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Information Content of Prefrontal 
Cortex Activity Quantifies the 
Difficulty of Narrated Stories
Soheil Keshmiri   1*, Hidenobu Sumioka   1, Ryuji Yamazaki2, Masahiro Shiomi1 & 
Hiroshi Ishiguro1,3

The ability to realize the individuals’ impressions during the verbal communication allows social 
robots to significantly facilitate their social interactions in such areas as child education and elderly 
care. However, such impressions are highly subjective and internalized and therefore cannot be 
easily comprehended through behavioural observations. Although brain-machine interface suggests 
the utility of the brain information in human-robot interaction, previous studies did not consider its 
potential for estimating the internal impressions during verbal communication. In this article, we 
introduce a novel approach to estimation of the individuals’ perceived difficulty of stories using the 
quantified information content of their prefrontal cortex activity. We demonstrate the robustness of our 
approach by showing its comparable performance in face-to-face, humanoid, speaker, and video-chat 
settings. Our results contribute to the field of socially assistive robotics by taking a step toward enabling 
robots determine their human companions’ perceived difficulty of conversations, thereby enabling 
these media to sustain their communication with humans by adapting to individuals’ pace and interest 
in response to conversational nuances and complexity.

Gone are the days when robots were sitting on the factory floors to perform tasks whose instructions were hard-
coded in a great detail flawlessly. As the field of robotics matures, human society witnesses a growing integration 
of these media in individuals’ daily lives and activities. In fact, today’s robotics is less about assisting humans per-
form their physical tasks and more about facilitating their social interaction1. This observation is evident in grow-
ing adaptation of these media in such broad social domains as early child education2,3 and elderly care4,5. Pivotal 
to these applications is the ability for these agents to engage in social interaction6 and therefore solutions to such 
hard problems as learning the social norms and dynamics form the foundation for enabling robots understand 
the intentions of their human companion, thereby allowing them to achieve a sustainable long-term interaction.

However, obtaining these abilities by only observing the human behaviour is not sufficient considering the fact 
that behavioural cues can often be interpreted in different ways which is even more so during a verbal communi-
cation. For example, a frowning face during a conversation can be construed as sign of attentiveness or it may sig-
nal the person’s difficulty in following its content. Interestingly, deciphering such cues becomes even harder once 
we take into account the ability of individuals to disguise their emotions (e.g., smiling in a stressful situation). 
In the same vein, the fact that such reactions are highly subjective (i.e., they differ from person to person) makes 
facial analysis approaches7 fall short in decoding the cues associated with verbal communication: shy students 
that find a lecture difficult can shun the clarifying questions by acting as if they were following the lecture.

On the other hand, the human brain as the source of these subjective and internalized states can provide more 
reliable information about them. The brain activity cannot be easily suppressed or manipulated and therefore the 
information that is reflected in such activities has the potential to quantify individuals’ feelings. However, despite 
substantial progress in utilization of the brain information in such applications as brain machine interface (BMI)8 
and human-robot interaction (HRI)9,10, there appears to be a paucity of research (to the best of our knowledge) 
on the use of brain information for estimating individuals’ assessment of the verbal communication (e.g., its 
difficulty) during HRI. Robots can particularly benefit from such an ability while interacting with overstressed 
persons and individuals with selective mutism disorders.
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In this article, we propose to estimate the individuals’ perceived difficulty of a verbal communication by quan-
tifying the information content of their prefrontal cortex (PFC) activity. We use the term “perceived difficulty” 
to refer to the cognitive load that a person’s PFC may endure during such tasks as language processing11, social 
cognition12, and story comprehension13–15. In this respect, functional imaging techniques in conjunction with 
such tasks as mental arithmetic (MA)16 and n-back17 have enabled researchers to shed light on PFC functioning 
and change in its activity in response to varying cognitive load16–18. Considering these findings, we expect that 
these tasks can also be useful in estimating the perceived difficulty of a more cognitively demanding task like 
verbal communication.

We also introduce a novel information-theoretic approach for quantification of such cognitive loads. The 
choice of information is motivated by the following three observations. First, information is an unbiased measure 
of association between interacting processes19 (e.g., change in the brain activity in response to varying task’s dif-
ficulty) and hence an attractive choice for brain mapping20 as well as the modeling of its inherent complexity21–24. 
Second, information allows for a more robust handling of such confounders as residual brain activity prior to the 
start of the task period (also known as resting state25). This ability plays a central role in preventing an overesti-
mation of the cognitive load due to the prior brain activity that is not induced by the task. Third, brain activation 
can take place in a shorter time span (i.e., faster) in case of easier than more difficult tasks26 and therefore its 
differential activities can simply be averaged out27–29 if the incurred variability is not accounted for30–32. This 
hinders the ability to differentiate the activation patterns that are induced by tasks with varying level of difficulty. 
On the other hand, information of a continuous random variable is a function of the variance than the mean33,  
p. 182] and therefore can preserve the variability of such time series as brain activity34. This, in turn, makes 
information well-suited for scenarios in which higher variability in individuals’ brain responses is expected (e.g., 
verbal communication). Therefore, we expect that an information-based quantification of the individuals’ PFC 
activation to form a reliable biomarker for measuring the cognitive load that is associated with the difficulty of a 
verbal communication.

In our approach, we first determine a decision boundary that distinguishes between the incurred cognitive 
loads by one- and two-back auditory tasks on individuals’ PFC (acquired by near-infrared spectroscopy (NIRS)). 
In this task, the participants are instructed to respond (e.g., through mouse clicks) to the repeated patterns in 
numerical sequences (e.g., sequential i.e., n = 1 or one-back and every-other repetition i.e., n = 2 or two-back) 
that are presented auditorily. We use n-back in our study due to its demonstrated ability in inducing differential 
cognitive load on PFC35 as well as its utility in quantifying the PFC activity in response to individuals’ change in 
mood18,36. Then in a realtime storytelling scenario, we use this boundary to estimate the individuals’ perceived 
difficulty of narrated stories, thereby interpreting their perceived difficulty of stories based on induced cognitive 
load by n-back auditory task.

Our contributions are threefold. First, we introduce a novel information-theoretic approach to quantification 
of the induced cognitive load on PFC. We present the effectiveness of our approach in quantification of the PFC 
activity during a WM task. Our results show a substantial improvement on the previous findings17,37. Second, We 
demonstrate the utility of our approach in estimation of the individuals’ perceived difficulty of the verbally com-
municated content in a humanoid-mediated storytelling scenario. Third, we provide evidence for robustness of 
our approach through comparative analysis of its performance in face-to-face, humanoid, speaker, and video-chat 
system media settings.

In our view, the use of brain information can advance the HRI research on modeling of the human behaviour 
by providing invaluable information about mechanisms that underlie human behavioural responses. For instance, 
brain activity can be used as neurophysiological feedbacks about individuals’ mental states6 in multimodal mod-
eling of human behaviour38. This, in turn, can open a new venue for formal analysis of a robotic ToM39 that (in 
addition to behavioural observations) builds upon critical implications of the humans’ neurological responses 
during interaction with their synthetic companions.

Methods
Our approach comprises of three steps: (A) information-theoretic formulation of the cognitive load (CL), (B) 
determination of a decision boundary that identifies the CL quantities that are uniquely associated with differing 
WM task’s level, (C) realtime estimation of the perceived difficulty of the verbally communicated content. In what 
follows, we explain each step in details.

Information-theoretic formulation of cognitive load.  This step consists of two components: the 
“quantification of the cognitive load” that estimates the induced cognitive load on the PFC in response to external 
stimuli per estimation step and the “constrained updating of the induced cognitive load” that dictates an update 
rule to reduce the effect of the PFC activity’s fluctuations on such a quantification.

Quantification of the cognitive load.  Let Xτ represent the time series associated with the task period’s PFC activ-
ity at estimation step τ. Let B be the baseline (i.e., resting state) time series that represent the frontal brain activity 
prior to the start of the task. Furthermore, let H(Xτ) represent the entropy of Xτ (i.e., its average information 
content). Although H(Xτ) quantifies the PFC’s cognitive load (CL)40 at τ, it is an overestimation of CL if PFC’s 
residual activity that is carried over from the resting period is not attenuated. It is also crucial to observe that such 
a residual effect cannot be attenuated by mere subtraction of the expected resting state’s activity (i.e., μB) from 
Xτ due to the invariant of information to translation [41, Theorem 8.6.3, p. 253]. Therefore, we quantify the PFC’s 
cognitive load at estimation step τ i.e., CL(Xτ) through conditioning of the PFC activity at τ with respect to its 
activity prior to the start of the task:
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= | = −τ τ τ τCL X H X B H X MI X B( ) ( ) ( ) ( ; ) (1)

where MI(Xτ; B) represents the mutual information between PFC activity during the task period at estimation 
step τ and its activation pattern during the resting period.

Constrained updating of the induced cognitive load.  Neuroscientific findings imply that the brain activity occurs 
in sparse transient42. In other words, observed brain activities are subject to fluctuation. Considering the direct 
correspondence between information and the variation33,40, such a sparsity can directly affect the calculated CL 
as formulated in Eq. (1) which, in turn, can result in a false belief about the overall task-induced cognitive load 
on PFC due to the accumulation of such over/underestimations of CL. In other words, fluctuating patterns in 
PFC activity can result in rapid changes in signal variability whose discrimination from desirable task-induced 
changes in PFC activation might not be trivial if one only rely on the computed CL. For instance, an increase/
decrease in CL at a given time might solely be explained by a short-lived fluctuation and not the effect of the task 
per se on PFC. In such a scenario, simply following the computed CL can lead to a false conclusion since a small 
number of such rapid and short-lived incremental/decremental fluctuations can cancel out and average the actual 
effect of the task on PFC activity.

Above observations identify the need for additional measures to validate the correspondence between poten-
tial differences between two consecutive CLs. More importantly, these measures must take into account the pat-
tern of PFC activity associated with these consecutive CLs to verify whether their observed differences are in fact 
due to a substantial variation than a mere short-lived fluctuation. In other words, they must allow for constraining 
the observed differences between two consecutive CLs with the level of change in their respective PFC variability.

Interestingly, these fluctuations can conveniently be accounted for through realization of the MI: a measure of 
the shared information among interacting processes [41, p. 19 and p. 251]. Specifically, rewriting Eq. (1) as MI(Xτ; 
B) = H(Xτ)−CL(Xτ) it becomes apparent that an increase/decrease in the cognitive load must, in principle, be 
accompanied with its corresponding decrease/increase in mutual information between Xτ and B. In fact, if the 
interacting processes belonged to a well-defined parametric distribution it would have sufficed to solely check 
for MI(Xτ−1; B) and MI(Xτ; B) to discriminate between potential fluctuations and the legitimate variations in 
the task-induced cognitive load. However, extent of the brain dynamics that borders with chaotic system43 in 
conjunction with varying complexity of naturalistic tasks (e.g., conversational nuances and change in difficulty of 
their contents) do not warrant the utility of such simplifying assumption as imposing a known parametric distri-
bution on observed PFC activity during naturalistic scenarios.

Alternatively, we can verify whether above necessary condition in case of MI is also satisfied at the distribu-
tion level of these interacting processes, thereby bypassing any unwarranted assumption on their distributions. 
This can be achieved by utilization of the Kullback-Leibler divergence (DKL) that reflects the distance between 
the distribution of interacting processes [41, p. 19 and p. 251]. The utility of DKL is realized by observing that 
any increase/decrease in MI due to a reduced/increased CL in MI(Xτ; B) = H(Xτ)−CL(Xτ) indeed identifies an 
increase/decrease in resemblance between their distributions and therefore their reduced/increased divergence.

Therefore, we control for potential fluctuating patterns in PFC during the task performance by evaluating 
the difference between CL(Xτ−1) and CL(Xτ) through quantification of their respective MI and DKL with respect 
to B, thereby constraining the updates of computed PFC’s cognitive load. Concretely, we directly use the result 
from Eq. (1) if the difference between CL(Xτ−1) and CL(Xτ) is warranted by their MI and DKL with respect to B or, 
alternatively, we compensate for the potential fluctuation by averaging CL(Xτ−1) and CL(Xτ), weighted by their 
variation of information (VI)44:
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Decision boundary determination.  Let S1 and S2 denote the CLs that correspond to cognitive loads 
induced by two-level WM tasks. Computing the decision boundary 𝔻 between S1 and S2 is analogous to deter-
mining the midpoint between the CL quantities that uniquely fall within the S1 or S2 intervals i.e., the elements 
that are not members of their overlapping subset. Algorithm 1 outlines this process. It first sorts S1 and S2 in 
their descending and ascending orders (steps 1 and 2). Next, it finds the smallest CL in S1 that lies within the S2 
interval (step 3) and the largest CL in S2 that is within S1 interval (step 4), thereby marking their overlapping 
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partition. Then, it determines the immediate largest CL in S1 and the immediate smallest CL in S2 that are smaller 
and larger than S1’s and S2’s respective CLs that mark this overlapping partition. Last, it returns the average of 
these immediate largest and immediate smallest CLs as the decision boundary 𝔻 that separates the CLs associated 
with the disjoint S1 and S2 sets.

In this article, we utilize n-back auditory task as the WM task. In this case, S1 and S2 correspond to cognitive 
loads induced by one- and two-back WM tasks, respectively.

Online estimation of the perceived difficulty of conversation.  We utilize the calculated decision 
boundary 𝔻 for online estimation of the individuals’ perceived difficulty of the verbally communicated content. 
At every estimation step, our model calculates the CL of the current PFC activity time series. At the end of the ver-
bal communication, it computes the median of these computed CLs and determines whether it is above or below 
the computed decision boundary 𝔻. Subsequently, it marks the individual’s perceived difficulty of the verbally 
communicated content as “difficult/easy” if this median is above/below 𝔻.

Ethics statement.  This study was carried out in accordance with the recommendations of the ethical com-
mittee of the Advanced Telecommunications Research Institute International (ATR) with written informed con-
sent from all subjects in accordance with the Declaration of Helsinki. The protocol was approved by the ATR 
ethical committee (approval code:16-601-1).

Experiments
We conducted two experiments to evaluate the utility of our model. In the first experiment, we verified whether 
our proposed measure of cognitive load can distinguish the PFC activation in response to low vs. high cognitive 
loads in one- and two- back WM task. This allowed us to evaluate the ability of our approach for differential quan-
tification of the induced PFC activation in response to these tasks. It also allowed us to determine the decision 
boundary 𝔻 between differential cognitive loads on the PFC activity which we used in the second experiment.

The second experiment was for verification of the performance of our approach on estimation of the individu-
als’ perceived difficulty of the verbal communication in a naturalistic setting. For this purpose, we used storytell-
ing as a first step toward decoding of the conversational communication since stories’ scripts can be kept intact 
and repeated to different individuals without any change in their contents, thereby allowing for the control of such 
confounders as subtle differences in conveyed information.

The “perceived difficulty” within the context of the first experimental paradigm then refers to the cognitive 
psychology notion of cognitive load: measurable change in WM capacity in processing information that is asso-
ciated with controlled tasks that are specifically designed for WM excitation17,40. In the context of second exper-
iment, on the other hand, it reflects the change in WM capacity at more subjective level (e.g., increase in WM 
information processing with respect to the change in stories’ difficulty) that is quantified by such fine-grained and 
well-designed class of WM tasks as n-back.

Experiment 1: Discrimination of differential cognitive load in N-Back WM Task.  Purpose.  In 
this experiment, we validated the performance of our approach on quantification of the effect of the WM tasks on 
PFC activity. Among such tasks, we chose n-back WM task since it forms a better basis for quantification of the 
verbally communicated contents, considering its effect on PFC35 and its ability in identifying the change in PFC 
activation in response to individuals’ emotions and change in mood18.

Participants.  Thirty three younger adults (fourteen males and nineteen females, M = 30.96 years, SD = 10.84) 
participated in this experiment. Data from one male and one female were not recorded properly and were dis-
carded. All participants were free of neurological and psychiatric disorders and had no history of hearing impair-
ment. All experiments were carried out with written informed consents from all subjects. We used a job-offering 
site for university students to recruit our participants.

Algorithm 1.  Determination of the decision boundary 𝔻. SORTD(.) and SORTA(.) sort the elements of their 
arguments in a descending and an ascending order, respectively. AVG(.) computes the average of its two 
arguments.
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Paradigm.  It included a seventy-second audio (in Japanese) sequences of numerical (1 through 9) one- and 
two-back WM tasks. Each session consisted of a one- and a two-back WM tasks. We kept the order as well as con-
tent of these WM tasks intact for all the participants. We used a speaker to play the audio sequences of numerical 
one- and two-back WM tasks to the participants. Every participant completed these two tasks. The participants 
responded to sequential (i.e., one-back) and every-other (in case of two-back) occurrences of these numerical 
values through mouse-clicks. We used PsychoPy for generating these audio one- and two-back WM tasks.

Procedure.  Every participant first was seated in an armchair with proper head support in a sound-attenuated 
testing chamber and gave written informed consent in the experimental room. Then, a male experimenter 
explained the experiment’s full procedure to the participants. This included the total number of tasks in a session 
(i.e., a one-back followed by a two-back WM tasks), the duration of each task (i.e., seventy seconds per WM task), 
instructions on WM tasks procedure (i.e., periodic sequential (i.e., one-back) or every-other (i.e., two-back) 
occurrences of some of the numerical values), instructions on how to respond if the participants detected such 
reoccurrences (i.e., through the mouse-click at every detection), instructions about the one-minute rest period 
prior to the actual session (i.e., sitting still with eyes closed), and the content of the audio sequences (i.e., numer-
ical values 1 through 9). The experimenter also asked the participants to stay focused on listening to the one- and 
two-back sequences that were played back to the participants through a computer speaker and then began the 
experimental session. Every one- and two-back WM task started by recording a one-minute rest data which was 
followed by its seventy seconds WM task period. We recorded the participants’ frontal brain activity time series 
throughout these tasks’ periods (including their respective one-minute resting).

Once the participants were ready, the experimenter asked them to follow the instructions on the computer 
screen in front of them (Fig. 1(A)). The instructions on the display informed the participants that they partici-
pate in a one- and a two-back WM tasks, that each WM task was seventy seconds long, that the task period was 
proceeded with a one minute resting period during which they needed to close their eyes and relax as much as 
possible, and that once this resting period was over a voice (recorded voice of the experimenter through the com-
puter speaker) would announce the start of the WM task after which the task would immediately begin. These 
instructions also provided the participants with an audio-visual example of the task that was about to begin. For 
instance, in the case of one-back it displayed a short sequence of numbers which were (in sequential fashion) 
highlighted by a square around the digit that was being read out and explaining how the value that was just read 
out was related to the value one-back before (Fig. 1(B)). The participants then started with the resting period of 
the one-back WM task and immediately engaged in this task once the end of the resting period and the start of the 
WM task was announced by the voice. For the one-back task, there were ten numerical values that were repeated 
in one-back fashion (Fig. 1(B)). Once one-back was over, the voice announced the end of the task and instructed 
the participants to follow the on-screen information for two-back task (similar to the one-back but this time the 
instruction of the task was about the two- than one-back WM task). The participants then started the two-back 
WM task which began by its one-minute resting period at the end of which the voice asked the participants to 
open their eyes and that the task was about to start. Two-back WM task also (similar to one-back) included the 
repetition of ten numerical values in a two-back fashion (Fig. 1(C)). Once the two-back WM task was over, the 
experimenter removed the NIRS device from the forehead of the participants and guided them out side the 
experimental room.

Data acquisition.  We used functional near infrared spectroscopy (fNIRS) to collect the frontal brain activity 
of the participants and acquired their NIRS time series data using a wearable optical topography system called 
“HOT-1000,” developed by Hitachi High-Technologies Corp. (Fig. 2). Participants wore this device on their fore-
head to record their frontal brain activity through detection of the total blood flow by emitting a wavelength 
laser light (810 nm) at a 10.0 Hz sampling rate. Data acquisition was carried out through four channels (L1, 
L3, R1, and R3, Fig. 2). Postfix numerical values that are assigned to these channels specify their respective 
source-detector distances. In other words, L1 and R1 have a 1.0 cm source-detector distance and L3 and R3 have 
a 3.0 cm source-detector distance. Note that whereas a short-detector distance of 1.0 cm is inadequate for the 

Figure 1.  (A)Schematic of one- and two-back WM tasks session. (B) One-back WM task (C) Two-back WM 
task.
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data acquisition of cortical brain activity (e.g., 0.5 cm45, 1.0 cm46, 1.5 cm47, and 2.0 cm48), 3.0 cm is suitable45,47. 
Therefore, we mainly report the result with the data from L3 in present study and the result with R3 is shown in 
Supplementary Materials (SM).

Data processing.  We first attenuated the effect of systemic physiological artefacts49 (e.g., cardiac pulsations, res-
piration, etc.) using a one-degree polynomial Butterworth filter with 0.01 and 0.6 Hz for low and high bandpass 
which was then followed by performing the linear detrending on the data. We then attenuated the effect of the 
skin blood flow (SBF) using an eigen decomposition technique50. This approach considers the first three principal 
components of all NIRS recorded channels of the participants’ frontal brain activity during rest period to repre-
sent the SBF. Subsequently, it eliminates the SBF effect by removing these three components from participants’ 
NIRS time series in the task period. Although Sato et al.47 suggested that the use of first principal component than 
first three components appeared to be sufficient for SBF attenuation, Keshmiri et al.51 demonstrated that the use 
of first two principal components resulted in both significantly higher SBF attenuation as well as more cortical 
activity’s information preservation. Therefore, we followed51 and removed the first two principal components of 
the respective resting period of the participants from the NIRS time series of their frontal brain activity that was 
recorded during the task period. It is worth emphasizing that we used the same measurement settings (i.e., same 
equipment, number of measurement channel, and its position) as in Keshmiri et al.51 Similar to our NIRS record-
ing, Zhang et al.50 also used 3.0 cm source-detector distance channels. Cooper et al.52 showed that this filter also 
attenuates the motion artefact (e.g., head motion).

While quantifying the PFC activation, we used twenty-second NIRS time series segments of participants’ 
PFC activation with ten-second of overlap between every two consecutive segments to calculate the CLs at every 
ten-second estimation step. We used our mathematical model in Section 2.1 for CL computation. For the first 
segment in the task period, we considered its overlap with the last ten seconds of the rest period. We used the last 
twenty-second of the rest period’s NIRS time series for each participant in Eq. (1). The ten-second estimation step 
resulted in seven CLs in case of one- and two-back WM tasks (per task).

Analysis.  First, we computed the medians (per participant per task) of the CLs for the one- and the two-back 
WM tasks. Then, we applied Wilcoxon rank sum on these medians to determine the differential significance 
between these WM tasks’ CLs. Next, we used these medians to determine the discrimination accuracy of our 
model’s CLs in differentiating between one- and two-back WM tasks. We computed the accuracy of our model 
using Mdntwo−back &gt; Mdnone−back (Mdn stands for median) criterion per participant. We also computed the 
Spearman correlation between these medians and the percentage of correct clicks by the participants. We 
scaled the participants’ number of clicks within [0, … 1] interval. Last, we computed the Spearman correla-
tion between one- and two-back WM tasks’ medians. In order to determine the utility of our model, we also 
applied these analyses on participants’ average PFC activation (SM Section 1 for left-hemispheric and SM 2.1.2 
for right-hemispheric PFC).

To further examine whether the changes in participants’ CLs during two-back WM task were significantly 
associated with the cognitive load induced by this WM task period than being the residual effect from their 
one-back WM task period, we performed a one-sample bootstrap test of significance (10,000 simulation runs) 
at 99.0% confidence interval (CI) on the difference between participants’ CLs during two-back and one-back 
WM tasks (i.e., CLB2 − CLB1). We then considered the null hypothesis H0: induced change in CLs by two-back 
WM task after the deduction of one-back’s CLs was non-significant and tested it against the alternative hypothesis 

Figure 2.  fNIRS device in present study. Bottom subplot on left shows arrangement of source-detector of four 
channels of this device. Distances between short (i.e., 1.0 cm) and long (i.e., 3.0 cm) source and detector of left 
and right channels are shown.
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H1: two-back WM task’s induced change in CLs after the deduction of one-back’s CLs was significant. Since we con-
sidered CLB2 − CLB1, H0 and H1 then represented the situations in which CLB2 − CLB1 ≈ 0 (i.e., zero fell within 
the 99.0% confidence interval) and CLB2 − CLB1 > 0 (i.e., their 99.0% confidence interval was significantly above 
zero), respectively. It is worth noting that H1: CLB2 − CLB1 > 0 is equivalent to H1': CLB1 − CLB2 < 0. We reported 
the mean, standard deviation, and 99.0% confidence interval for left PFC in the main manuscript (for results 
associated with right PFC, see SM, Section 2 and Fig. 3).

Next, we computed the Spearman correlations between these CLB2 − CLB1 values and the participants’ correct 
clicks during the two-back WM task. We chose the participants’ correct clicks during two- than one-back WM 
tasks since CLB2 − CLB1 values reflected the quantitative changes in participants’ CLs associated with two-back 
WM task and after the reduction of participants’ CLs during one-back WM task period. We followed this by 
computing their 95.0% bootstrap (10,000 simulation runs) confidence intervals. For the bootstrap test, we con-
sidered the null hypothesis H0: there was no correlation between CLB2 − CLB1 and participants’ correct clicks during 
two-back WM task and tested it against the alternative hypothesis H1: CLB2 − CLB1 significantly correlated with 
participants’ correct clicks during two-back WM task. We reported the mean, standard deviation, and 95.0% con-
fidence interval for this test. We also computed the p-value of this test as the fraction of the distribution that was 
more extreme than the actually observed correlation values. For this purpose, we performed a two-tailed test 
in which we used the absolute values so that both the positive and the negative correlations were accounted for.

Last, to ensure that the observed changes in the participants’ CLs during two-back WM tasks were due to the 
PFC activity during this WM task than artefacts (e.g., noise or an affine transformation of one-back’s CLs as a 
result of the underlying linear property of the hemodynamic responses53,54), we applied a one-sample bootstrap 
test of significance (10,000 simulation runs) at 99.0% confidence interval on the Kullback-Leibler divergence DKL 
of participants’ CLs during two- and one-back WM tasks (i.e., DKL(CLB2, CLB1). we considered the null hypothesis 
H0: difference in the distribution of CLs in two- and one-back WM tasks were non-significant (hence one-back’s CLs 
can be used to explain the observed CLs during two-back WM task) and tested it against the alternative hypoth-
esis H1: distribution of CLs during two-back WM task was significantly different from one-back’s CLs. We reported 
the mean, standard deviation, and 99.0% confidence interval for this test. It is worthy of note that whereas H0 in 
this test was satisfied if zero fell within the computed DKL’s 99.0% confidence interval, H1’s satisfaction was asso-
ciated with the case in which 99.0% confidence interval was significantly above zero (or equivalently significantly 
below zero in the case of DKL(CLB1, CLB2).

The earlier studies on n-back35 WM tasks and the language processing11 reported on a higher activation in 
left- than right-hemispheric PFC. On the other hand, the recent findings on the role of PFC in n-back17 and story 

Figure 3.  (A) Wilcoxon rank sum between participants’ CLs in one- and two-back WM tasks. Asterisks 
indicate the significant difference between these CLs. (B) Spearman correlation between participants’ CLs and 
the number of their correct clicks in one-back WM task. (C) Spearman correlation between participants’ CLs 
and the number of their correct clicks in response to two-back WM task. (D) Spearman correlation between 
participants’ CLs in one- and two-back WM tasks. In (B) and (C) correct clicks are normalized within [0, …, 1] 
interval. In these subplots, “CL” refers to the medians of the CLs for the two tasks.

p W(60) r M1 SD1 M2 SD2 Mdn2 > Mdn1(%)

CL <0.001 3.59 0.46 1.83 0.59 2.48 0.64 87.10

Table 1.  Wilcoxon rank sum along with the mean and standard deviation of the one- (M1 and M2) and two-
back (M2 and SD2) CLs. We calculated the accuracy of our approach in differentiating the participants’s PFC 
activation in response to one- and two-back WM tasks using the medians of one- and two-back CLs per 
participant.
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comprehension13–15 indicate that such a distinction is not necessarily warranted. Therefore, we considered both 
left as well as right PFC in our study. However, we focused on the left PFC in the main manuscript since the activ-
ity in left PFC formed the common themes among these previous findings and provided the results pertinent to 
the right PFC in SM.

Figure 4.  (A) One-sample bootstrap test of significance (10,000 simulation runs) at 99.0% confidence interval 
on the difference between participants’ CLs during one- and two-back WM tasks. In this subplot, the x-axis 
shows CLB2 − CLB1. The blue line marks the null hypothesis H0 i.e., non-significant change in CLs during two-
back and with respect to one-back WM task. The red lines are the boundaries of the 99.0% confidence interval. 
The yellow line shows the location of the average CLB2 − CLB1 value for 10,000 simulation runs, the red-lines 
mark the 99.0% confidence interval, and the blue is H0. (B) Spearman correlation between participants’ number 
of correct clicks in response to two-back WM task and the difference between their CLs in one- and two-back 
WM tasks (i.e. CLB2 − CLB1). (C) Bootstrap correlation test (10,000 simulation runs) at 95.0% confidence 
interval in which the observed correlation between CLB2 − CLB1 and participant’s correct click during two-
back WM task was verified. (D) One-sample bootstrap test of significance (10,000 simulation runs) at 99.0% 
confidence interval on Kullback?Leibler divergence DKL between participants’ CLs distribution in two- versus 
one-back WM tasks. In this subplot, the axis shows the calculated DKL between CLs’ distributions in two- (B2) 
and one-back (B1) (i.e., DKL(CLB2, CLB1)). The yellow line shows the location of the average CLB2 − CLB1 value 
for 10,000 simulation runs, the red-lines mark the 99.0% confidence interval, and the blue is H0 i.e., the non-
divergence between the two distributions.
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Results.  Wilcoxon rank sum (Fig. 3(A)) identified a significant difference between the participants’ CLs in one- 
and two-back WM tasks (p < 0.001, W(60) = 3.59, r = 0.46, Mone−back = 1.83, SDone−back = 0.59, Mtwo−back = 2.48, 
SDtwo−back = 0.64). Our model achieved an 87.10% prediction accuracy for classification of these tasks. Table 1 
summarizes these results.

We found a significant correlation between participants’ CLs and their number of correct clicks in response 
to one-back (Fig. 3(B)) WM task (r = 0.52, p < 0.01, MClicks = 0.88, SDClicks = 0.05). Similarly, this correlation was 
significant in two-back (Fig. 3(C)) WM task (r = 0.46, p < 0.01, MClicks = 0.69, SDClicks = 0.15). Last, we observed 
(Fig. 3(D)) a significant correlation between participants’ CLs in one- and two-back WM tasks (r = 0.41, p < 0.03).

One-sample bootstrap test of significance (10,000 simulation runs) at 99.0% confidence interval (CI) on the 
difference between participants’ CLs during two-back and one-back WM tasks (i.e., CLB2 − CLB1) verified that 
(Fig. 4(A)) the changes in participants’ CLs during two-back WM task were significantly associated with the cog-
nitive load associated with this WM task period (i.e., CLB2 − CLB1 > 0.0) than being the residual effect from their 
one-back WM task period (MCLB2−CLB1 = 0.96, SDCLB2−CLB1 = 0.71, CICLB2−CLB1 = [0.74 1.18] where M and SD refer 
to the mean difference and the standard deviation of such a difference between the two compared states and CI 
shows the 99.0% confidence interval of their difference).

We also observed a significant correlation between participants’ CLB2 − CLB1 values and their correct click 
during their two-back WM task period (Fig. 4(B), r = 0.39, p = 0.03) which was further supported by their corre-
sponding bootstrap tests (10,000 simulation runs) at 95.0% confidence interval (Fig. 4(C), CI95.0% = [0.05 0.67]).

Finally, the bootstrap test of significance (10,000 simulation runs) at 99.0% confidence interval on the 
Kullback-Leibler divergence (Fig. 4(D)) between participants’ CLs distribution in two- versus (i.e., DKL(CLB2, 
CLB1)) identified a significant difference in the distribution of the participants’ CLs in two-back (i.e., B2 in this 
subplot) and their corresponding CLs during one-back (i.e., B1 in this subplot) WM tasks (MDKL(B2, B1) = 3.44, 
SDDKL(B2, B1) = 0.87, CIDKL(B2, B1) = [1.48 5.93]). This test ruled out that the observed changes in the participants’ 
CLs during the two-back were primarily due to the proceeding one-back task (e.g., effect of noise, linear scaling, 
or affine transformation).

Experiment 2: Estimation of the perceived difficulty during naturalistic storytelling.  The first 
experiment showed that our proposal for quantification of the cognitive load can significantly discriminate 
the differential load of the WM tasks on PFC activity. In the second experiment, we verified the ability of our 
approach in estimation of the individuals’ perceived difficulty of the verbally communicated content in a natural-
istic storytelling. We used our CL’s formulations and the decision boundary computed with the data used in the 
second experiment. We also investigated the performance of our approach in four media settings: face-to-face, 
humanoid, speaker, and video-chat. These media settings allowed us to validate the robustness of our approach. 
Precisely, the face-to-face setting laid down a reliable basis for verification of our model’s performance: through-
out the history, stories have been made and narrated by the people for the people. On the other hand, the speaker 
and the video-chat verified the utility of our approach in capturing the PFC activation in response to the con-
tent of the story than such potential factors as embodiment and novelty effect (in case of the humanoid). Taken 
together, comparable performance of our model on these media settings in conjunction with its accuracy in case 
of the humanoid demonstrated its generalizability and therefore effectiveness of the brain-based quantification of 
the perceived difficulty of the communicated content using PFC pattern of activation.

Contents of Sections 3.2.2 through 3.2.4 are also appeared in Keshmiri et al.55. For the sake of clarity, we pro-
vide their outline in this article as well.

Participants.  Our participants consisted of twenty three younger adults (fifteen females and eight males, M = 
22.39, SD = 2.82). Data from three females were not recorded properly and were discarded. All participants in 
the first and second experiments were free of neurological and psychiatric disorders and had no history of hear-
ing impairment. All experiments were carried out with written informed consents from all subjects. We used a 
job-offering site for university students to recruit our participants.

Media.  They included a humanoid robotic medium, an audio speaker, a video-chat system, and a human. We 
chose a minimalist teleoperated humanoid called, Telenoid R4TM (Telenoid hereafter)56. Telenoid is approxi-
mately 50.0 cm long and weighs about 3.0 kg. It comes with nine degrees-of-freedom (3 for its eyes, 1 for its 
mouth, 3 for its neck, and 2 for its arms) and is equipped with an audio speaker on its chest. It is primarily 
designed to investigate the basic and essential elements of embodiment for the efficient representation and trans-
fer of a humanlike presence. Therefore, its design follows a minimalist anthropomorphic principle to convey a 
gender-and-age-neutral look-and-feel. In present study, we chose a minimalist anthropomorphic embodiment to 
eliminate the projection of such physical traits as gender and age onto our robotic medium.

Telenoid conveyed the vocal information of its teleoperator through its speaker. Its motion was generated 
based on the operator’s voice, using an online speech-driven head motion system57. However, its eyes and arms 
were motionless in this study. We placed Telenoid on a stand approximately 1.40 meters from the participant’s 
chair to prevent any confounding effect due to tactile interaction (e.g., holding, hugging, etc.). We adjusted this 
stand to resemble an eye-contact setting between Telenoid and the participant. We maintained the same distance 
in the case of the other media as well as for the face-to-face setting. In face-to-face condition, we adjusted the sto-
ryteller’s seat to maintain eye-contact with the participant. For the video-chat, we adjusted its placeholder in such 
a way that the storyteller’s appearance on the screen resembled an eye-contact setting. In the speaker setting, we 
placed the video-chat screen in front of the participant (like in the video-chat condition) and placed the speaker 
behind its screen.

We used the same audio device in the speaker and video-chat settings to prevent any confounding effect 
due to audio quality. We used the same recorded voice of a woman, who was naive to the purpose of this study, 

https://doi.org/10.1038/s41598-019-54280-1


1 0Scientific Reports |         (2019) 9:17959  | https://doi.org/10.1038/s41598-019-54280-1

www.nature.com/scientificreportswww.nature.com/scientificreports/

in speaker, video-chat, and Telenoid. These recordings took place in a single session in which we recorded her 
voice and video while telling stories. In Telenoid setting, we played back the same prerecorded voice for the 
speaker through the audio speaker on its chest. In face-to-face setting, the same woman read the stories to the 
participants.

We asked our female storyteller to stay as neutral as possible while reading these stories. However, we are 
unable to confirm the absence of any difference in emotional impact of the stories’ content on her during the 
face-to-face or the voice/video recordings.

Paradigm.  It consisted of three-minute storytelling sessions in which a woman narrated three-minute stories 
from Greek mythology through three kinds of communication media: an audio speaker, a video-chat system, 
and Telenoid. As a control setting, we included the face-to-face scenario in which we told these stories to the 
participants in-person. Every individual participated in all four storytelling sessions. We also controlled the field 
of view of the participants within the same spatial limit by placing their seat in a cubicle in all these sessions 
(height = 130.0 cm, width = 173.0 cm, depth = 210.0 cm) which further enabled us to prevent the potential con-
founding effect of visual distraction.

Procedure.  It started with collecting the written informed consents from the participants which was then fol-
lowed by a male experimenter explaining the experimental procedure to them. In this step, the experimenter 
explained to the participants that each storytelling session was approximately three minutes in length and that 
each session would start with a one-minute resting period during which they were required to sit still with their 
eyes closed. He then briefed them about the content of stories and instructed them to stay focused on these 
stories’ content as much as possible. After leading the participants to the experimental room, the experimenter 
helped them be seated and ensured the proper adjustment of the medium (or helped the storyteller get in her 
proper position during the face-to-face setting) and began the experimental session. In every session, after the 
experimenter acquired the one-minute resting data, he asked the participants to open their eyes and get ready for 
the start of the story which was then immediately followed by the story being told. During the face-to-face setting, 
we asked the storyteller to maintain as much eye-contacts with the participants as possible. We also used the Tobii 
Eye Tracker 4C controller which has a sampling rate of 90.0 Hz to acquire the participants’ eye-movement data. 
Tobii was placed at approximately 80.0 cm from the participant’s seat and 30.0 cm above the ground. To avoid any 
interference between the eye-tracker and the fNIRS devices, we placed it between the stand of the media and the 
chair of participants.

Once a storytelling session was over, the participants filled in a questionnaire that asked them how difficult 
they thought the story content was. We used an 8-point scale questionnaire in which “1” meant “not difficult at 
all” and “8” denoted “very difficult” story content. We gave our participants a one-minute rest period prior to 
the commencement of each of the storytelling sessions and asked them to keep their eyes closed. In this period, 
we prepared the setting for the next storytelling session. We video-recorded all the activities throughout the 
experiment.

Every individual participated in each of the four storytelling sessions. We kept the content of the stories and 
their orders in these sessions intact (i.e., the first story was always the same for all participants and regardless 
of the medium) while randomizing the order of the media. Each experiment took about 90 minutes for each 
participant.

Analysis.  We used the decision boundary 𝔻 that was determined based on one- and two-back WM tasks’ CLs in 
the second experiment during the realtime storytelling experiment.

We followed the same procedure as in the first experiment for data acquisition and processing. At every esti-
mation step in current implementation, our model calculated the CL of the current PFC activity time series 
(per participant per medium). At the end of the storytelling session, our model computed the median of these 
computed CLs and determined whether it was above or below the decision boundary 𝔻. Subsequently, it marked 
the individual’s perception of the story content as “difficult” if this median was above the decision boundary. 
Otherwise, it marked it as “easy.”

We also used these medians per participant along with their self-assessed responses to the difficulty of the 
story’s content per medium to determine our model’s true positive (tp), true negative (tn), false positive (fp), and 
false negative (fn). Concretely, we considered self-assessed responses 1 through 4 and 5 though 8 to represent 
“easy” and “difficult” content, respectively. We then evaluated our model’s estimate as a “Hit” if MdnCLparticipant 
was above the decision boundary 𝔻 and the self-assessed response ≥5 or if MdnCLparticipant was below the decision 
boundary 𝔻 and the self-assessed response ≤4 (i.e., if they matched). Otherwise, we evaluated its estimate as 
a “Miss.” Every “Hit” by our model contributed to a “tp” (i.e., MdnCLparticipant was above the decision boundary 
𝔻 and the self-assessed response ≥5) or a “tn” (i.e., MdnCLparticipant was below the decision boundary 𝔻 and the 
self-assessed response ≤4). On other hand, we considered the model’s estimate as a “fp” if MdnCLparticipant was 
above the decision boundary 𝔻 and the participant’s self-assessed response ≤4. Similarly, we considered it as a 
“fn” if MdnCLparticipant was below the decision boundary 𝔻 and the participant’s self-assessed response ≥5. We used 
these tp, tn, fp, and fn values to calculate the confusion matrix, the accuracy, the precision, the recall, and the 
F1-score of our model in each of the media settings.

Last, we computed the Spearman correlation between participants’ self-assessed responses to difficulty of story 
content and their CLs. In case of all results, we reported the results for the left-hemispheric PFC in the manu-
script. We provided the results for the right-hemispheric PFC in SM 2.2.
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Results.  Figure 5(A) shows the distribution of one- (red) and two-back (blue) CLs prior to the application 
of Algorithm 1. Figure 5(B) plots their resulting non-overlapping CLs after the application of this algorithm 
(nine CLs per task discarded in total). Wilcoxon rank sum indicated that (Fig. 5(C)) the significant difference 
between one- and two-back CLs after the refinement step was preserved (p < 0.001, W(42) = 5.67, r = 0.85, 
Mone−back = 1.65, SDone−back = 0.43, Mtwo−back = 3.07, SDtwo−back = 0.37).

Figure 5(D) shows the median of the participants’ CLs during the realtime storytelling experiment in speaker 
(S), video-chat (V), Telenoid (T), and face-to-face (F) media settings. These CLs are presented next to one- and 
two-back CLs for better visualization of their distribution with respect to these WM tasks’ CLs. The decision 
boundary 𝔻 by Algorithm 1 𝔻 at CL ≈ 2.30 is shown in this subplot.

Our model was able to predict the participants’ perceived difficulty of the story content with 80.0% predic-
tion accuracy in the speaker setting. In addition, its accuracy was 85.0% in case of the video-chat and Telenoid 
media. Last, it predicted their perceived difficulty of the story content with 90.0% accuracy during the face-to-face 

Figure 5.  (A) One- (red) and two-back (blue) CLs prior to application of Algorithm 1. (B) Non-overlapping 
CLs of one- (red) and two-back (blue) WM tasks. (C) Wilcoxon rank sum between refined CLs of one- and two-
back WM tasks. Asterisks mark their differential significance. (D) Refined one- and two-back CLs along with 
the medians of the CLs of the participants’ PFC activation during storytelling experiment (as computed by our 
proposed model) in speaker (S), video-chat (V), Telenoid (T), and face-to-face (F) media settings. The decision 
boundary 𝔻 at CL ≈ 2.30 is shown in this subplot. The CLs associated with one- and two-back WM tasks are 
also presented in this subplot to better visualize the correspondence between the decision boundary 𝔻 and these 
CLs distributions.

Media 
Setting Accuracy (%) Precision Recall F1-score

S 80.0 0.92 0.80 0.86

V 85.0 0.93 0.88 0.90

T 85.0 0.88 0.94 0.91

F 90.0 1.0 0.87 0.93

Table 2.  Proposed model’s accuracy, precision, recall, and F1-score during the realtime storytelling experiment.
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setting. Table 2 summarizes the performance statistics of our model in these media settings during the realtime 
storytelling experiment.

Figure 6 shows the confusion matrices of our model during the storytelling experiment in speaker (S), 
video-chat (V), Telenoid (T), and face-to-face (F) media settings. We observed that our model was stronger in 
differentiating the participants’ PFC activation in response to perceived difficulty of the story content in case of 
the Telenoid (Fig. 6T, True Positive block). Similarly, it differentiated best the content that was perceived “easy” by 
the participants in case of the face-to-face setting (Fig. 6F, True Negative block). On the other hand, it did slightly 
worse for estimation of the perceived difficulty of the story content in case of speaker (Fig. 6S, False Negative). 
Whereas it misidentified two “easy” cases as “difficult” content in case of the Telenoid (Fig. 6T, False Positive 
block), such a misestimation was one in case of the speaker (Fig. 6S, False Positive block) and the video-chat 
(Fig. 6V, False Positive block).

Figure 6.  Confusion matrices of our model during the storytelling experiment for speaker (S), video-chat 
(V), Telenoid (T), and face-to-face (F) media. In this figure, “Difficult” and “Easy” represent the number 
of participants whose self-assessed responses indicated “difficult” or “easy” story content. Results of the 
participants’ self-assessment responses to difficulty of the story content identified that fifteen and five 
participants considered the story content difficult and easy in the speaker and the face-to-face. These numbers 
were sixteen and four in the video-chat and the Telenoid settings.

Figure 7.  Left PFC: Spearman correlation between participants’ self-assessed difficulty of story content and 
their CLs in speaker (S), video-chat (V), Telenoid (T), and face-to-face (F) settings.

https://doi.org/10.1038/s41598-019-54280-1


13Scientific Reports |         (2019) 9:17959  | https://doi.org/10.1038/s41598-019-54280-1

www.nature.com/scientificreportswww.nature.com/scientificreports/

These observations were further supported by the precision, recall, and F1-score of the model’s performance. 
Table 2 indicates that whereas our model’s performance obtained its highest precision in the face-to-face setting 
that was followed by the video-chat and speaker, its recall was highest in the case of Telenoid. Interestingly, this 
table also reveals a direct correspondence between the physical embodiment of the medium and the performance 
of our model. Specifically, we observed that face-to-face and Telenoid were associated with the first and the sec-
ond highest F1-score values among the four media settings. We also observed that our model achieved its highest 
accuracy in the face-to-face setting which was followed by its higher accuracy in the case of Telenoid and the 
video-chat while the speaker setting was associated with lowest model accuracy among the four media settings.

Last, we observed significant correlations (Fig. 7) between the participants’ self-assessed responses to difficulty 
of the story content and their CLs in speaker (r = 0.50, p < 0.03, uncorrected), video-chat (r = 0.43, p < 0.05, 
uncorrected), Telenoid (r = 0.48, p < 0.05, uncorrected), and face-to-face (r = 0.47, p < 0.05, uncorrected) 
settings.

Discussion
In this article, we presented a novel information-theoretic approach to quantification of the cognitive loads asso-
ciated with the human subjects’ PFC activity. Our choice of information theory41 for modeling of the PFC pattern 
of activity was motivated by the neuroscientific findings that have provided compelling empirical30–32 and theo-
retical58,59 evidence that emphasize the crucial role of signal variability in the quantification of the brain activity. 
This, in turn, has resulted in emerging viewpoints that identify the role of entropy in brain functioning60. For 
instance, our quantification of the induced cognitive load on PFC in terms of the interplay between mutual infor-
mation (i.e., convergence) and Kullback-Leibler divergence is motivated by a new thesis on the entropic nature of 
the brain61 that itself is based on findings that identify the functioning of the brain near criticality62,63.

We showed that the use of this approach (in conjunction with a decision boundary that corresponded to the 
refined cognitive loads induced by the one- and two-back auditory tasks) was successful in predicting the individ-
uals’ perceived difficulty of communicated content in a storytelling scenario. Our results indicated that our model 
maintained a significantly above average (50.0% chance level in case of binary classification) prediction accuracy 
with a comparable performance in face-to-face, humanoid, speaker, and video-chat media settings. This verified 
that the quantified participants’ PFC activation in the form of CL was primarily due to the effect of communicated 
content than such confounders as choice of the medium. This observation was also supported by the comparative 
analysis of the participants’ self-assessment responses in different media settings (SM Section 3). More impor-
tantly, our model was able to estimate the effect of stories’ difficulty on individuals’ PFC activity bilaterally which 
was in line with the neuroscientific findings on bilateral effect of stories on human subjects’ PFC13–15.

Previous findings have shown that certain patterns of brain activity can provide means to uncover the subjec-
tive contents that might at least partly be shared among individuals64–66. Our results extended these findings by 
demonstrating that such potential shared spaces can be utilized for decoding of the individuals’ PFC activity to 
predict their perceived difficulty of the narrated stories. From a broader perspective, our approach was related to 
research that focuses on the application of machine learning67 and other computational paradigms68 for decoding 
of the brain activity in response to stimuli.

An interesting observation during the storytelling experiment was the incremental improvement of the pre-
diction accuracy of our model from speaker (i.e., total absence of storyteller) to face-to-face settings. In addition, 
we observed that our model achieved its highest correctly predicted easy (i.e., true negative) and difficult (i.e., 
true positive) contents in the face-to-face and the humanoid settings, respectively. These results may suggest the 
potential benefit of the physical embodiment on quantification of the human subjects’ PFC activation in response 
to verbally communicated contents. However, further investigation of the extent of such an effect is necessary 
prior to drawing any conclusion on this possibility.

Our results contribute to such socially assistive robotics1,69 scenarios as child education and elderly care. For 
instance, our model can enable these media to determine whether their level of interaction (e.g., socialization2, 
reading and comprehension3) is exceeding the comfort level of children, thereby allowing for modulation of their 
communicated contents and/or behavioural interaction. Our model can also further enhance the use of these 
media in robot-assistive cognitive training of the older people70. For example, robots equipped with our model 
can be used during cognitive training of older people in elderly care facilities to monitor these individuals’ brain 
activity during their training, thereby allowing the cognitive trainers to determine the older people’s level of com-
fort in continuing their training session4,5.

Our model’s performance during the storytelling experiment that was in line with the neuroscientific findings 
on the effect of story on human subjects’ PFC activation13–15 indicated a promising first step toward the use of 
brain information for quantification of one of the basic component of the human mental state: perceived difficulty 
of verbally communicated contents. These results benefit such HRI paradigms as interactive learning38 by allow-
ing these algorithms to utilize the individuals’ patterns of brain activity as real-time neurological feedbacks to 
refine their interaction strategy. In a broader perspective, our findings can benefit the research on PFC activation 
during social cognition12,13 and its involvement in story-based ToM analyses71. More importantly, the ability of 
the robots to estimate their human companions’ perceived difficulty of their verbal communication can contrib-
ute to formal analysis of a robotic ToM39 through critical investigation of its implications in humans’ neurological 
responses while interacting with these agents.

Limitations and future direction.  Although our model indicated a promising first step toward quantifi-
cation of the human subjects’ PFC activation in response to difficulty of verbally communicated content, a larger 
human sample is necessary for an informed conclusion on its utility. Moreover, our participants were limited to 
the younger adults. Therefore, it is necessary to investigate the performance of our model in other age groups (e.g., 
kids, adolescents, older people) to verify that its performance is unaffected by this factor.
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Our analyses indicated that our model was able to quantify the PFC activity in response to one- and two-back 
auditory tasks differentially, thereby allowing for their classification with a high accuracy. An important issue in 
this regard that demands further investigation is the order by which the participants performed these WM tasks. 
In particular, in our study every individual first performed the one-back which was then followed by the two-back 
task. Although our further analyses identified that the CLs associated with two-back WM task was significantly 
due to the effect of this task than a residual effect of one-back task. it is crucial for the future studies to investigate 
whether counter-balancing the order of these task may impose any impact on the performance of the proposed 
approach.

We also observed that participants’ self-assessed difficulty of stories correlated with change in their PFC activ-
ity. This highlighted the potential presence of a direct correspondence between individuals’ subjective evaluation 
of the communicated contents (e.g., stories) and the effect of such contents on their PFC information processing. 
On the other hand, whereas we observed that such correlations were bilateral in the case of speaker, Telenoid, 
and face-to-face settings, it was only present in left-hemispheric PFC in the case of video-chat. This differed from 
our prediction results in which we observed that our model was able to significantly predict the difficulty of story 
content in all media settings, that such significantly above chance predictions were present bilaterally in the case 
of all media, and that the increase of such predictions were incremental in the level of embodiment. Therefore, 
the future research is necessary to further investigate the source of such a difference between correlation and 
prediction analyses.

Moreover, our experimental setting was limited to a storytelling scenario in which participants listened to a 
verbally communicated content without any requirement for their response. Therefore, it is crucial to examine the 
performance of our model in such verbal communication scenarios as conversation to ensure its performance is 
unaffected by any potential PFC activation induced by such bidirectional verbal communications.

We used the participants’ self-assessed responses to difficulty of stories to investigate the accuracy of our 
model. This constrained our validation procedure in that we were forced to wait until the storytelling ended 
and therefore were not able to examine its performance finer time scales such as minute-prediction-cycle or 
shorter. This constraint was imposed by the fact any finer-scale prediction cycle inevitably needs us to interrupt 
of the individuals’s listening to the stories to inquire about their subjective feeling of the story’s difficulty, thereby 
disrupting their thoughts as well as the course of verbal communication. Therefore, future research to look into 
alternative strategies to acquire individuals’ self-assessment during the communication is necessary to draw a 
more informed conclusion on performance of our model.

We observed an incremental prediction accuracy from the speaker to face-to-face media settings. We also 
observed that our model achieved its highest correctly predicted easy (i.e., true negative) and difficult (i.e., true 
positive) contents in the face-to-face and the humanoid settings, respectively. This suggested a potential positive 
effect of embodiment on quantification of the PFC activation during verbal communication. However, present 
study did not include other types of physically embodied media (e.g., mechanical looking robots, pet robots, etc.). 
Therefore, it is necessary to determine the correspondence between the media embodiment and the observed 
incremental accuracy of our model. It is also important to verify whether different embodiments can induce 
differential impact on this incremental pattern of accuracy.

Our approach is based on information theory. Integral to this formalism is the Data Processing Inequality 
(DPI) [41, p. 34, Theorem 2.8.1] which states that the more the data manipulation (e.g., data pre/processing steps) 
the more the loss of information. Therefore, it was crucial for us to apply the pre/processing steps as efficiently 
as possible. In this regard, Cooper et al.52 showed that PCA-based motion correction algorithm yielded a sig-
nificant reduction in the mean-squared error (MSE) and a significant increase in contrast-to-noise ratio (CNR) 
in comparison with no correction and/or the process of rejecting the motion-contaminated trials. Considering 
the fNIRS more immunity to body movement as compared with other neuroimaging techniques72, the minimal 
physical activity in our experimental settings (e.g., clicking mouse in n-back), and the recent findings that indi-
cated that the measured PFC activity during listening to stories was not affected by such behavioural responses as 
eye-movement55, we found the application of PCA sufficient for addressing both SBF attenuation and potential 
minimal motion artefacts correction, thereby adhering with DPI principle as much as possible. However, the 
future research requires to take into consideration the effectiveness of our methodology in the use of PCA in sce-
narios in which substantially more physical activity and/or embodied interaction is expected, thereby examining 
the utility of other approaches for motion artefacts correction52.
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