acid (HAPAA) hydrogel, a conductive, anti-freezing, self-healing, stretchable,
and adhesive hydrogel (named HAGx hydrogel, where x is the mass ratio of water to
glycerol) could be fabricated. The polarity of the water–glycerol solution is lower than
that of water, which has a significant influence on the intensity of hydrophobic association.
In addition, the addition of glycerol introduced more hydrogen bonding interactions in
HAGx hydrogels. Differently from the single dynamic crosslinking [41], a hierarchical
system of supramolecular association (hydrophobic association and hydrogen bonds in
HAGx hydrogels) usually provides excellent stretchability and self-healing ability [42–44].
In this work, with the increase of glycerol, HAGx hydrogels show superior stretchable and
self-healing ability, and could be stretched to more than 6000% without breaking and had a
100% healing efficiency. In addition, the as-prepared HAGx hydrogels also demonstrated
great anti-freezing properties at a range of −70 to 25 ◦C, as well as moisture stability (the
weight retention rate was as high as 93% after 14 days). Although no additional conductive
filler was added to HAGx hydrogels, the existence of dodecyltrimethylammonium bromide
(CTAB) cationic micelles and initiator ions (APS) endowed the HAGx hydrogels with
electrical conductivity.

2. Experimental Section
2.1. Materials

Acrylic acid (AA, liquid, 99.9%), lauryl methacrylate (LMA, liquid, 99.6%), hexadecyl
trimethyl ammonium bromide (CTAB, powder, 99.9%), and glycerol were purchased from
Adamas-beta Co. Ltd. (Shanghai, China) Ammonium persulfate (APS), with analytical
grade provided by Kelong Chemical Reagent Company (Chengdu, China). All reagents
were used as received without any further purification.

2.2. Synthesis of HAGx Hydrogels

Typically, the hydrogels were prepared via three steps. Firstly, glycerol was mixed
with water and quickly stirred for 15 min; the mass ratio of glycerol to water can be seen
in Table S1. Secondly, LMA and CTAB were added to the water–glycerol mixed solution.
After continuously stirring for 4 h, AA monomer was added to the above solution. Finally,
the appropriate amount of APS was dissolved to initiate the polymerization. The mixed
solution was deoxygenized and then poured into two sealed glass plates to react for 6 h at
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60 ◦C. After that, the final HAGx hydrogels were obtained. Table S2 shows the detailed
compositions of HAPAA and HAGx hydrogels.

2.3. Characterizations

Nicolet iS50 Fourier transform infrared spectrometer was used to record the ATR FTIR
spectra of HAPAA and HAGx hydrogels. For each spectrum, 20 scans were conducted
with a spectral resolution of 4 cm−1 in the region from 4000 cm−1 to 650 cm−1.

Rheological experiments of the HAG11 hydrogel were performed on the AR 2000EX
rheometer (TA instrument) using a parallel plate (25 mm in diameter). The hydrogel was
prepared as round shaped disks with a thickness of 1 mm, which was tested at a fixed
strain amplitude of 1%, using a frequency sweep mode from 0.1 to 100 rad·s−1, and the
tested temperature was 25 ◦C.

Differential scanning calorimeter (DSC) measurements were performed for detecting
the freezing temperature of HAGx hydrogels using NETZSCH DSC 204 F1. The sample
weight was 8 mg. The cooling process was taken from 25 ◦C to −70 ◦C with a cooling rate
of 5 ◦C·min−1. After 10 min of balancing, it was heated up to 25 ◦C at a rate of 5 ◦C·min−1.

The anti-freezing property of hydrogels was carefully inspected according to the
subzero freezing behavior at temperatures of −20 ◦C and −70 ◦C. Under an extreme
circumstance, the state of the hydrogels was displayed by close observation or ascertained
by their deformation under external force. In addition, in order to test the properties at low
temperature and get the stress–strain curves of the HAGx hydrogels, they were frozen at
−20 ◦C for 24 h and taken out to perform the test immediately.

The moisture stability of HAPAA and HAGx hydrogels was assessed through the
weight loss of the hydrogels at 25 ◦C and a humidity of 60% for 15 days. During the
dehydration process, the weight of HAPAA and HAGx hydrogels was recorded at a
fixed time.

To evaluate the self-healing ability of HAG hydrogels, first, a dumbbell-shaped hydro-
gel sample was completely cut into two halves. Then, these two halves were connected
with each other and placed at ambient conditions (25 ◦C, relative humidity 50%) for 24 h
to allow them to self-heal. The self-healing efficiency of HAG gels was evaluated using
the recovery of the elongation at break (defined as (εs/ε0) × 100%, where εs and ε0 are the
tensile strain of the healed and original sample, respectively).

All the mechanical tests were performed on a versatile testing machine (Instron 5966,
Instron Corporation, New York, NY, USA) with a 1 kN load cell. For the tensile tests, the
samples were tailored to rectangles (2 mm in thickness, 5 mm in width, and 30 mm in
length), and the stretching speed was fixed at 100 mm·min−1. The self-healing efficiency
(η) of the hydrogels was defined as η = λmax/λ0 × 100%, where λmax and λ0 correspond to
the max strain before and after healing, respectively. The characterization of the adhesive
properties with different substrates was also taken by the versatile testing machine. Briefly,
using stainless steel as an example, the HAG11 hydrogel was sandwiched between two
stainless steel plates with a bonding area of 15 mm × 15 mm. Then the sample was pressed
with a piece of cast iron for 12 h before the adhesion tests, and the stretching speed was
100 mm·min−1. The adhesive strength was calculated by the maximum force divided by
the bonding area.

An ultraviolet spectrophotometer (UV-2600, Shimadzu Corporation, Tokyo, Japan)
was used to confirm the transparency of the HAPAA and HAG11 hydrogels. The spectra
were collected in the region of 800–400 nm with a resolution of 0.1 nm.

The digital multimeter (UT181A, UNIT Corporation, Dongguan, China) was used to
monitor and record the resistance signals of the strain sensors dynamically.

3. Results and Discussion

The synthesis method of HAGx hydrogels is maneuverable. The hydrophobic monomer
LMA and surfactant CTAB are dissolved in water–glycerol mixed solutions to form mi-
celles, then the monomer AA is added. After mixing evenly, APS is added to initiate the
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polymerization reaction (Figure 1a). The association strength of micelles is greatly affected
by the polarity of the mixed solution [45–48]. In general, in a weakly polar solvent, the
micellar association is loose. As the polarity of glycerol is lower than that of water, the
polarity of the water–glycerol mixed solution is lower than that of the neat water, and as
the mass ratio of glycerol increases, the polarity of the mixed solution will become weaker
and weaker. Figure 1b is the schematic of the association state of micelles under different
polarities. It is known that, between glycerol and water, strong hydrogen bonding inter-
actions can be formed (Figure 1c), which not only weakens the evaporation of water but
also prevents the formation of crystal ice [32,33,48]. In addition, the binary water–glycerol
organic solvents can also form non-covalent interactions with HAPAA molecular chains by
hydrogen bonds (Figure 1d). A large number of hydrogen bonds have a great influence on
the performance of the HAGx hydrogels.
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erol/water solution. (c) Hydrogen bonds between water and glycerol. (d) Hydrogen bonds between HAPAA and glycerol.

The ATR-FTIR spectra in Figure S1 (Supporting Information) were collected to study
the structure of HAGx hydrogels and the interaction between glycerol and the HAPAA
hydrogel network. It is found that the −OH stretching vibration of HAG11 (3381 cm−1)
is between HAPAA (3396 cm−1) and glycerol (3319 cm−1), which proves that the −OH
of glycerol has an interaction with −COOH of HAPAA. In addition, the C−O stretching
vibration of glycerol in HAG11 moves to a higher wavenumber compared with the pure
glycerol. Based on the above discussion, it is reasonable to believe that glycerol has an
interaction with HAPAA molecular chains. The density functional theory (DFT) calcu-
lations were carried out to explore the role of glycerol in HAGx hydrogels (Figure S2,
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Table S3). The analysis showed that the interaction of water–glycerol is stronger than that
of water–water and glycerol–glycerol. Besides, the interaction of water–glycerol with HA-
PAA is also stronger than water–HAPAA and glycerol–HAPAA. Rheological measurement
was used to study the crosslinking network of HAG hydrogels (Figure S3) [49]. It can be
seen that the storage modulus (G′) of the hydrogels is higher than the loss modulus (G”).
With the increase of glycerol, the loss modulus gradually increases. These results indicate
that the addition of glycerol reduces the elasticity of HAGx hydrogels and increases the
viscous flow.

3.1. Anti-Freezing Property and Moisture Stability

Different from the water–based hydrogels, the binary water–glycerol-based HAGx
hydrogels exhibit eye-catching subzero temperature tolerance and moisture stability. As
a well-known anti-freezing agent, the phase diagram (Figure S4) shows the relationship
between the freezing points and the mass ratio of the glycerol–water mixed solutions.
From the phase diagram, it is learned that when the mass ratio of glycerol is 50–80%, the
freezing points of the mixed solution very easily fall below −20 ◦C. For HAGx hydrogels,
the freezing point is certainly lower with the help of water and glycerol.

To specifically demonstrate the anti-freezing property, the HAPAA and HAG11 hy-
drogels were frozen at −20 ◦C for 24 h (Figure 2a). HAPAA hydrogels are entirely frozen
and can be broken easily, while the HAG11 hydrogel maintains strong mechanical prop-
erties and can even be twisted at −20 ◦C. The thermal properties were conducted using
DSC from −70 ◦C to 25 ◦C (Figure 3a). For the HAPAA hydrogel, a crystalline peak at
−16.7 ◦C is clearly observed. When a small amount of glycerol was added (for the sample
of HAG21), the freezing point dropped to −33.0 ◦C. Note that, as the content of glycerol
increases further (for samples of HAG11, HAG12, and HAG13), the DSC curves are entirely
flat, showing no peaks from −70 ◦C to 25 ◦C, which indicates that the obtained HAGx
hydrogels have excellent anti-freezing properties. Based on DSC curves, to specifically
show the anti-freezing properties, we stored the HAG11 hydrogel at −70 ◦C for six hours,
which was then taken out and stretched immediately. As shown in Figure 2b, the HAG11
hydrogel can still be stretched to about three times the original length. This phenomenon
clearly indicates that the HAG11 hydrogel has an excellent anti-freezing properties and
can even be used as low as −70 ◦C, which meets the requirements for use in an ultra-low
temperature environment.

The moisture stability of the HAGx hydrogels was studied by detecting the weight loss.
In Figure 3b, the tests are carried out at 25 ◦C for 15 days, and Figure S5 shows the photos
of HAPAA and HAGx hydrogels before and after 15 days of storage. The inset of Figure 3b
shows the weight changes of HAGx hydrogels within 24 h. The weight retention rate of the
HAPAA hydrogel is only 83% after 24 h, and that of the HAG13 hydrogel is almost 100%, in
contrast. After 15 days, the weights of the tested hydrogels are basically constant. However,
the weight retention rate of HAPAA is only 32%. From the photos in Figure S5, we can
observe that HAPAA is almost completely dehydrated with severe volume shrinkage, as
it turns into a dense and hard, dry gel. As expected, the appearance change of the HAGx
hydrogels is much smaller in comparison. Moreover, with the increase of glycerol, the
appearance change is less obvious, which means water evaporation gradually decreases.
In particular, the weight retention rate of HAG13 hydrogel is up to 93% when the mass
ratio of water–glycerol is 1:3, showing excellent moisture stability. In practical applications,
it has great significance because it is fundamental to stable performance in mechanical and
electrical properties during the long-term use of the hydrogels.

As is known, the interaction strength of hydrogen bonds in the water–glycerol mixed
solution is much stronger in water solutions. Besides, Lu [36] confirmed that the water–
glycerol mixture has strong interactions with PAA molecular chains by hydrogen bonding.
The strong interaction of these hydrogen bonds can effectively prevent ice formation
at subzero temperatures and weaken the water evaporation at room temperature or
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at a higher temperature. This is also the main reason why our hydrogel has excellent
moisturizing properties.
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3.2. Adhesive Property and Transparency

For signal detection, most flexible electronics are required to be attached on different
surfaces with the help of some extra adhesives or bandages due to their lack of stickiness.
Fortunately, the HAGx hydrogels prepared in this study are born with good stickiness
and can be directly adhered to different substrates. Figure 3c quantitatively displays the
adhesive strength between HAG11 hydrogels and different substrates, including stainless
steel, polyester, cardboard, and copper plates, and the corresponding adhesive strengths
are 260.45 ± 11.5 kPa, 30.5 ± 1.4 kPa, 222.0 ± 6.4 kPa, and 55.3 ± 14.6 kPa, respectively.
The adhesive strengths in Figure 3c are much higher than most of the reported adhesive
hydrogels. The inset shows that two stainless steel plates bonded with HAG11 hydrogel
can lift a weight of 1 kg firmly, specifically demonstrating exceptional adhesiveness.

On the one hand, the HAGx hydrogels can form strong hydrogen bonds with a
metal oxide layer on metal materials; the −COO− in the HAGx hydrogels facilitates the
formation of metal complexation interactions [50,51]. On the other hand, glycerol has an
advantage over water in viscosity [52,53], making the interaction with different substrates
tighter. In addition, as confirmed by Lu et al. [36], compared with water, glycerol has
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stronger interactions with both the HAPAA polymer network and substrates, which greatly
improves the adhesive strength.
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For the application of the sensors on the skin surface, the requirements of visual and
aesthetic are of great concern. In the case of HAGx hydrogels, there is no addition of the
other colored conductive fillers. In visible spectra, the HAGx hydrogels show excellent
transparency (Figure 3d). At 550 nm, the transmittance of the HAPAA hydrogel and
the HAGx hydrogel is 70.3% and 92.8%, respectively. The inset of Figure 3d has three
photos, which are taken by mobile phone. The difference is that (i) is taken directly without
obstruction, and the camera is covered with a piece of 2 mm HAG11 hydrogel and HAPAA
hydrogel in (ii) and (iii), respectively. Comparing (ii) and (iii), (ii) was clearer than (iii),
which also confirmed that the HAG11 hydrogel has better transparency.

3.3. Ultra-Stretchable Properties

Figure 4a shows the stress–strain curves of HAGx hydrogels at room temperature
(25 ◦C). By tuning the mass ratio of glycerol, the mechanical strength and stretchability can
be adjusted over a wide range. In general, with the increase of glycerol, the tensile strength
and modulus of HAGx hydrogels decrease (Figure S6a,b), while the stretchability increases
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gradually. Of particular note, is that when the water–glycerol mass ratios reach 1:2 and
1:3, the HAG12 and HAG13 hydrogels show excellent stretchability, which can be further
stretched to over 6000% without breaking, due to the limitation of the test equipment
(Figure 4b, Video S1). It is worth noting that, under 60 times the stretch of the original
length, the cross-sectional area of the specimens falls severely. Thus the true stress is
actually much larger than the tested values. For the HAG11 hydrogel, the stretchability is
more than 4000%, and the tensile strength is 0.17 MPa.
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Figure 4. (a) Stress–strain curves of HAPAA and HAGx hydrogels. (b) The HAG12 hydrogel can be stretched to more than
6000%. (c) The stress–strain curves of HAPAA and HAGx hydrogels after 24 h storage at −20 ◦C. The tests were done
immediately after the hydrogels were taken out. (d) The stress–strain curves of the healed HAPAA and HAGx hydrogels
after 24 h at room temperature.

The addition of glycerol significantly affects the mechanical properties of HAPAA
hydrogel. This can be explained by the following three points: (1) the polarity of glycerol is
lower than that of pure water, and the interaction strength of hydrophobic associations is
greatly affected by the polarity of the solution [44,54]. Compared with the aqueous solution,
the mixed water–glycerol solution is less polar, and the micelles associate loosely. So, the
association strength is weaker, and the chain segments can move easily, increasing stretcha-
bility; (2) glycerol contains a large number of hydroxyl groups, which form much more
intermolecular hydrogen bonds with water and HAPAA. The strong van der Waals force
has a significant influence on the mechanical properties of hydrogels; (3) for most of the hy-
drogels, there is only one kind of dynamic crosslinking. In this study, a double association
system of hydrophobic association and hydrogen bonds leads to great stretchability.

In addition to the room temperature, the mechanical tests at subzero temperatures
were also taken. The specimens used for tests were stored at−20 ◦C for 48 h and then taken
out quickly before testing. Figure 4c shows that the anti-freezing HAGx hydrogels still
have great elasticity and flexibility under subzero temperatures. In contrast, the HAPAA
hydrogel loses its mechanical performance under −20 ◦C. Compared with the tests at
room temperature, the tensile strength and modulus of the HAGx hydrogels all show an
improvement (Figure S6c). One reasonable explanation is that under subzero temperatures,
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the movement of molecular chain segments slows down, and the presence of glycerol
introduces many hydrogen bonds [33,36]. By comparison, we also found that with the
increase of glycerol, the stretchability and strength of the HAGx hydrogels increase first
and then decrease. When the mass ratio of water to glycerol is 1:2, the HAG12 hydrogel
exhibits good stretchability and mechanical strength with 2125% and 0.27 MPa, respectively.
However, a large amount of glycerol destroys the microdomains of hydrophobic association.
Thus, the mechanical performance has a decline when the mass ratio of water–glycerol
is 1:3.

3.4. Self-Healing Property

The self-healing properties of the HAPAA and HAG hydrogels were investigated
in both mechanical and electric performances. The mechanical properties of hydrogels
after self-healing were tested by the tensile machine. The tested hydrogels were cut
through the middle by a scalpel and brought into contact immediately. Figure 4d is the
stress–strain curve of HAPAA and HAG hydrogels after self-healing for 24 h at room
temperature. The self-healing efficiency of HAG11 reaches 89.4%. In particular, the self-
healed HAG13 hydrogel cannot even be broken when the strain exceeds 6000% (similarly
to the original one), and the self-healing efficiency of HAG12 and HAG13 is 100%. One
possible explanation is that the hydrogels lost some water during the healing process. The
reduction of water strengthens the association of hydrogen bonds in the hydrogel [39]. By
comparison, the healing efficiency of HAPAA and HAG21 hydrogels is only 29.7% and
35.8%, respectively.

In view of the practical application, the HAG11 hydrogel has a balanced performance
both in strength and stretchability, which is much better than most reported stretchable
anti-freezing hydrogels (Table S2). In addition, the HAG11 hydrogel also shows excellent
tensile performance in subzero temperatures and good self-healing capabilities. Therefore,
the HAG11 hydrogel was chosen to perform the following tests unless otherwise stated.

Figure S7 vividly illustrates the self-healing behavior of the electrical properties. The
HAG hydrogel was used as a conductor in the circuit to light up a small light bulb at a
voltage of 5 V. Figure S7a–c are the original sample, the reconnected hydrogel after cutting
it off, and after self-healing for 6 h at room temperature, respectively. In Figure S7b, we
can observe that after the immediate reconnection, the light was lit up but showed a lower
brightness. However, after healing for 6 h, the light is almost as bright as before. This
result proves that the electrical performance of the HAG hydrogel was fully recovered
after healing.

The self-healing ability of the HAG hydrogel at subzero temperatures was also inves-
tigated. Figure 2c illustrates the surface microscope images of the HAG hydrogel before
the cut, after the cut, and after healing (−20 ◦C for 3 d), respectively. After healing, the con-
spicuous scar on the gel surface was essentially healed except for a vague scar. Figure 2d
clearly shows that the HAG hydrogel can be stretched to about seven times its original
length after self-healing for 3 days at −20 ◦C. These results showed that HAG hydrogels
have remarkable self-healing ability at subzero temperatures.

The excellent self-healing ability of HAG hydrogels can be explained by the following
aspects: (1) the addition of glycerol weakens the hydrophobic association, loosens the
interaction strength of the micelles, and increases their mobility. When the hydrogels are
damaged, the micelles can reorganize quickly, facilitating the reconnection of the damaged
sites; (2) glycerol contains many hydroxyl groups, which promotes the formation of inter-
molecular hydrogen bonds with water, glycerol, and HAPAA. A hierarchical non-covalent
crosslinking of hydrophobic association and hydrogen bonds bring about remarkable
stretchability and damages self-healing [55].

3.5. Strain Sensors

The HAG hydrogel is an economical material when applied for wearable strain sensors.
Due to the addition of CTAB charged micelles and APS in the binary water–glycerol
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solution, the HAG11 hydrogel can be used as a strain sensor even without conductive fillers
and conductive polymers. The free-moving ions in HAG hydrogels can be ionized in water
instead of glycerol, which helps form molecular-level ion-conducting channels in the HAG
hydrogels [35,55]; the 3D network structure of HAG hydrogels provides the free-moving
ions mobile channel [56,57]. In addition, the charged micelles make the micelle-bridging
effect possible.

As a demonstration, some tests were designed to assess the feasibility of HAG
hydrogels as strain sensors. Strain sensitivity is evaluated through the gauge factor
(GF = (R − R0)/εR0; R0 and R represent the original resistance without deformation and
the resistance at a certain strain ε, respectively) (Figure 5a,b). The GF can be determined as
0.4 from the slope of the fitting curve within stage A (0% < ε < 500%), and then increased to
0.8 (stage B, 500% < ε < 1000%) and 1.0 (stage B, 1000% < ε < 2000%). To further evaluate the
strain sensitivity of the HAG hydrogel, a series of cyclic tensile tests with different strains
were conducted. Figure 5c,d are the resistance variations under relatively small and large
strains, respectively. They show that a regular resistance response can be detected at strains
of 5%, 10%, and 20%. Also, they are sensitive to large strains (100%, 300%, and 500%). In
addition, as shown in Figure 5e, the resistance variation presents a prominent step-wise
growth when the strain increases from 0% to 300% by a step of 50% at room temperature.
Subsequently, with the stress releasing, the hydrogel restores to its original shape, and the
recovered resistance is almost consistent with the value before the changes. Note that the
hydrogel also shows similar changes in resistance (Figure 5f) at −20 ◦C, showing its low
temperature sensing capability. The above results indicate that HAG hydrogels sensors
have good stability and durability in electromechanical properties.
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4. Conclusions

A conductive, anti-freezing, self-healing, stretchable, and adhesive HAGx hydrogel
based on hydrophobic associated polyacrylic acid (HAPAA) was successfully synthesized
and prepared by replacing the water with a binary water–glycerol solution. These HAGx
hydrogels not only had an excellent anti-freezing property at a range of −70 to 25 ◦C,
but also showed a good moisturizing ability. The weight retention rate was even as
high as 93% after 15 days of natural storage; however, the weight retention rate of the



Materials 2021, 14, 6165 11 of 13

ordinary HAPAA hydrogel was only 32%, in contrast. Our HAGx hydrogels also had a
superior stretchable and self-healing ability. They could be stretched to more than 6000%
without any breaking and had a 100% self-healing efficiency after being cut in half and
reconnected for 24 h. Surprisingly, the HAGx hydrogels even had a good self-healing
ability at subzero temperatures.

HAGx hydrogels in this study also had eye-catching adhesive properties and trans-
parency, and the dodecyltrimethylammonium bromide (CTAB) cationic micelles and ini-
tiator ions (APS) endowed these hydrogels with electrical conductivity. The as-prepared
HAGx hydrogel was sealed as a stretch sensor. The tests confirmed that a stretch sensor
based on HAGx hydrogels not only had good response at a strain of 5%, 10%, and 20%,
but also showed high sensitivity to large strains (100%, 300%, and 500%). Moreover, the
stability and durability of HAGx hydrogels sensors were also good.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ma14206165/s1, Figure S1: ATR-FTIR spectra of hydrogels, Figure S2: DFT-optimized
structure of glycerol, H2O, and HAPAA, Figure S3: storage modulus and the loss modulus of
hydrogels, Figure S4: relationship between the freezing points and the glycerol mass ratio in mixed
solutions, Figure S5: comparison of the freshly prepared hydrogels and hydrogels after a storage
time of 15 days, Figure S6: tensile stress and modulus of hydrogels, Figure S7: circuits comprised
of the hydrogel and a green LED light, Table S1: compositions of the HAPAA hydrogel and HAGx
hydrogels, Table S2: comparison of the HAG11 hydrogel with other antifreeze stretchable hydrogels
in mechanical strength, Table S3: Interaction energies in H2O-HAPAA, glycerol-HAPAA, and glycerol-
H2O-HAPAA by DFT calculations, Video S1: real-time ultra-stretching experiment of the hydrogel.
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