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Abstract 

Background: Severe acute malnutrition (SAM) is the most life‑threatening form of malnutrition, and in 2019, approxi‑
mately 14.3 million children under the age of 5 were considered to have SAM. The prevalence of child malnutrition 
is recorded through large‑scale household surveys run at multi‑year intervals. However, these surveys are expensive, 
yield estimates with high levels of aggregation, are run over large time intervals, and may show gaps in area coverage. 
Geospatial modelling approaches could address some of these challenges by combining geo‑located survey data 
with geospatial data to produce mapped estimates that predict malnutrition risk in both surveyed and non‑surveyed 
areas.

Methods: A secondary analysis of cluster‑level program evaluation data (n = 123 primary sampling units) was per‑
formed to map severe acute malnutrition (SAM) in Papuan children under 2 years (0–23 months) of age with a spatial 
resolution of 1 × 1 km in Papua, Indonesia. The approach used Bayesian geostatistical modelling techniques and 
publicly available geospatial data layers.

Results: In Papua, Indonesia, SAM was predicted in geostatistical models by using six geospatial covariates related 
primarily to conditions of remoteness and inaccessibility. The predicted 1‑km spatial resolution maps of SAM showed 
substantial spatial variation across the province. By combining the predicted rates of SAM with estimates of the popu‑
lation under 2 years of age, the prevalence of SAM in late 2018 was estimated to be around 15,000 children (95% CI 
10,209–26,252). Further tests of the predicted levels suggested that in most areas of Papua, more than 5% of Papuan 
children under 2 years of age had SAM, while three districts likely had more than 15% of children with SAM.

Conclusions: Eradication of hunger and malnutrition remains a key development goal, and more spatially detailed 
data can guide efficient intervention strategies. The application of additional household survey datasets in geosta‑
tistical models is one way to improve the monitoring and timely estimation of populations at risk of malnutrition. 
Importantly, geospatial mapping can yield insights for both surveyed and non‑surveyed areas and can be applied in 
low‑income country contexts where data is scarce and data collection is expensive or regions are inaccessible.
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Background
Eradication of malnutrition is an important global chal-
lenge and remains central to the UN Sustainable Devel-
opment Goals (UN SDGs): to end all forms of hunger and 
malnutrition by 2030 and meet internationally agreed 
targets on stunting and wasting in children under 5 years 
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of age [1]. In 2019, it was estimated that approximately 
6.9% of (or 47 million) children under the age of 5 years 
old were affected by wasting or acute malnutrition [1]. 
Approximately 14.3 million of these were estimated to be 
severely acutely malnourished in 2019 [2]. Severe acute 
malnutrition (SAM) is the most life-threatening form 
of malnutrition and is defined by a weight-for-height or 
length z-score (WHZ) < − 3 standard deviations (SD) 
below the World Health Organization (WHO) refer-
ence median (and/or a mid-upper arm circumference 
[MUAC] < 115 mm) [3]. Children with SAM are at imme-
diate risk of death [4].

The prevalence of child malnutrition is generally estab-
lished through large-scale household surveys that are 
run at multi-year intervals, including Demographic and 
Health Surveys (DHS), Multi-Indicator Cluster Surveys 
(MICS), Standardized Monitoring and Assessment of 
Relief and Transitions (SMART) surveys, and National 
Nutrition Surveys (NNS). In the context of low- and mid-
dle-income countries (LMICs), in particular, large-scale 
national surveys are associated with a number of limita-
tions, including very high cost (the UN estimates that a 
single national survey costs at least $1 million per wave, 
with 2–4 survey waves required within a 10-year cycle to 
monitor indicators in line with the SDG agenda) [5]; high 
levels of aggregation (i.e. survey estimates are available at 
the national or first administrative level, as more granular 
estimates require larger samples at a higher cost); large 
time intervals between survey waves (national surveys 
are typically run at 2–5 year intervals); and gaps in area 
coverage in the estimates (due to security and access 
constraints).

Geospatial modelling approaches could address some 
of these challenges by combining geo-located survey data 
with geospatial data to produce mapped estimates that 
predict malnutrition risk in both surveyed and non-sur-
veyed areas—at a higher resolution than what is directly 
possible with survey data. This approach has the poten-
tial to inform programming policy and decision-making 
by identifying priority areas (e.g. “hot spots” with higher 
risk). At present, no study has modeled SAM (separately 
from other malnutrition indicators) by using geospatial 
approaches, although, more broadly, a few studies have 
produced maps of malnutrition indicators. Two recent 
large-scale studies have exemplified the use of geospatial 
mapping: one mapped child growth failure (CGF) indica-
tors (stunting, wasting and underweight) at high resolu-
tion (5 × 5 km) across districts in India from 2000 to 2017 
[6], and the second study mapped CGF (at a 5 × 5 km 
resolution) on a broad scale across 105 LMICs from 2000 
to 2017 [7]. Overall, the literature indicates heterogeneity 
of malnutrition risk at sub-national levels, and it suggests 

that finer-scale estimates could help identify areas that 
are of higher priority for CGF reduction.

In this study, we explored the use of geostatistical mod-
elling techniques to produce high-resolution (1 × 1 km) 
prediction maps of SAM prevalence and the associated 
uncertainty estimates in Papua, the eastern-most prov-
ince of Indonesia. Historically, Papua is a data-scarce 
environment, and data collection in the region is difficult 
owing to the insecurity from violent conflict and the geo-
graphical inaccessibility of some areas, which has been 
exemplified by the exclusion of Papua from some rounds 
of the Indonesian DHS survey series (e.g. in 2002/2003) 
[8]. Existing estimates of SAM prevalence in this province 
are not available at the district level. The 2018 Indonesian 
Basic Health Research (RISKESDAS) national household 
survey estimated that the prevalence of wasting in Papua 
was over 10% [9]. The baseline survey of the Child Grant 
(CG) program evaluation, implemented in late 2018, esti-
mated that the overall prevalence of child wasting in the 
surveyed areas among Papuan children under 2 years of 
age was 20% [8]. In terms of health indicators, Papua is 
one of the poorest-performing regions in Indonesia [10].

For this study, georeferenced household survey data 
were analyzed in combination with geospatial data layers 
describing local contextual factors. We also explored the 
use of thresholds of SAM prevalence estimates in order to 
communicate the risk of SAM and to inform policy deci-
sions in the region as they relate to SAM programming.

Methods
The analysis in Papua (Fig.  1) used local data on mal-
nutrition collected during the baseline survey of the 
UNICEF-funded evaluation of the Child Grant (CG) pro-
gram, known as BANGGA Papua, conducted in late 2018 
[8]. The study design for the BANGGA Papua evaluation 
initially selected six districts in Papua. A list of acces-
sible and safe villages in each selected district served as 
the sampling frame for primary sampling units (PSUs), 
from which 20 PSUs were randomly selected per district. 
Within each village, a household listing exercise was con-
ducted to identify eligible children and their households. 
Papuan children under the age of 2 years (0–23 months) 
with a Papuan caregiver were eligible for the study. These 
were households where the caregiver self-identified as 
an indigenous Papuan. A sample of 15 children was ran-
domly selected in each PSU and the households were 
invited to join the study. The baseline survey included 
questions related to feeding and childcare, and anthro-
pometrics were used to measure children’s weight and 
height, which were captured by enumerators specifically 
trained as anthropometric specialists. These measure-
ments were also checked for quality (outliers in Z-scores 
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and standard deviations), and the results indicated no 
quality concerns with the survey data.

We defined SAM in children as a weight-for-height or 
length z-score (WHZ) more than 3 standard deviations 
below the WHO reference median (3). A GPS location 
was also collected for each surveyed household, and for 
maps and spatial analyses, the centroid point location of 
the households in each PSU was used to represent the 
cluster of households. These “cluster” locations linked 
to each PSU are the unit of analysis in the geostatistical 
model. The data collection was approved by the Ethical 
Review Committee (ERC) at Oxford Policy Management 
Limited in August 2018. Secondary analysis of the data 

presented here was approved by the University of South-
ampton (ERGO II: 61645).

Covariate data processing and selection
Prediction of SAM in locations without survey data 
draws on information from the spatial structure and 
patterns in SAM at the observation locations as well 
as from modelled relationships with covariate data. 
Many socioeconomic, demographic, environmental, 
and physical factors can directly or indirectly influence 
malnutrition and the spatial distribution and inequali-
ties in SAM. In the statistical modelling framework, 
these ancillary factors act as covariates to help explain 

Fig. 1 Percentage of surveyed children experiencing SAM in Papua, Indonesia within each PSU in 2018. Data shown are selected primary sampling 
unit (PSU) locations (n = 123) collected during the baseline survey of the BANGGA Papua evaluation.
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some of the observed spatial variation in SAM. When 
mapped as a geospatial layer, the covariates also aid in 
the prediction of SAM to non-surveyed areas. There-
fore, in addition to being correlated with SAM, in order 
to be used as covariates in the statistical analysis, the 
data must be processed and mapped consistently for 
surveyed and non-surveyed locations across the entire 
study area.

We assembled a set of potential covariates based on a 
literature review of the factors that are associated with 
wasting and malnutrition and were mapped consist-
ently throughout the study area (Supplementary Table 1, 
Additional File 1). The potential covariates were related 
to factors such as remoteness, measured as travel time 
to major settlements or the distance to travel infrastruc-
ture. Other factors included childhood diseases from 
modelled estimated risk of diarrhea [11] and malaria 
[12]. The geospatial data layers were reprojected and 
harmonized to a consistent 1 km × 1 km to support the 
predictions. A full list of the covariate layers and pro-
cessing steps are reported in the supplementary materi-
als (Additional File 1).

While many covariates could be plausibly included in 
the model, a parsimonious model using the fewest num-
ber of covariates is preferred to maximize predictive 
accuracy. The use of more covariates than is necessary 
introduces the risk of overfitting to the observed data, 
which yields worse predictions in non-surveyed areas. 
We implemented a multi-step process to reduce the 
number of covariates selected for our analysis. Covari-
ate selection used non-spatial binomial generalized lin-
ear models (GLMs) to test the association with SAM. 
We also eliminated covariates that were highly correlated 
(⍴  > 0.8) by using Akaike Information Criterion (AIC). 
This type of pre-processing is commonly applied when 
building predictive geospatial models [13, 14]. Full details 
and results of covariate selection are presented in the 
supplementary materials (Additional File 1).

Geostatistical model
The number of children experiencing SAM out of the 
total number of surveyed children at each cluster loca-
tion was modelled using binomial spatial regression. 
Each survey cluster was associated with a selected set of 
covariates based on the GPS location of the cluster cen-
troid. In addition to the covariates, which were treated 
as fixed effects, the model framework included a spatial 
random effect. The spatial effect is a zero-mean station-
ary Gaussian Process with a Matérn covariance function. 
This effect captures the tendency for cluster locations 
which are in close spatial proximity to have similar levels 
of SAM, a property referred to as spatial autocorrelation. 
As the distance between clusters increases, the spatial 

autocorrelation and the expected similarity between clus-
ters decreases. The spatial effect serves several purposes 
in the model. First, the spatial autocorrelation in the data 
can arise from model misspecification via a shared risk 
factor that is not included in the covariate data. The spa-
tial effect can account for this residual error by drawing 
on information in the patterns of the observed outcome 
locations. Second, the spatial effect smooths the predic-
tions across the study area. In the absence of a strong 
relationship with the contextual covariates, the spatial 
effect creates a spatial interpolation among the clusters. 
The details of the model are given in Additional File 2.

The geostatistical model was estimated in a Bayesian 
framework using integrated nested Laplace approxima-
tions (INLA) for the latent Gaussian models [15]. The 
stochastic partial differential equation approach [16] 
was used for the spatial random effect to approximate a 
continuous spatial field. The use of Bayesian techniques 
allows quantification of the uncertainty in the model. To 
evaluate our models, we used a 10-fold cross-validation 
procedure. The model was refitted 10 times, each time 
omitting a different 10% of the survey clusters that were 
used as validation locations to compare the predictions. 
The coefficient of determination  (R2) was used to evalu-
ate predictive performance by comparing the relationship 
between observed and predicted values in the cross-vali-
dation as well as an in-sample comparison using the full 
set of observations.

The fitted model using all observations was used to 
predict the proportion of children experiencing SAM on 
a 1 × 1 km resolution grid from 1000 posterior samples. 
The gridded predictions include the mean of the poste-
rior samples as the best estimate as well as the upper and 
lower 95% intervals of the predictions to express uncer-
tainty around the prediction. The posterior samples for 
each grid cell were then aggregated to create district- 
and province-level estimates as the population-weighted 
mean of the grid cells falling within the areas (described 
in Additional File 2). The population data used for this 
step were modelled estimates of the total population and 
age-sex proportions calculated at a 1 × 1 km grid resolu-
tion [17]. Papua is ethnically diverse [18], and with no 
recent estimates of the indigenous Papuan population, 
we used the total population estimates to approximate 
this distribution.

We further examined the uncertainty in the predicted 
levels of SAM by calculating the probability that the lev-
els of SAM in children under 2 years of age exceeded cer-
tain thresholds and mapping these levels across Papua. 
For these thresholds we used 2, 5, 10 and 15% cutoffs 
and applied them to the 1 km × 1 km gridded predictions 
of SAM. While no standard thresholds for SAM exist, 
the WHO considers wasting (WHZ < − 2 SD)—which 
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includes both moderate acute malnutrition (MAM) and 
SAM—at or exceeding 15% to be critical from the stand-
point of public health significance [19].

The model was implemented using R [20] and the 
R-INLA package [15] with the raster package [21] for 
spatial data handling.

Results
On the basis of the survey observations collected in late 
2018, a total of 107 out of 1508 surveyed children were 
identified as experiencing SAM (7.1%). Across 123 PSUs, 
the level of SAM in the surveyed children varied sub-
stantially from 0 to 76.9% (mean = 7.4%, standard devia-
tion = 12.0). The variation in SAM between clusters 
showed geographic patterns that we explored with the 
geostatistical models (Fig.  1 and Supplementary Fig.  2, 
Additional File 1). The results of the covariate selec-
tion procedures identified annual precipitation, distance 
to conflicts, distance to settlements, distance to major 
roads, distance to urban areas, and travel time to urban 
centers as the best geographical predictors of SAM in 
Papua. We examined the residuals of a non-spatial bino-
mial model using these covariates with a variogram (Sup-
plementary Fig.  2, Additional File 1), and found some 
remaining spatial variation at shorter spatial ranges, sug-
gesting the use of the geostatistical model.

The selected covariates were used in the geostatisti-
cal model to predict the proportion of children under 
2 years of age experiencing SAM at a 1 × 1 km spatial 
resolution across Papua. The posterior estimates of the 
model parameters (mean and 95% credible intervals) are 
reported in the supplemental materials (Supplementary 
Table  4, Additional File 1). Coefficients for covariates 
with 95% credible intervals that did not include zero were 
interpreted as having a consistent association with SAM. 
After controlling for the significant spatial effect, only 
precipitation showed a consistent positive association 
with the geographic variation in SAM. The predictive  R2 
was 0.33 and 0.15 for the in-sample and cross-validation 
comparison, respectively. The comparisons between 
observed and predicted values of SAM at the cluster level 
are shown in Fig. 2.

The gridded output of the geostatistical model pre-
dicting the percentage of children under 2 years of age 
experiencing SAM is shown in Fig.  3. The lower and 
upper bounds of the predictions are shown in Fig.  4A 
and B, respectively, which highlights the spatial varia-
tion in the uncertainty of the predictions. In general, 
the highest levels of SAM were predicted in the dis-
trict of Asmat and in the areas to the east of Papua. We 
note that the area in eastern Papua with high levels of 
SAM is in contrast to its nearest sample data locations 
(Fig.  1). This indicates that the high predicted levels 
of SAM in this area primarily reflect the combination 

Fig. 2 Observed levels of severe acute malnutrition (SAM) versus model predictions in Papua, Indonesia. The two plots show the results of 
in‑sample comparisons for the final models (Panel A, left) and random, 10‑fold cross‑validation (Panel B, right). Diagonal lines are 1:1 lines where 
predictions equal observations
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of covariate values. The aggregated totals for each dis-
trict are reported in the supplemental materials (Sup-
plementary Table 1, Additional File 3). At the province 
level, the geostatistical model estimated that 6.3% (95% 
CI 4.2–10.9%) of Papuan children under 2 years of age 
were experiencing SAM in late 2018. This equates to 
approximately 15,213 children (95% CI 10,209–26,252).

The probability that the predicted levels of SAM 
exceeded the thresholds of 5 and 15% of children under 
2 years of age in a given 1 × 1 km grid cell is shown in 
Fig. 5A and B. The results for the 2 and 10% thresholds 
are shown in Additional File 2 (Supplementary Fig. 1). 

In this alternative mapping approach, higher values 
(shown in red) indicate that the model is more confi-
dent that the given threshold was exceeded. Despite the 
uncertainty around the mean predictions of SAM, these 
maps again highlight that children in areas around 
Asmat likely experienced very high levels of SAM.

Discussion
Our study is the first to use geospatial modelling to pre-
dict SAM prevalence at a 1-km spatial resolution from 
sparse survey data, and our work presents some criti-
cal findings. We estimate that approximately 6.3% (95% 

Fig. 3 Mean predicted percentage of children < 2 years of age experiencing SAM in Papua, Indonesia. Predictions are based on model‑based 
geostatistics and survey data from 2018. Data are shown at a 1 × 1 km spatial resolution
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CI 4.2–10.9%) of all Papuan children under 2 years of 
age were experiencing SAM in late 2018. Based on the 
geostatistical analysis, there are areas within Papua 
that very likely experienced even higher levels of SAM. 

Importantly, we used a Bayesian framework to estimate 
our models which allowed for uncertainty in the predic-
tions to be quantified. Producing estimates on a gridded 
surface also allowed the results to be easily visualized, 

Fig. 4 Lower (A) and upper (B) 95% prediction intervals for SAM in Papua, Indonesia. These predictions are based on the modelled estimates for 
2018 survey data. Data shown are at a 1‑km spatial resolution. Note that both maps are shown on the same color scale

Fig. 5 Probability that SAM exceeds the 5% (A) and 15% (B) prevalence thresholds in children under 2 years of age. Estimates are made for each 
1 × 1 km grid cell. Note that exceedance maps for 2 and 15% thresholds are shown in Additional File 2
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providing the flexibility to aggregate the gridded esti-
mates into any geographically defined unit, which might 
be useful from a policy or programmatic perspective. 
We demonstrated this step by aggregating the gridded 
predictions to the level of districts in Papua. The results 
of the geostatistical model predicted the proportion of 
Papuan children under 2 years of age experiencing SAM. 
By combining these estimates with gridded estimates of 
the population at risk, we were also able to predict the 
total number of children who experienced SAM. The use 
of proportions should be compared with predicted esti-
mates (counts) as they may have different implications 
in terms of policy responses. For example, although the 
prevalence of SAM in Asmat district (14%) is higher than 
that in Mimika district (8%), the total number of children 
affected by SAM in Mimika (2007) was much higher than 
that in Asmat (568 children).

The use of exceedance probabilities to express uncer-
tainty in predictions exceeding thresholds of SAM can be 
particularly useful from a policy-making standpoint. For 
instance, certain areas of the Papua province were likely 
to be in a critical situation, with well over 15% of Pap-
uan children under the age of two being severely acutely 
malnourished. This has important implications for mal-
nutrition programming in Papua to target those most in 
need. Our analyses highlight that significant advances in 
addressing malnutrition are required in the province if it 
is to meet the WHO Global Nutrition Target (GNT) to 
reduce wasting prevalence to less than 5% or the UN SDG 
to end all forms of hunger and malnutrition by 2030 [22].

Limitations
With reference to this particular study, the analysis has 
some limitations related to its source datasets. First, the 
distribution of the sample locations is not ideal for geo-
statistical modelling methods. Geostatistical models 
draw strength from spatial distribution of the sample 
sites and the assumption that areas near to observed 
samples are more similar. However, in this case study, 
the primary sampling units are located in a small num-
ber of districts, leading to a low spread of observations 
across the study area. That leaves large parts of the study 
area to be predicted from distant data points, which may 
lead to higher uncertainty in the predictions and it limits 
our ability to validate the outputs in these areas. Moreo-
ver, sites in close proximity (< 1 km) to one another may 
be coded as experiencing the same or very similar geo-
spatial covariate values (due to the spatial resolution of 
the covariates). Therefore, it is difficult for the covari-
ates to explain the observed differences in SAM among 
these clusters. The pattern of cluster locations may have 
affected the parameter estimates for the covariates and 
result is more uncertainty in the gridded predictions. 

Finer resolution covariates could be explored to account 
for this, though the predictions become more computa-
tionally challenging.

In addition, the source data are not representative in 
the same way that a national survey, such as the DHS or 
National Nutrition Surveys, would be. The baseline sur-
vey data were sampled from households in Papua where 
the caregiver self-identified as being of indigenous Pap-
uan ethnicity [8]. We used this sample to examine the 
geographic variation in SAM, therefore our predicted 
SAM risk is most representative of that population of 
children in Papua. In the absence of estimates of the 
indigenous Papuan population, we used total population 
estimates to approximate the population distribution. If 
children of different ethnic groups in Papua experience 
higher (or lower) rates of SAM, then our estimates of the 
absolute number of children who were SAM—which rely 
on an estimate of the total population—could be under- 
(or over-) estimated. Future studies are needed to under-
stand the distribution of different population groups in 
Papua and their risk of malnutrition.

Additionally, treatment districts for the Child Grant 
(BANGGA Papua) were specifically targeted and selected 
from the poorest districts in the province. We did not 
explicitly model this characteristic of the sample, but these 
factors were taken into account by controlling for accessi-
bility and local context so that predictions in un-sampled 
areas were as accurate as possible. With only one set of 
source data for the Papua analysis, however, validation 
options for modelling were also limited. Cross-validation 
was employed to evaluate out-of-sample precision.

It should also be noted that SAM is a relatively fast-
moving indicator of malnutrition. In this regard, SAM 
or wasting reflects acute or short-term malnutrition, 
while stunting reflects chronic or long-term malnutri-
tion [23] and while we can predict SAM at one point in 
time, the prevalence of this indicator might have changed 
soon after measurement. Cross-sectional surveys, as used 
in this study, may not fully capture the fast-moving and 
changing risk of SAM. More waves of data at shorter time 
intervals (e.g. multiple times per season) could help iden-
tify “hot spots” with a consistently higher risk of SAM.

Policy relevance and benefits
The use of modelling methods to combine geospatial data 
with sparse geolocated survey data to predict health out-
comes at high resolution or into unsampled areas offers 
many potential benefits in planning programs and moni-
toring progress toward government targets and the SDGs.

As noted earlier, many areas within Papua are very 
remote and cannot be accessed securely due to out-
breaks of violent conflict, making ground-level data col-
lection expensive or impossible [8]. Our findings suggest 
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that this approach could provide real benefits in similar 
contexts where data collection is not possible or tradi-
tional surveys might experience gaps in coverage, such as 
remote areas, conflict-affected states, or areas with secu-
rity concerns.

While the baseline data for Papua covered only six 
districts, these modelling techniques enabled us to 
predict SAM prevalence for the entire province – 
including districts that were not initially included in 
the baseline survey. Some of these districts also had 
high predicted levels of SAM, illustrating how this 
approach enabled us to identify SAM hot-spots that 
could be targeted with interventions that are known to 
work when tackling child undernutrition, such as for 
example the WHO-recommended approach of com-
munity management of acute malnutrition (CMAM) 
and ready-to-use therapeutic foods (RUTF) in com-
munity settings [24, 25].

Conclusion
Eradication of malnutrition remains a key development 
goal, particularly in the context of LMICs. The application 
of geospatial mapping to SAM is relatively unexplored. 
This study shows that such a technique can be used to 
improve the monitoring and timely estimation of popula-
tions at risk of malnutrition in a context where geo-refer-
enced survey or evaluation data related to a specific subject 
(malnutrition) are available, even when such data were not 
specifically collected for the purposes of mapping.

Despite the limitations, we show that sparse survey 
data can be used to derive relevant insights on the geo-
graphical distribution of SAM both for surveyed and 
non-surveyed areas. These could inform programming 
strategies and government responses to target areas 
where models show that SAM prevalence consistently 
exceeds a certain threshold with a specific degree of 
certainty.

In particular, this technique enabled us to generate 
insights about the prevalence of SAM in a context where 
data is scarce. This approach could therefore be particularly 
useful in a low-income country context where data collec-
tion is expensive, and where areas are inaccessible due to, 
for example, remoteness, political instability, and violent 
conflict.
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