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Survival prediction in triple 
negative breast cancer using 
multiple instance learning 
of histopathological images
Piumi Sandarenu1, Ewan K. A. Millar2,3,4,5, Yang Song1, Lois Browne6, Julia Beretov2,3,6, 
Jodi Lynch3,6, Peter H. Graham3,6, Jitendra Jonnagaddala7, Nicholas Hawkins8, 
Junzhou Huang9 & Erik Meijering1*

Computational pathology is a rapidly expanding area for research due to the current global 
transformation of histopathology through the adoption of digital workflows. Survival prediction of 
breast cancer patients is an important task that currently depends on histopathology assessment 
of cancer morphological features, immunohistochemical biomarker expression and patient clinical 
findings. To facilitate the manual process of survival risk prediction, we developed a computational 
pathology framework for survival prediction using digitally scanned haematoxylin and eosin-stained 
tissue microarray images of clinically aggressive triple negative breast cancer. Our results show that 
the model can produce an average concordance index of 0.616. Our model predictions are analysed 
for independent prognostic significance in univariate analysis (hazard ratio = 3.12, 95% confidence 
interval [1.69,5.75], p < 0.005) and multivariate analysis using clinicopathological data (hazard ratio 
= 2.68, 95% confidence interval [1.44,4.99], p < 0.005). Through qualitative analysis of heatmaps 
generated from our model, an expert pathologist is able to associate tissue features highlighted in 
the attention heatmaps of high-risk predictions with morphological features associated with more 
aggressive behaviour such as low levels of tumour infiltrating lymphocytes, stroma rich tissues and 
high-grade invasive carcinoma, providing explainability of our method for triple negative breast 
cancer.

Breast cancer is the most prevalent type of cancer and the leading cause of cancer deaths worldwide, with more 
than 2.2 million cases diagnosed and over 680 thousand breast cancer deaths reported globally in 20201. Current 
routine histopathology practice analyses key tumour morphological features to provide important information 
to guide treatment decisions. Histological subtype, grade, tumour size, tumour infiltrating lymphocytes (TILs) 
density, and lymph nodal status are important prognostic variables supplemented by four biomarkers: estrogen 
receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor-2 (HER2) and Ki67 which 
are largely unchanged in almost 20 years.

Our research is focused on triple negative breast cancer (TNBC), defined by the absence of expression of ER 
and PR along with absence of amplification of the HER2 gene2. It is an aggressive type of breast cancer accounting 
for about 10–20% of all breast cancers3. Both overall survival and disease-specific survival of TNBC patients are 
worse compared to non-TNBC patients with a 5-year survival of 60–70%. TNBC is also more common among 
younger patients and may be associated with breast invasive carcinoma (BRCA) mutations and familial inherit-
ance, making it a particularly significant type of cancer. Although 5-year survival of TNBC patients is generally 
poor, those patients who survive beyond this have an excellent prognosis. However, the ability to predict those 
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patients with favourable outcome is currently limited. Traditionally, risk assessment for TNBC is based on clin-
icopathological parameters visually assessed by pathologists. Treating oncologists use these features to estimate 
risk of recurrence and guide treatment decisions supplemented by the use of online clinical algorithms4–6. To 
make the decision-making process less labour intensive and faster, it would be desirable to develop a system that 
can rapidly and objectively interrogate tumour features with equal performance to an expert pathologist while 
maintaining universal applicability on any data cohort regardless of region of origin, equipment used, or level 
of expertise of the observer.

Deep learning has gained recognition as a method of developing fast and accurate computational models to 
perform complex real-world tasks at the same level of performance as an expert human in that field. It is particu-
larly transformative in the field of computational pathology, where large datasets and resource intensive annota-
tion processes are two common challenges7–12. Recently, deep learning models are used successfully in trying to 
predict risk and survival for various cancer types. A convolutional neural network (CNN)13 with convolutional 
and fully connected layers was used for survival prediction in low-grade glioma (LGG) and glioblastoma multi-
forme (GBM) and was able to obtain a concordance index (c-index) of 0.741. PAGE-Net14 used an architecture 
with a CNN pathway for histopathological images and a separate fully connected pathway for transcriptomic 
data to produce a c-index of 0.702 while successfully identifying tissue patterns and genes associated with cancer 
survival. Since histopathological images are millions of pixels in size, they are divided into smaller patches and 
used as input for deep learning models. This setup where a single survival label represents hundreds or even 
thousands of image patches with one or more patches contributing towards the survival outcome, can be closely 
associated with the multiple instance learning (MIL) problem.

MIL models have been used successfully for computational pathology tasks in past literature15–19. A MIL-
based CNN15 was used for prediction of patient-level survival using lung and colorectal carcinoma (CRC) histo-
pathological images and was able to achieve state-of-the-art results with c-index of 0.6963. Another MIL-based 
deep learning system (DLS)16 was developed with model outcome significantly associated with patient survival for 
multiple types of cancer having a cumulative c-index of 0.61 and hazard ratio of 1.58 ( p < 0.0001 ). DLS achieved 
a 0.72 c-index and hazard ratio of 2.86 ( p = 0.0034 ) for a publicly available BRCA dataset. However, different 
from our work, the authors used a categorical approach on the survival output prediction and multiple image 
patches as direct input, thereby making the model highly computationally complex. Another study presented 
a CNN for risk categorisation with a c-index of 0.620 and high/low risk classification having a hazard ratio of 
2.10 ( p = 0.001 ) for a digital tissue microarray (TMA) dataset of breast cancer. A multi-resolution deep learn-
ing model was used in a recent study21 to obtain a c-index of 0.706 for a dataset of breast cancer histopathology 
images. However, their model required tumour, lymphocyte and nuclear segmentation maps of corresponding 
histopathological images to make a prediction. Apart from the methods discussed above, where images are used 
as input to the deep learning model, there are other approaches for survival prediction that utilize cell/tissue 
detection and segmentation of images using deep learning, followed by subsequent analysis of cell clusters and 
tissue densities22–24. These methods have shown promising results particularly for TNBC disease where a known 
relationship is available between low TILs-tumour and poor prognosis25,26. However, these models require time 
consuming and labour intensive pathologist annotations, multimodal input data, and are limited to a selected 
set of features derived using the given annotations.

Despite the increase in histopathology image-based deep learning methods for survival prediction in different 
types of cancer, such models do not show much performance improvement compared to traditional methods20,27 
in breast cancer and TNBC disease in particular, or they require large amounts of annotations and resources 
which reduces scalability and reproducibility16,19,21. Existing MIL-based or weakly-supervised deep learning 
methods have not been applied to survival prediction in TNBC, potentially due to the significant challenges 
when analyzing histopathology images for TNBC cases. In this paper, we present our MIL-based deep learn-
ing model with attention weighted pooling for TNBC patient survival prediction from TMA images. We use a 
weakly labeled dataset consisting of images and patient-level information of 244 TNBC patients. We use pre-
trained neural networks to extract image features which are subsequently introduced as input to our MIL-based 
deep learning model. We also use a modified loss function to fine-tune the model after initially training it using 
negative partial log likelihood. We notice higher performance when using image features derived from a model 
pretrained on histopathological data compared to a model pretrained using ImageNet data. We also explore 
the effects of feature clustering and direct feature input to the model. Also, the attention heatmaps produced 
by our model provide explainability of the outcome through qualitative analysis by an expert pathologist. The 
types of tissues given higher attention by our model are related to known tissue features associated with higher 
risk of breast cancer-specific death, providing interpretability to the results. In addition, multivariate statistical 
analysis confirms that the results obtained from our model are statistically significant against routinely used 
clinicopathological parameters. To the best of our knowledge, this is the first deep learning study addressing 
survival analysis for TNBC with extensive experiments and interpretable results.

Materials and methods
Since for each patient a single survival label represents hundreds of image patches with one or more patches con-
tributing to the outcome, we modeled survival prediction as a deep learning-based MIL problem. Here we present 
the dataset and preprocessing, the feature extraction and survival prediction network architectures, the train-
ing strategy and evaluation criteria we used, and the heatmap generation for interpretation of the predictions.

TMA dataset of TNBC patients.  The TNBC dataset (Fig. 1) was acquired from St. George Hospital, Syd-
ney, Australia (St. George Breast Boost randomised radiotherapy clinical trial28 NCT00138814) with clinico-
pathological features as previously published29. TMAs were constructed with sampling of 3× 1.25 mm cores per 
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tumour from the periphery of each tumour as directed by a pathologist. H&E sections were digitally scanned at 
40× magnification (0.25 µm/pixel) using a Ventana DP200 digital scanner (Roche Diagnostics). A total of 236 
patients had 3 TMA cores each, while 7 patients had 2 TMA cores each. One patient who had only 1 TMA core 
was removed, thereby reducing the total number of patients in our dataset to n = 243 . These TMA cores were 
selected from regions of interest in the whole tissue sections by an expert pathologist. The dataset contained 
follow-up time, overall survival status and breast cancer-specific survival status for each patient. The median 
follow-up was 4.3 years (range 0.02–16.3 years). There were 48 TNBC specific deaths and 71 total deaths from 
all causes in this cohort.

In addition to images and patient outcome, the dataset included patient-level information annotated by an 
experienced pathologist: tumour grade, histologic subtype, lymph node status, age at diagnosis, tumour size, 
TIL score (manually estimated on whole tumour sections), and TIL detections (generated through cell detection 
and classification built-in algorithms from QuPath30). A summary of the clinicopathological parameters can be 
found in Table 1 and a more detailed analysis of these parameters is presented in our previous work29. To further 

Figure 1.   Magnified view of a tissue patch (right) extracted from one core (middle) of a TMA (left) from the 
TNBC cohort. On average each core is 1.25 mm in diameter. All slides were scanned at 0.25 µm/pixel resolution.

Table 1.   Characteristics of the clinicopathological parameters of the TNBC dataset. * n is the number of 
patients in the full dataset (statistical analysis is carried out in 3 stages and the number of patients for each 
stage is indicated in the relevant table). ** Other includes invasive micropapillary, lobular and apocrine 
carcinoma.

Parameter n
∗ %

Tumour grade

2 12 4.9

3 231 95.1

Tumour subtype

Invasive ductal carcinoma 220 90.5

Metaplastic 17 7.0

Other∗∗ 6 2.5

Lymph node positivity

Positive 85 35.0

Negative 155 63.8

Age at diagnosis (median 58 years, range 18.8–91.9)

  > 55 years 141 58.0

≤ 55 years 102 42.0

Tumour size (median 22.0 mm, range 7.0–120.0)

> 20 mm 131 53.9

≤ 20 mm 112 46.1

TIL score (median 20, range 0–90)

< 30 110 45.3

≥ 30 133 54.7
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evaluate the performance of our model trained on the TMA dataset, we also tested it on an external set of TNBC 
whole slide images (WSIs) from The Cancer Genome Atlas (TCGA)31 public dataset.

Data preprocessing.  The dataset was preprocessed as follows. We performed a simple tissue mask genera-
tion using basic morphological operations to avoid large holes and damaged sections of the tissue cores. Firstly, 
the images were converted to grayscale and Otsu thresholding32 was applied to select valid pixels belonging to 
tissue areas. Next, morphological closing was performed to select all objects using an appropriate kernel. Then 
we retained the main tissue contour while suppressing holes larger than ∼1470 µm2 . This simple method gave 
us a reasonable approximation of the valid tissue masks and made it easier and more intuitive to understand the 
patch selection process and results. Basic geometric transformations (flips and rotations) were used to augment 
the dataset by up to four times ( naug4× = 972 ). Additional experiments were carried out with more augmenta-
tions (flips, rotations, and colour transforms) resulting in a twelve times increase in dataset size ( naug12× = 3159
).

Feature extraction.  We used pretrained neural networks to extract features from images patches. Inspired 
by previous successes of using pretrained weights of deep learning models trained on natural image data15,19,20, 
we first developed a model using features derived from VGG16 pretrained on the ImageNet dataset. These mod-
els did not show competitive performance compared to state-of-the-art (Supplementary Table S1). Therefore, we 
experimented with neural image compression (NIC)33,34 which was introduced as a method of compressing giga-
pixel WSIs. The NIC model uses an encoder to compress image patches of 128× 128 pixels into an encoding vec-
tor of size 1× 1× 128 . A dataset of WSIs from multiple types of cancer has been used to train the bidirectional 
adversarial network used in NIC. A subsequent paper by the same authors35 used the pretrained NIC encoder 
for non-small cell lung cancer subtyping to achieve state-of-the-art results.

We applied the pretrained NIC encoder to extract features from images patches. The cores were divided into 
non-overlapping patches of size 256× 256 pixels. The choice of this patch size was dependent on the pretrained 
model of NIC, which requires inputs of size 128× 128 pixels with 0.5 µm/pixel in resolution. Since the resolu-
tion of our image dataset is 0.25 µm/pixel at highest magnification, 256× 256 patches were downsampled by a 
factor of 2. This created a vector of size 1× 1× 128 per patch representing a 256× 256 pixel area of a TMA core. 
Finally, patches of 512× 512 pixels with four adjacent non-overlapping vectors (each representing a patch size 
of 256× 256 pixels) were used as a single input. We selected patches of 512 pixels to make sure that the tissue 
morphology of the selected area is represented in sufficient detail. A patient with 3 TMA cores had ∼220 patches 
of size 512× 512 pixels represented as 2× 2× 128 vectors for the prediction pipeline.

Basic network architecture.  Our survival prediction pipeline is inspired by15, where a multiple instance 
fully convolutional network with an attention-based representation aggregation with shared weights was used. 
In our experiments we considered two approaches. In the first approach (Model 1, Fig. 2), patches are clustered 
into phenotypes based on their deep learning features at patient-level using a k-means clustering algorithm. 
Therefore, each phenotype is a vector represented by 1× xi × d , where xi is the number of patches for the ith 
phenotype and d is the feature vector for a given patch. We experimented with several values of k, the details of 
which will be discussed later. The clustered encodings for each phenotype pass through a single layer of convolu-
tion followed by a rectified linear unit (ReLU) activation and global average pooling to produce a local represen-
tation for each phenotype cluster (dropout of 50–70% showed slight increase in performance for some experi-
ments). For a given patient with C phenotype clusters, local representations can be given by H = {h1, h2, . . . , hC} 
where hi is the local representation for ith phenotype. These representations are aggregated based on their atten-
tion weights according to

where z is the patient-level representation and ai is calculated as

with w ∈ R
L×1 and V ∈ R

L×M being trainable parameters and C the number of phenotypes. Tangent tanh(.) 
element-wise nonlinearity is used so that both positive and negative values are considered during gradient flow. 
This allows the model to consider similarities and dissimilarities among instances. After observing the attention 
weights for each phenotype cluster, we found no significant weight difference between phenotypes. Therefore 
in our second approach (Model 2, Fig. 3), we performed experiments with unclustered patch encodings to 
visualise the effect of attention weights. Here we removed the phenotype clustering step and applied the deep 
learning pipeline directly to the feature vector of input image patches. During the aggregation step, we calculated 
an attention-based weight for each patch, enabling the generation of an attention heatmap for each TMA core. 
By observing these results, an expert pathologist was able to identify interesting morphological tissue patterns 
emphasised by the model, thereby providing interpretability to the results.

Training strategy and evaluation criteria.  Similar to several related research studies15,16,36, we used 
the negative partial log likelihood as the loss function to train our model. For the ith patient, we can denote the 

(1)z =

C
∑

i=1

aihi ,

(2)ai =
exp{wT tanh(VhTi )}

∑C
j=1 exp{w

T tanh(VhTj )}
,
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predicted output risk score as oi and label as ( ti , δi ), where ti is the follow-up event time and δi is the censoring 
status. For patients whose death is not observed, δi = 0 , and for patients subjected to disease specific death, 
δi = 1 . Event times can be considered as an ordered set of observations where t1 < t2 < t3 < · · · < tN for n = N 
number of patients. For any arbitrary patient i whose follow-up time is ti , a risk set R(ti) can be defined as the set 
of patients whose follow-up times are greater than or equal to ti . Given that a unique event occurs at time t, the 
probability of death for patient i can be calculated according to Li . Conditioned upon occurrence of all deaths, 
the joint probability of all events becomes the partial likelihood L.

We can maximise log(L) and equivalently minimize the negative log partial likelihood over the deep learning 
model parameters. Therefore, the loss function for our model is defined by

(3)Li =
exp(oi)

∑

j∈R(ti)
exp(oj)

, L =
∏

i:δi=1

exp(oi)
∑

j∈R(ti)
exp(oj)

.

Figure 2.   Architecture of the MIL-based survival risk prediction model using pretrained feature encodings 
(Model 1).

Figure 3.   MIL-model can be reconfigured to allow each feature vector to be accepted as input to the network 
and attention weights be applied on each vector (Model 2). This generates an attention heatmap that highlights 
tissue areas of interest associated by the network as relevant to a given prediction.
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It can be seen that L(oi) considers only the relative ordering of events when calculating the loss.
In addition to the negative log partial likelihood component, the authors of RankSurv37 proposed a novel loss 

component that takes ranking of each observation into account. Following that approach, we used a ranking-
based loss component to the final loss function as a method of refining the result after the model is trained for 
a few epochs using negative log partial likelihood:

For optimization, we used the Adam optimizer38 with a weight decay of 5× 10−3 and learning rate of 1× 10−5 
for Model 1 and a learning rate of 2× 10−5 for Model 2. To quantify the accuracy of the predictions, we used 
the concordance index (c-index), which is a common evaluation criterion in survival prediction studies. For a 
covariate X and survival time T, assume that higher values of X imply shorter value for T. For observations 1 
and 2, if x1 ≥ x2 where t1 < t2 , it is a pair of observations in concordance (C). If x1 ≥ x2 where t1 > t2 , it is a 
pair in discordance (D). If x1 = x2 , it is an equal risk pair of observations (R). Then, concordance index ( ̂c ) can 
be defined as

Interpretability using heatmaps.  To interpret the results and recognize the types of tissue morphological 
features and image patches that are primarily related to the result, we carried out a set of experiments with Model 
2. In these experiments, feature encodings from image patches were introduced as input to the convolutional 
block. These encodings were aggregated based on attention weight and passed through the fully connected net-
work to arrive at a final prediction. We carried out experiments for patch sizes of 512× 512 and 256× 256 pixels, 
which produced similar results. Due to the availability of greater number of data points when using interpolation 
of attention weights to produce the heatmap, we opted to use the 256× 256 patch size in this experiment.

Ethical approval.  Ethical approval was provided by the South Eastern Sydney Local Health District Human 
Research Ethics Committee at Prince of Wales Hospital (2018/ETH00138 and HREC 96/16), who granted a 
waiver of consent to perform research analyses on the tissue blocks. All methods were performed in accordance 
with the relevant institutional guidelines and regulations.

Experimental results
The proposed MIL survival prediction models were trained, validated and tested on the TMA TNBC dataset and 
further verified against the TNBC histopathological images from the externally available public TCGA dataset. 
We present the details of the setup and the results obtained in the experiments with each model. Comparisons 
of our model performance is constrained to the different configurations of our model on internal and external 
data and statistical analysis of our model output against routinely used clinicopathological parameters provided 
by an expert pathologist. This is due to the scarcity of similar deep learning-based research with publicly avail-
able model implementations and the complexity of model development and training in order to replicate the 
architectures presented in past literature.

Results of model 1.  This section contains results of various experiments using Model 1 (Fig. 2).

Clustering experiments.  We carried out several experiments with the NIC pretrained model, fine-tuned 
with ranking loss and randomly initialized, for 512× 512 image patches using different numbers of clusters, 
k = 4, 6, 8, 10, 12 , generated by k-means unsupervised clustering algorithm, to identify if there was a relation-
ship between the number of clusters and model performance. We performed 5-fold cross validation, using 80% 
of the data in the training and validation sets (divided 70/30) and 20% in the test set in each fold, and calcu-
lated the average performance for each cluster number by considering the predictions calculated for all patient 
through the test set of each fold (Table 2). We observed the distribution of attention weights among clusters 
and found that there was no significant increase in performance that can be attributed to a particular k value. 
Comparison of the average c-index shows that the effect of clustering does not affect the model performance 
significantly. However, much larger and smaller k values had comparatively lower performance. We selected 
k = 10 since it had the highest average c-index (0.616), and out of that experiment we selected the fold with the 
highest c-index (0.7179) for subsequent univariate and multivariate analysis. In addition, we studied the effects 
of adding ranking-loss to the negative partial log likelihood loss starting from different epochs of the training 
process (Supplementary Table S2).

Verification against TCGA TNBC dataset.  We then verified our model performance against a set of TNBC cases 
derived from the publicly available TCGA dataset by testing them using our trained model. Out of 101 cases 
of TNBC, we omitted 6 cases due to unacceptably low quality of the diagnostic slides, resulting in a dataset of 

(4)L(oi) =
�

i

δi



−oi + log
�

j:tj≥ti

exp(oj)



.

(5)Lr = − log
(

�(oi − oj)
)

, �(x) =
1

1+ exp(−x)
.

(6)ĉ =
C + R/2

C + D + R
.
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n = 95 cases. The median follow-up time was 1.17 years (range 0–9.51 years). The model produced a c-index 
of 0.589, which proves that it can retain a reasonable level of predictive power despite high variability and poor 
quality of some of the WSIs. Note that due to the lower incidence of death in the TCGA dataset, our effort on 
trying to train using TCGA and the apply to our TMA dataset yielded a low c-index of a maximum of only 0.55.

Comparison of model performance with clinicopathological parameters.  We selected the best performing fold 
from the 5-fold experiment above with highest average c-index to perform survival analysis of the results using 
Cox proportional hazard regression and Kaplan–Meier plots. We performed statistical analysis of our model in 
three stages. First, we assessed the univariate statistical significance of the model results using only the test data. 
However, this stage contained test data with only 10 disease-specific death events, which can be argued as an 
inadequate number of events. Secondly, we considered the results of our model prediction on test and validation 
data combined, which contains 21 disease-specific deaths. We analysed whether at this stage our model results 
are statistically significant in univariate and multivariate analysis against clinicopathological parameters. Finally, 
we applied our trained model to the entire dataset and evaluated the statistical significance of the results against 
clinicopathological parameters. In each case, we divided the model prediction into high/low groups based on the 
median value of the prediction calculated using the set of patients included in respective analysis.

Statistical Analysis Stage 1
In the first stage, we performed statistical analysis using test data of our selected model. This included a total 

of 49 patients with 10 patients subject to disease-specific death. Univariate Cox proportional hazard regression 
for high/low risk groups with median cut-off value = 0.018 showed that the model is statistically significant: HR 
= 4.03, 95% CI [1.04, 15.70], p = 0.04 . Figure 4a shows the Kaplan–Meier plot of this analysis stage.

Statistical Analysis Stage 2
In the second stage, we combined the test and validation data to perform statistical analysis of our model. 

This data was not used as input in the training of our model and contained 60 TNBC cases with 21 disease-
specific deaths. We performed high/low risk prediction on this data set with median cut-off at 0.019. Univariate 
Cox proportional hazard gave statistically significant results: HR = 4.77, CI 95% [1.83, 12.43], p < 0.005 . The 
results of multivariate Cox proportional hazard regression are presented in Table 3. The Kaplan–Meier plot for 
this data is shown in Fig. 4b.

Statistical Analysis Stage 3
In the third and final stage of our analysis, we applied the trained model to the entire dataset by dividing 

based on median predicted outcome with cutoff value 0.015 to categorise the patients into high- and low-risk 
groups. Our results for univariate and multivariate analysis of clinicopathological parameters for disease-specific 

Table 2.   C-index of 5-fold cross validation results for MIL deep learning architecture (Model 1). *Trained 
model of the best performing fold is used for univariate and multivariate experiments.

k

C-index for each fold Average 
c-indexFold 1 Fold 2 Fold 3 Fold 4 Fold 5

4 0.6236 0.5058 0.6213 0.6984 0.5809 0.606

6 0.5857 0.6114 0.7002 0.5624 0.5559 0.603

8 0.5717 0.5613 0.6527 0.7444 0.5306 0.612

10 0.6470 0.6118 0.7179 ∗ 0.5764 0.5289 0.616

12 0.6494 0.4957 0.6619 0.6141 0.5931 0.603

Figure 4.   Kaplan–Meier survival estimation for three stages of analysis using the deep learning model (Model 
1) output for disease-specific survival in TNBC. The plots show the results of using (a) only the test data (Stage 
1), (b) test and validation data (Stage 2), and (c) the whole dataset of TNBC patients (Stage 3).
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survival outcome are presented in Table 4. Univariate analysis of MIL-based prediction outcome shows that it 
is independently statistically significant for disease-specific outcome: breast cancer specific survival HR = 3.12, 
95% CI [1.69, 5.75], p < 0.005 . Multivariate analysis modelling for outcome shows that the model was statisti-
cally significant accounting for standard clinicopathological parameters: model HR = 2.68, 95% CI [1.44, 4.99], 
p < 0.005 , versus age p = 0.05 , tumour size p = 0.02 , lymph node status p < 0.005 ). The Kaplan–Meier plot 
is shown in Fig. 4c.

These statistical tests confirm that our model is capable of outperforming some of the strongest clinicopatho-
logical parameters. Therefore, we suggest that our model could be used to elevate the effort spent by patholo-
gists visually assessing tissue features in histopathological images. Our results provide proof of concept that our 
model can represent and quantitatively summate several human-derived tissue features, thereby confirming the 
explainability of our model.

However, it must be noted that our model does not outperform the single most significant pathological 
prognostic factor in breast cancer, which is lymph node status. Lymph node status is determined by pathological 
examination of lymph nodal sampling by sentinel node biopsy or a larger axillary dissection specimen, separate 
from the resection specimen containing the tumour itself. We consider that our model could prove helpful for 
clinicians in treatment planning and risk assessment of node negative patients to augment data available for 
chemotherapy decisions.

Results of model 2.  This section provides details of the results of Model 2 (Fig. 3) and the pathological 
implications.

Comparison of model performance with clinicopathological parameters.  Our experiment with Model 2 pro-
duced a c-index of 0.71 on the test dataset and 0.67 on the overall dataset. The Kaplan–Meier plot for high/
low risk categorization of the results based on the median prediction for the cohort (Fig.  5) shows that the 
model is independently statistically significant of the outcome. The model outcome was statistically significant 
for univariate Cox proportional hazard regression analysis: HR = 2.75, 95% CI [1.52, 4.98], p < 0.005 . From the 
multivariate analysis of model prediction against clinicopathological parameters using Cox proportional hazard 
regression (Table 5) we see that model prediction (median cutoff value = 0.21) is capable of outperforming all 
but the lymph node status parameter. Compared to the results from Model 1 (Fig. 4, Table 4), it can be seen 
that in both cases our model outputs are independently statistically significant of disease-specific outcome and 
statistically significant of disease-specific outcome compared to other important clinicopathological parameters.

Attention heatmaps.  Figure 6 shows the attention heatmaps generated using the scaled attention weights (con-
sidering maximum and minimum weights of the total dataset). By observing the attention-heatmaps from the 
experiments with Model 2, we were able to recognize key morphological characteristics appearing repeatedly 

Table 3.   Multivariate analysis for breast cancer specific survival of TNBC patients for Model 1 output on test 
and validation data. NS not significant.

Method/parameter Cutoff value No. of patients

Multivariate ( n = 60)

HR 95% CI p

MIL (Model 1) > 0.019 vs. ≤ 0.019 30 vs. 30 4.00 1.41–11.35 0.01

Age > 55 vs. ≤ 55 35 vs. 25 2.69 0.98–7.37 0.05

Tumour size > 20 vs. ≤ 20 (mm) 36 vs. 24 4.64 1.27–16.88 0.02

LN status pos. vs. neg. 24 vs. 36 3.23 1.18–8.82 0.02

TIL score < 30 vs. ≥ 30 36 vs. 24 NS

Grade 2 vs. 3 5 vs. 55 NS

Table 4.   Univariate and multivariate analysis for breast cancer specific survival for the full dataset of TNBC 
patients using Model 1 output. NS not significant.

Method/parameter Risk group cutoff value
No. of patients in each 
group

Univariate ( n = 240) Multivariate ( n = 240)

HR 95% CI p HR 95% CI p

MIL (Model 1) > 0.015 vs. ≤ 0.015 120 vs.120 3.12 1.69-5.75 < 0.005 2.68 1.44–4.99 < 0.005

Age > 55 vs. ≤ 55 139 vs. 101 1.98 1.08-3.62 0.03 1.87 1.00–3.49 0.05

Tumour size > 20 vs. ≤ 20 (mm) 129 vs. 111 2.40 1.29–4.49 0.01 2.16 1.13-4.15 0.02

LN status pos. vs. neg. 85 vs. 155 3.21 1.80-5.71 < 0.005 2.71 1.50–4.91 < 0.005

TIL score < 30 vs. ≥ 30 131 vs. 109 1.87 1.03–3.42 0.04 NS

Grade 2 vs. 3 12 vs. 228 1.45 0.52–4.06 0.47 NS
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in patients with high-risk predictions (high/low risk groups categorized using the median risk prediction). The 
most prominent histological features that have been identified by a pathologist through qualitative analysis of 
our results are: high-grade carcinoma/tumour epithelium, high stromal content, infiltrative growth pattern, and 
low TILs. As indicated in Table 4 and previous studies22,23,25,29 low TILs-tumours have been shown to have poorer 
survival and poorer response to chemotherapy compared to high TILs TNBC tumours. Our model prediction is 

Table 5.   Multivariate analysis for breast cancer specific survival of TNBC patients for Model 2 output. NS not 
significant.

Parameter Cutoff value No. of patients

Multivariate ( n = 240)

HR 95% CI p

MIL (Model 2) > 0.21 vs. ≤ 0.21 118 vs. 122 2.28 1.24–4.18 0.01

Age > 55 vs. ≤ 55 139 vs. 101 1.91 1.03–3.55 0.04

Tumour size > 20 vs. ≤ 20 (mm) 129 vs. 111 1.96 1.02–3.74 0.04

LN status pos. vs. neg. 85 vs. 155 2.81 1.55–5.07 < 0.005

TIL score < 30 vs. ≥ 30 131 vs. 109 NS

Grade 2 vs. 3 12 vs. 228 NS

Figure 5.   Kaplan–Meier survival estimation of high/low categories of Model 2 for disease-specific survival in 
TNBC.

Figure 6.   Heatmaps (a1–h1) and corresponding H&Es (a2–h2) from a representative case categorised as 
high-risk by the MIL classifier. The features present are those of a stroma-rich, low-TILs tumour and low-TILs 
tumour.
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consistent with this observation where cases assigned high-risk correspond to those tumours with low levels of 
infiltrating TILs, indicating low levels of anti-tumour immunity (so called “immune cold” tumours). Although 
high stromal content and infiltrative growth patterns are not currently used as standard pathological features, 
there is evidence that tumour stromal ratio (TSR) is prognostic in previous published work in this cohort29 and 
other independent studies39,40. Scoring of TILs and stromal content is difficult for human observers, and com-
putational tools may be a more reproducible way of assessing these features. Our model also detects carcinoma 
epithelium, which may reflect subtle morphologic cellular changes that potentially correspond with an underly-
ing molecular phenotype associated with risk. However, we do not have any genomic characterisation as yet to 
further assess these possible associated genomic features. Supplementary Fig. S1 shows more heatmaps of TMA 
cores with similar observations for stroma-rich, low-TILs areas of tumour highlighted by our model.

Discussion
This study aimed to create a deep learning model to predict survival outcome in triple negative breast cancer 
patients using histopathological images and patient-level information. We have demonstrated that our deep 
learning model has state-of-the-art performance with interpretable results, which correspond to known high-
risk features in TNBC. Interestingly, our MIL model appears to capture these important features with a unified 
risk prediction score of independent statistical significance which is of clinical relevance for highly aggressive 
TNBC. As most patients will be offered adjuvant chemotherapy to reduce the risk of recurrent disease, there 
may be a clinical scenario where chemotherapy (and hence unwanted toxicities) may want to be avoided for a 
MIL low-risk, node negative patient.

Although our model presents compelling results, there are several limitations and improvements that can 
increase clinical applicability of our method. In particular, our dataset was acquired from one institution, which 
uses relatively uniform and standardised tissue processing and staining protocols. Also, compared to using 
WSIs, our image data captures smaller areas of TMA cores extracted from whole tissue sections. Since our model 
achieves good results despite the constraints on the diversity of tissue morphologies captured in image patches, we 
expect that adapting our method for larger datasets of WSIs would produce better performance. Therefore, future 
research will be carried out on development and testing of deep learning models using more data from multiple 
institutions with more variation in tissue fixation and H&E staining that can improve performance, highlight 
prognostic signals, and increase applicability to clinical practice in divergent geographical locations. Moreover, 
in this study, we have trained our model using weakly labeled data. Our work can be extended using additional 
manual annotations such as tissue region annotations and cell annotations (such as immune cell annotations) that 
have the potential of improving performance and interpretability of survival prediction outcome. Such manual 
annotations can be used for quantitative evaluation of the tissue structures as opposed to the current qualitative 
approach. Finally, one of our key findings from the statistical analysis using clinicopathological parameters is 
the importance of lymph node status for the survival prediction task. Since our dataset contains only images 
extracted from tumour regions of whole tissue sections, a promising future area of improvement would be to 
incorporate additional specimens such as lymph nodes sections.

TSR is emerging as a prominent feature in tumour biology and prognostic significance. We and others29,39,40 
have consistently shown that TNBC tumours with abundant stroma (the supportive tissue containing collagen, 
fibroblasts, immune cells and blood vessels within which the tumour cells reside) have a poorer prognosis com-
pared to stroma-poor TNBC. Both TILs density (scored as a percentage of the peri-tumoural stroma occupied by 
immune cells) and TSR are difficult to be visually quantified by expert pathologists accurately and reproducibly, 
suffering from much subjective interpretation. Thus, there have been recent attempts to more accurately quantify 
these parameters using deep learning approaches13,41–43 in many tumour types to determine their prognostic 
significance as individual prognostic factors. One other tumour feature identified in the heatmaps of TNBC 
disease-specific deaths for high-risk cases was infiltration of fat by the tumour. The basis for this finding is cur-
rently uncertain in terms of biology as it is commonly observed in routine clincial pathology practice, but will 
be further assessed in ongoing work. It is noted that a similar risk association for fat infiltration was found in 
a deep learning survival prediction study in colorectal carcinoma44. Supplementary Fig. S2 shows examples of 
heatmaps with fat infiltrates assigned higher attention weight by our model.

These findings support the explainability of our AI predicted tumour features, which is critical to further 
enhance validity and develop trust amongst clinicians regarding the application of deep learning tools to clini-
cal pathology and oncology practice. This study demonstrates proof of principle that our system has potential 
as a clinical decision assisting tool, subject to further development, validation and testing in other independent 
datasets.

Data availability
The TNBC TMA image dataset and clinical data are not publicly available due to ethical restrictions but may be 
accessible on reasonable request to the corresponding author. TCGA image data and survival data are available 
publicly through https://portal.gdc.cancer.gov/.
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