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Disease outbreaks in stochastic SIR epidemic models are characterized as either minor or
major. When ℛ0 <1, all epidemics are minor, whereas if ℛ0 >1, they can be minor or
major. In 1955, Whittle derived formulas for the probability of a minor or a major
epidemic. A minor epidemic is distinguished from a major one in that a minor epidemic is
generally of shorter duration and has substantially fewer cases than a major epidemic. In
this investigation, analytical formulas are derived that approximate the probability density,
the mean, and the higher-order moments for the duration of a minor epidemic. These
analytical results are applicable to minor epidemics in stochastic SIR, SIS, and SIRS models
with a single infected class. The probability density for minor epidemics in more complex
epidemic models can be computed numerically applying multitype branching processes
and the backward Kolmogorov differential equations. When ℛ0 is close to one, minor
epidemics are more common than major epidemics and their duration is significantly
longer than when ℛ0≪1 or ℛ0[1.

© 2018 The Authors. Production and hosting by Elsevier B.V. on behalf of KeAi
Communications Co., Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Public health intervention and control strategies are designed to shorten the course of an epidemic. This is often achieved
through reduction of the basic reproduction numberℛ0 to a value below the critical threshold of one. However, forℛ0 close
to one, the duration of an epidemic is increased. This property is demonstrated in the following study of the duration of minor
epidemics in stochastic epidemic models.

It is well-known for deterministic SIR epidemic models that if ℛ0 <1, the number of infected cases decreases over time,
whereas if ℛ0 >1, the number of cases increases. However, the outcome differs in stochastic SIR epidemic models. In 1955
Whittle characterized two different types of epidemics in stochastic SIR models as minor or major (Whittle,1955). Onlyminor
epidemics occur when ℛ0 <1 and either minor or major occur when ℛ0 >1. Minor epidemics are distinguished from major
ones as generally being of shorter duration and with substantially fewer cases. Whittle derived the well-known formulas

ð1=ℛ0Þi for the probability of a minor epidemic and 1� ð1=ℛ0Þi for the probability of a major epidemic, given there are
initially i infected individuals and ℛ0 >1. Analytical expressions for the duration of these minor outbreaks are not well
known. In this investigation, analytical formulas are derived that approximate the probability density, the mean, and the
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higher-order moments for a minor epidemic of continuous-time Markov chain (CTMC) SIR, SIS and SIRS epidemic models. In
particular, it is shown that the mean duration T of a minor epidemic given Ið0Þ ¼ 1 is

EðT jT <∞Þ ¼
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>>>:
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ln
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where b is the transmission rate, g is the recovery rate, and ℛ0 ¼ b=g.
The probability of a minor or a major epidemic has been studied in more complex disease settings than the CTMC SIR

epidemic model by approximating the dynamics with a simple birth-death process, the backward Kolmogorov differential
equations, and a multitype branching process approximation (e.g. Allen, 2015; Allen, 2017; Allen & Lahodny, 2012; Allen &
van den Driessche, 2013; Athreya & Ney, 1972; Griffiths, 1972; Griffiths, 1973). The probability estimates are generally bet-
ter for large population sizes and large values of ℛ0 (e.g. Allen, 2015; Allen, 2017; Allen & Lahodny, 2012; Allen & van den
Driessche, 2013). Most theoretical research in stochastic models has focused on the duration of major SIR epidemics and
quasistationarity in SIS models when conditioned on nonextinction (e.g. Artalejo, 2012; Daley & Gani, 1999; Hernandez-
Ceron, Chavez-Casillas, & Feng, 2015; Hern�andez-Su�arez & Castillo-Chavez, 1999; Kryscio & Lef�evre, 1989; Norden, 1982;
Nåsell, 1996; Nåsell, 1999; Nåsell, 2001; van Doorn, 1991). In this investigation, the emphasis is on the duration of minor
epidemics, conditioned on extinction.

In the following section, the simple birth-death process and branching process theory are used to derive the probability
density and analytical formulas for the moments for time to extinction. In Section 3, the results from the simple birth-death
process are applied to minor epidemics in CTMC SIR and SIS models. Numerical results show good agreement between the
simulations and analytical estimates, given the population size is large. The increase in duration when ℛ0 is close to one is
demonstrated in these models and in Section 4 as well for the SEIR model with a latent stage.

2. Simple birth-death process

The simple birth-death process is a well-known approximation for many population processes (see e.g. Allen, 2010;
Athreya & Ney, 1972; Bailey, 1975; Daley & Gani, 1999; Novozhilov, Karev, & Koonin, 2006; Sehl, Zhou, Sinsheimer, & Lange,
2011; Whittle, 1955). The mean of the simple birth-death process is an exponential growth model,

dm
dt

¼ ðB� DÞm; (1)

where B and D are the per capita birth and death rates, respectively. We summarize briefly the simple birth-death process and
the expressions that lead to the probability of extinction and the time to extinction.

Let XðtÞ2f0;1;2;…g denote the discrete random variable for the population size in a time-homogeneous process with
transition probabilities defined as

pi;jðt � sÞ ¼ ℙðXðtÞ ¼ jjXðsÞ ¼ iÞ:
The infinitesimal transition probabilities for a small period of time Dt can be expressed as

pi;jðDtÞ ¼ ℙðXðt þ DtÞ ¼ jjXðtÞ ¼ iÞ ¼

8>><
>>:

BiDt þ oðDtÞ; j ¼ iþ 1;
DiDt þ oðDtÞ; j ¼ i� 1;

1� ðBþ DÞiDt þ oðDtÞ; j ¼ i;
oðDtÞ; jsi� 1; i; iþ 1:

(2)
The expressions in (2) lead to the backward Kolmogorov differential equations

dpi;j
dt

¼ Bipiþ1;j þ Dipi�1;j � ðBþ DÞipi;j: (3)
An important assumption in the simple birth-death process is that births and deaths occur independently of each other.

Therefore, the probability of extinction at time t beginning from i individuals, pi;0ðtÞ, can be written as ðp1;0ðtÞÞi. Derivation of
the expression for pi;0ðtÞ follows from generating functions and branching process theory (Athreya & Ney, 1972; Bailey, 1975;
Daley & Gani, 1999; Harris, 1963):
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pi;0ðtÞ ¼ Fiðt;D;BÞ ¼
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>>>>>:
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(4)
An outline of this derivation is given in Appendix A. The probability of ultimate extinction follows directly from (4):

ℙext ¼ lim
t/∞

pi;0ðtÞ ¼

8><
>:
�
D
B
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; B>D;

1; B � D:
If B � D, extinction occurs with probability one, but if B>D, extinction occurs with probability ðD=BÞi and the population

growswithout boundwith probability 1� ðD=BÞi. The time to extinction is finite only in the case B<D. If B ¼ D the mean time
to extinction is infinite while the probability of extinction is one. If B>D, the mean time to extinction is also infinite. We are
interested in the probability of hitting zero and the time it takes to hit zero, that is, population extinction when BsD.
Therefore, we condition on the time to extinction being finite and only consider those sample paths that hit zero (see Fig. 1).

2.1. Probability density function for time to extinction

Let Ti denote the time to extinction given Xð0Þ ¼ i. In the case B<D, extinction occurs with probability one, so that the
cumulative distribution function (cdf) of Ti is given by pi;0ðtÞ ¼ Fiðt;D;BÞ in (4). In the case B>D, extinction occurs with

probability ðD=BÞi. Therefore, conditioned on extinction the cdf of Ti is pi;0ðtÞðB=DÞi. The cdf with B>D is equivalent to the cdf
with B<D by interchanging the roles of B and D, i.e., Fiðt;B;DÞ. Differentiating Fi with respect to t, leads to the pdf for time to
extinction:

fTiðtÞ ¼

8>>>>>>>>>>>><
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(5)

where r1ðtÞ ¼ eðD�BÞt and r2ðtÞ ¼ eðB�DÞt . In the case B ¼ D and i ¼ 1, fT1 has a Pareto type II distribution (also known as a
Lomax distribution) with infinite mean and higher-order moments (Lomax, 1954).
Fig. 1. Five sample paths for the simple birth-death process are plotted along with the exponential growth model mðtÞ ¼ 3e0:1t . Three sample paths have finite
time to extinction, whereas two sample paths approach infinity. Close-ups of the sample paths are graphed to time 20 on the right. Parameter values are B ¼ 1:1
and D ¼ 1, with initial condition Xð0Þ ¼ 3. For the simple birth-death process, probability of extinction is ℙext ¼ ðD=BÞ3 ¼ 0:751 and the mean and the standard
deviation for time to extinction, conditioned on extinction, are m ¼ 5:34 and s ¼ 6:71.
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Graphs of the pdf fT3 for parameter values D ¼ 1, B>1 and B<1 are plotted for initial conditions Xð0Þ ¼ 3 in Fig. 2. The tails
of the distribution become “fat” as B approaches one (see Table 1). Some new analytical expressions for the mean and higher-
order moments for the time to extinction are computed in the next section.
2.2. Mean and higher-order moments for time to extinction

The mth moment of Ti can be computed directly from the integral

E
�½Ti�m��Ti <∞

� ¼ Z
∞

0

tmfTiðtÞdt;

where fTi ðtÞ is one of the two forms in (5). A closed form analytical expression for themeanwhen the initial size is Xð0Þ ¼ i ¼ 1
is given by

EðT1jT1 <∞Þ ¼
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(6)

Karlin and Tavar�e (Karlin & Tavar�e, 1982) derived the preceding expression in the case B<D when applied to a population
genetics model with mutation.

In the following cases, we assume that D ¼ 1. This assumption is not restrictive since scaling time in (3), t ¼ Dt, leads to
the backward differential equation for dpi;j=dt expressed in terms of a single parameter ~B ¼ B=D. In the following, we keep the

notation B instead of ~B recalling that D ¼ 1.
Explicit formulas for the moments are expressed in terms of special functions, polylogarithm functions of order n, LinðxÞ,

n ¼ 1;2;…. The polylogarithm function of order n can be expressed as a power series in x (Apostol et al., 2010):

LinðxÞ ¼
X∞
k¼1

xk

kn
; 0< x<1

or defined recursively as
Fig. 2. Plots of the pdf fT3 for D ¼ 1, B>1, and B<1 show that the tails of the distribution become “fat” as B approaches one.



Table 1
The probability that time to extinction is greater than five or ten time units given X(0) ¼ 3
and D ¼ 1 (See Fig. 2.).

B ℙðT3 >5Þ ℙðT3 >10Þ
2 0.011 6.81� 10�5

1.5 0.0843 6:75� 10�3

1.25 0.207 0.0518
1.1 0.325 0.143

0.9 0.347 0.156
0.75 0.249 0.0642
0.5 0.123 0.0101
0.1 0.0297 3:33� 10�4
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Linþ1ðxÞ ¼
Zx
0

LinðtÞ
t

dt; 0< x<1:

For order one, the polylogarithm Li1 has a closed form expression, Li1ðxÞ ¼ �lnð1� xÞ: The first and higher-order moments for
the duration until extinction are defined in terms of these special functions.

The mean time to extinction for D ¼ 1 and Xð0Þ ¼ i is

EðTijTi <∞Þ ¼
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(7)

whereHj ¼
Pj

k¼1ð1=kÞ are the harmonic numbers,H1 ¼ 1; H2 ¼ 3=2; H3 ¼ 11=6, etc. If the summation is undefined, then it is
set to zero. Extensions to higher-order moments when D ¼ 1 and Xð0Þ ¼ i ¼ 1 are

E
�½T1�m��T1 <∞

� ¼
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>>>>:
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Bð1� BÞm�1LimðBÞ; B<1;
(8)

for m ¼ 2;3;4;…. The preceding expressions for the moments agree with (6), when m ¼ 1, i ¼ 1 and D ¼ 1.
The higher-order moments Eð½Ti�m

��Ti <∞Þ, i>1, m>1 involve several polylogarithm functions. (The explicit expressions
for the case i ¼ 2 andm>1 are given in Appendix B.) Recently, Singh et al. (Singh, Schneider,&Myers, 2014) derived formulas
for the moments of T1 but for a birth-death process with killing (Karlin & Tavar�e, 1982).

The preceding formulas are used to compute some values for the probability of extinction, ℙext, mean m ¼ EðTijTi <∞Þ, and
standard deviation s ¼ ½EðT2i

���Ti <∞Þ � m2i �
1=2

in Table 2 for i ¼ 3.
3. Application to epidemic models

Near the disease-free equilibrium (DFE), the dynamics of the classic differential equations for SIR, SIS, and SIRS epidemics
are approximated by the differential equation for infected individuals (Appendix C):

dIðtÞ
dt

¼ ðb� gÞIðtÞ:

Parameter b is the transmission rate, g is the recovery rate, andℛ0 ¼ b=g. Setting B ¼ b and D ¼ g, application of the theory
from the preceding simple birth-death approximation leads to formulas for the duration of a minor epidemic. It is well-
known from Whittle's work in 1955 (Whittle, 1955) that the probability of a minor epidemic, ℙext, or a major epidemic,
ℙoutbreak, given Ið0Þ ¼ i, are



Table 2
The probability of extinction, the mean, and the standard deviation for the time until extinction, conditioned
on extinction, for the simple birth-death process with X(0) ¼ 3 and D ¼ 1.

B ℙext m s

0.7 1.00 3.50 3.12
0.9 1.00 5.66 6.92
0.95 1.00 7.28 10.93
1.05 0.864 7.05 10.73
1.1 0.751 5.34 6.71
1.5 0.296 2.22 1.92
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ℙext ¼
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ℙoutbreak ¼
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0; ℛ0 <1:

(9)

See Fig. 3. The formulas for the mean and the standard deviation, equations (6) and (8), for the duration of a minor epidemic
are not well-known:

EðT1jT1 <∞Þ ¼
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(10)

and for g ¼ 1,
In the following sections, for large population sizes, numerical computations for the CTMC SIR (N ¼ 5000) and CTMC SIS

ðN ¼ 1000) models show good agreement with the preceding formulas.
3.1. Stochastic SIR epidemic model

To define the stochastic SIR epidemic model, let SðtÞ, IðtÞ, and RðtÞ be discrete random variables for the number of sus-
ceptible, infected (and infectious), and immune individuals in a homogeneously mixed population with constant total
population size N. The CTMC SIR model is a bivariate process that depends on two discrete random variables
SðtÞ; IðtÞ2f0;1;…;Ng with transition probabilities,
Fig. 3. Plot of the probability of a minor outbreak ℙext and a major outbreak ℙoutbreak as a function of ℛ0 for Ið0Þ ¼ i, i ¼ 1; 2;3.
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(11)
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pðs;iÞ;ðk;jÞðDtÞ ¼

8>><
>>:

bsiDt=N þ oðDtÞ; ðk; jÞ ¼ ðs� 1; iþ 1Þ;
giDt þ oðDtÞ; ðk; jÞ ¼ ðs; i� 1Þ;

1� ½bsi=N þ gi�Dt þ oðDtÞ; ðk; jÞ ¼ ðs; iÞ;
oðDtÞ; otherwise:

(12)

In the following numerical examples, N ¼ 5000.
The probability density function for the duration of a minor epidemic in the CTMC SIR epidemic model (12) is plotted as a

probability histogram in Fig. 4. All simulations are run until IðtÞ ¼ 0 and the time recorded, infft >0jIðtÞ ¼ 0g. The probability
histogram shows a mixture of two densities when ℛ0 >1: the duration of a minor epidemic with probability ℙext and the
duration of a major outbreak with probability ℙoutbreak. The density for fT3ℙext is the curve overlayed in red on the probability
histograms in Fig. 4. The figures illustrate the long duration until disease eradication forℛ0 ¼ 0:9;1:1 as opposed toℛ0 ¼ 1:5;
2.

Themean and standard deviation for aminor epidemic are computed numerically in the CTMC SIRmodel (12) and they are
compared to the analytical formulas derived from the simple birth-death process, (10), (11), and (20) (Fig. 5). In the numerical
simulations of the CTMC SIR epidemic model for ℛ0 >1, the sample paths for infected individuals are divided into two sets,
those that hit zero before reaching a predefined outbreak level OL (minor epidemic) and those that reach the value OL (major
epidemic). The outbreak level is set at OL ¼ 30. Forℛ0 <1, the duration is computed as infft >0jIð0Þ ¼ i>0 and IðtÞ ¼ 0g but
for ℛ0 >1, the duration is infft >0jIð0Þ ¼ i>0 and IðtÞ;ð0;OLÞg. If IðtÞ hits zero before OL, then it is assumed to be a minor
epidemic but if IðtÞ hitsOL before zero, then it is assumed to result in amajor epidemic. The values for ℙext, mean, and standard
deviation computed from the CTMC SIR simulations and the corresponding approximations from the simple birth-death
process are given in Table 3 for the case Ið0Þ ¼ 3 in Appendix D.
3.2. Stochastic SIS model

The dynamics of the CTMC SIS model can be expressed in terms of one discrete random variable IðtÞ2f0;1;…;Ng, where
s ¼ N� i.
Fig. 4. Probability histograms, computed from 105 sample paths in the CTMC SIR model (12) show a mixture of two densities when ℛ0 >1, the probability of a
minor or major epidemic. The curve overlayed in red is a graph of the minor epidemic fT3ℙext, where fT3 is given in equation (5). Parameter values are g ¼ 1, b ¼
ℛ0, and N ¼ 5000 with initial conditions Ið0Þ ¼ 3, Sð0Þ ¼ 4997, and Rð0Þ ¼ 0.



Fig. 5. The analytical formulas for the mean and standard deviation, from equations (10), (11) and (20) for a minor epidemic are graphed as a function of ℛ0 for
three initial conditions Ið0Þ ¼ i; i ¼ 1; 2;3. The corresponding mean and standard deviation for duration of a minor epidemic are computed numerically from 106

sample paths of the CTMC SIR model (12) (þfor i ¼ 1; x for i ¼ 2; , for i ¼ 3). Parameter values are g ¼ 1, b ¼ ℛ0, and N ¼ 5000.
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pi;jðDtÞ ¼

8>><
>>:

biðN � iÞDt=N þ oðDtÞ; j ¼ iþ 1;
giDt þ oðDtÞ; j ¼ i� 1;

1� ½biðN � iÞ=N þ gi�Dt þ oðDtÞ; j ¼ i;
oðDtÞ; otherwise

: (13)
Numerical computations are performed for the CTMC SIS model (13) similar to those for the CTMC SIR model. The dif-
ference is that in the CTMC SIS model when ℛ0 >1, all simulations are run until either IðtÞ hits zero or IðtÞ reaches a pre-
defined outbreak level OL. The level OL is either the endemic equilibrium value from the deterministic model:
I ¼ Nð1� 1=ℛ0Þ or OL ¼ 30. In the following numerical examples, N ¼ 1000.

Probability histograms for the duration of minor or major epidemics in the CTMC SIS model (13) are graphed in Fig. 6. For
ℛ0 <1, the duration of aminor epidemic is infft >0jIð0Þ ¼ 3 and IðtÞ ¼ 0g, whereas forℛ0 >1, the duration is infft >0

��Ið0Þ ¼
3 and IðtÞ;ð0; IÞg. The curve overlayed in red is the density fT3ℙext, where fT3 is defined in (5).

Graphed in Fig. 7 are the mean and standard deviation for duration of a minor epidemic. The curves are from the formulas
(10), (11), and (20) in the birth-death process. The calculated values for the CTMC SIS model (12) (similar to Fig. 5) assume a
predefined outbreak level of OL ¼ 30. For ℛ0 <1, the duration of a minor epidemic is computed as
infft >0jIð0Þ ¼ i>0 and IðtÞ ¼ 0g but forℛ0 >1, the duration is computed as infft >0jIð0Þ ¼ i>0 and IðtÞ;ð0;30Þg. If IðtÞ hits
30 before zero, then IðtÞ is assumed to reach an endemic level, but if IðtÞ hits zero before 30, it is assumed to be a minor
epidemic and part of the density fTiℙext. Similar to Fig. 5, the numerical values computed for the CTMC SIS model show good
agreement with the estimated values from the simple birth-death approximation.

4. SEIR epidemic model

An SEIR epidemic model includes a latent or an exposed stage, E, where individuals are infected but not yet infectious. The
E and I stages in the deterministic model with d the transition rate from E to I has the form:
Fig. 6. Probability histograms computed from 105 sample paths of the CTMC SIS model show a mixture of two densities when ℛ0 >1, the probability of a minor
epidemic and the probability of reaching the endemic equilibrium. The overlay curve in red is a graph of fT3ℙext. Parameter values are g ¼ 1, b ¼ ℛ0 and N ¼ 1000
with initial conditions Ið0Þ ¼ 3 and Sð0Þ ¼ 997:



Fig. 7. The mean and standard deviation, from equations (10), (11) and (20), for the time to extinction in the simple birth-death process are graphed as a function
of ℛ0 for three initial conditions Ið0Þ ¼ i; i ¼ 1;2;3. Calculated values for the CTMC SIS model (12) are computed from 106 sample paths, where the threshold for
reaching an endemic equilibrium is set at OL ¼ 30 (þ for i ¼ 1, x for i ¼ 2 and , for i ¼ 3). Parameter values are N ¼ 1000, g ¼ 1, and b ¼ ℛ0.
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dE
dt

¼ bI
S
N
� dE;

dI
dt

¼ dE � gI:

Linearization of this system X
!¼ ðE; IÞT near the DFE, SzN, yields dX

!
=dt ¼ ðF � VÞX!, where

F ¼
�
0 b
0 0

�
and V ¼

�
d 0
�d g

�
;

and ℛ0 ¼ rðFV�1Þ ¼ b=g (van den Driessche & Watmough, 2002).
Fig. 8. Probability histograms, computed from 105 sample paths in the CTMC SEIR model show a mixture of two densities whenℛ0 >1, the probability of a minor
or major epidemic. The curve overlayed in red is a graph of the minor epidemic, computed numerically from the branching process approximation and backward
Kolmogorov differential equations in Appendix E. Parameter values are g ¼ 1 ¼ d, b ¼ ℛ0, and N ¼ 5000 with initial conditions Ið0Þ ¼ 3, Sð0Þ ¼ 4997, Eð0Þ ¼ 0
and Rð0Þ ¼ 0.
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In the corresponding CTMC SEIRmodel, the transition probabilities include three randomvariables, S;E;I, since R ¼ N� S�
E� I:

pðs;e;iÞ;ðk;l;mÞðDtÞ ¼

8>>>><
>>>>:

bsiDt=N þ oðDtÞ; ðk; l;mÞ ¼ ðs� 1; eþ 1; iÞ;
deDt þ oðDtÞ; ðk; l;mÞ ¼ ðs; e� 1; iþ 1Þ;
giDt þ oðDtÞ; ðk; l;mÞ ¼ ðs; e; i� 1Þ;

1� ½bsi=N þ deþ gi�Dt þ oðDtÞ; ðk; l;mÞ ¼ ðs; e; iÞ;
oðDtÞ; otherwise:

(14)
The multitype branching process approximation is restricted to E and I. The transition probabilities for the branching process
are given as (14) but with s ¼ N and

pðe;iÞ;ðl;mÞðtÞ ¼ ℙððE; IÞðt þ DtÞ ¼ ðl;mÞjðE; IÞðtÞ ¼ ðe; iÞÞ: (15)
With no births and deaths, the probability of a minor epidemic is the same as for a CTMC SIR or SIS model, equation (9) and
Fig. 3. The parameter d for transition from exposed to the infectious stage does not affect this probability but does affect the
duration of a minor epidemic. Although an analytical formula is not available, the pdf for a minor epidemic can be computed
numerically from the solution of the branching process approximation and the backward Kolmogorov differential equations
(Appendix E). In Fig. 8, the pdf for the duration a minor or major epidemic are graphed for several values ofℛ0. Forℛ0 ¼ 0:9;
1:1, the duration is much greater as compared to ℛ0 ¼ 1:5;2 and also, as compared to the CTMC SIR model in Fig. 4. The
approximate mean and standard deviation for a minor epidemic are calculated numerically and summarized in Table 5 in
Appendix E.

5. Conclusion

The birth-death process is well-known in the literature and has been applied tomany different biological applications, e.g.,
(Allen, 2010; Bailey, 1975; Daley & Gani, 1999; Novozhilov et al., 2006; Whittle, 1955). In the birth-death process, either the
population size hits zero or approaches infinity. However, conditioned on a finite time to extinction, new analytical formulas
are obtained for the mean and higher-order moments for time to extinction when B=Ds1. These analytical formulas can be
applied to stochastic SIS, SIR, and SIRS epidemic models, specifically, formulas (10), (11), and (20). For large population sizes,
the analytical estimates agree with the simulations from the SIR and SIS epidemic models (Figs. 5 and 7). In addition, minor
epidemics play a major role in the dynamics when ℛ0 is close to one (Figs. 4 and 6). The mean duration of a minor epidemic
increases when ℛ0 is close to one, as predicted by the analytical formula (10). Additional stages prior to the infected stage,
such as a latent stage in the SEIR epidemic model prolong the duration of a minor epidemic (Fig. 8). These results have
applications to other infectious disease models and to in-host models (Ciupe & Heffernan, 2017).

Emerging diseases, where the value of ℛ0 is close to one, are likely to have minor epidemics with undetected cases of
prolonged duration, allowing time for the pathogen to adapt to the host. This can be of special concern in the case of zoonotic
infectious diseases, where the infectionmay be continually re-introduced into human hosts from animal reservoirs or from an
intermediate host (Blumberg & Lloyd-Smith, 2013).
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Appendix
A Generating Function for Simple Birth-Death Process

The probability generating function (pgf) for the birth-death process XðtÞ given Xð0Þ ¼ i is defined as follows

Giðz; tÞ ¼ E
�
zXðtÞ

���Xð0Þ ¼ i
�
¼
X
j¼0

∞
pi;jðtÞzj; (16)

¼
h
E
�
zXðtÞ

���Xð0Þ ¼ 1
�ii ¼ ½G1ðz; tÞ�i; (17)

where the assumption of independence is applied. Differentiating Gi with respect to t, treating z as constant, applying the
relation (17), and equation (3) leads to the differential equation
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vG1

vt
¼ 1

iðG1Þi�1
vGi

vt
¼ 1

iGi�1

0
@X∞

j¼0

dpi;j
dt

zj

1
A:

Substitution of the identify for dpi;j=dt from the backward Kolmogorov differential equation (3) leads to

vG1

vt
¼ 1

Gi�1

X
j¼0

∞ h
piþ1;jBþ pi�1;jD� pi;jðBþ DÞ

i
zj;

¼ B
Giþ1
Gi�1

þ D
Gi�1
Gi�1

� ðBþ DÞ Gi

Gi�1
;

¼ ðBþ DÞ
	

B
Bþ D

ðG1Þ2 þ
D

Bþ D
� G1



;

¼ ðBþ DÞ½f ðG1Þ � G1�;

where the function f is defined as

f ðuÞ ¼ Bu2 þ D
Bþ D

: (18)

and the initial condition is G1ðz;0Þ ¼ z.
The expression for f in (18) is the offspring pgf or progeny pgf for the simple birth-death process (Dorman, Sinsheimer, &

Lange, 2004; Kimmel& Axelrod, 2002). In a small period of time, each individual either gives birth with probability B=ðBþ DÞ
(the individual does not die after giving birth), or dies with probability D=ðBþ DÞ. If a birth occurs, the parent is replaced by
two individuals (the offspring and the parent). Hence, the probability is multiplied by u2, corresponding to the term
Bu2=ðBþ DÞ in (18). If a death occurs, the parent dies without any offspring. Hence, the probability is multiplied by u0, cor-
responding to the term D=ðBþ DÞ in (18).

The solution G1ðz; tÞ is well-known (see e.g. (Allen, 2010; Athreya & Ney, 1972; Bailey, 1975),). Applying the relation (17),
leads to

Giðz; tÞ ¼

8>>>>><
>>>>>:

 
etðD�BÞðBz� DÞ � Dðz� 1Þ
etðD�BÞðBz� DÞ � Bðz� 1Þ

!i

; BsD:

�
1� ðBt � 1Þðz� 1Þ

1� Btðz� 1Þ
�i

; B ¼ D:

(19)
Setting z ¼ 0 in (19) and assuming p1;0ð0Þ ¼ 0 leads to the expression given in (4). The probability of ultimate extinction is
theminimal solution of f ðqÞ ¼ q on ½0;1�. This leads to q ¼ D=B, the stable equilibrium solution of p1;0 on ½0;1�when B>D. The
only fixed point of f in ½0;1� is f ð1Þ ¼ 1 when B � D.

B Higher-Order Moments in the Birth-Death Process

Analytical expressions for the higher-order moments when Xð0Þ ¼ 2 and D ¼ 1 can be computed with the aid of a
computer algebra system. They are expressed in terms of the polylogarithm functions (m ¼ 1;2;3;…):

E
�½T2�m��T2 <∞

� ¼
8>>>><
>>>>:

m!

ðB� 1Þm�1

	
Lim

�
1
B

�
ðBþ 1Þ � Lim�1

�
1
B

�
ðB� 1Þ



; B>1;

m!

B2ð1� BÞm�1 ½LimðBÞðBþ 1Þ � Lim�1ðBÞð1� BÞ�; B<1:
(20)
C Deterministic SIR, SIS and SIRS Models

The deterministic SIR and SIRS models with transition rate b, recovery rate g, loss of immunity a, and basic reproduction
number ℛ0 ¼ b=g are given by the following differential equations:
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SIS :

8>><
>>:

dS
dt

¼ �bI
S
N
þ gI;

dI
dt

¼ bI
S
N
� gI;

SIRS :

8>>>>>>><
>>>>>>>:

dS
dt

¼ �bI
S
N
þ aR;

dI
dt

¼ bI
S
N
� gI;

dR
dt

¼ gI � aR:

(21)

If a ¼ 0, then the SIRSmodel simplifies to the SIRmodel. The total population size is constant, SðtÞþ IðtÞþ RðtÞ ¼N, and initial
values are Sð0Þ>0, Ið0Þ>0, and Rð0Þ ¼ 0. Near the DFE, S ¼ N, I ¼ 0 ¼ R, the dynamics of IðtÞ follow an exponential growth
model, dI=dtzðb� gÞI.

In the SIR model, lim
t/∞

IðtÞ ¼ 0, with an increase in number of infected individuals iff ℛ0ðSð0Þ=NÞ>1. In the SIS model, if

ℛ0 � 1, lim
t/∞

IðtÞ ¼ 0 and if ℛ0 >1, lim
t/∞

IðtÞ ¼ Nð1� 1=ℛ0Þ. In the SIRS model, if ℛ0 � 1, lim
t/∞

IðtÞ ¼ 0 and if ℛ0 >1, lim
t/∞

IðtÞ ¼
Nð1� 1=ℛ0Þa=ðaþ gÞ.
D CTMC SIR and SIS Simulations

The two tables provide a comparison between the analytical results from the simple birth-death process (ℙext, m, and s)
and the numerical results from the simulations of the CTMC SIR or SIS models (ℙ0, Mean, STD).
Table 3
Estimates for probability of aminor ormajor epidemic and themean and standard deviation for duration of aminor epidemic in the CTMC SIRmodel (hit zero
prior to reaching I(t) ¼ 30), ℙ0, Mean, and STD, are computed from 106 sample paths. These values are compared to the analytical values ℙext, m and s in the
birth-death process. Parameters are N ¼ 5000, g ¼ 1, and b ¼ ℛ0 with initial condition I(0) ¼ 3.

ℛ0 ℙ0 ℙext Mean m STD s

0.7 1 1 3.49 3.50 3.09 3.12
0.75 1 1 3.80 3.82 3.54 3.58
0.8 1 1 4.19 4.23 4.12 4.23
0.85 1 1 4.73 4.80 4.97 5.21
0.9 1 1 5.45 5.66 6.19 6.92
0.95 1 1 6.55 7.28 8.02 10.93
1.05 0.852 0.864 5.96 7.05 7.29 10.73
1.1 0.764 0.751 5.46 5.34 6.70 6.71
1.15 0.674 0.658 4.75 4.42 5.67 5.00
1.2 0.590 0.579 4.08 3.82 4.58 4.03
1.25 0.521 0.512 3.55 3.39 3.75 3.38
1.3 0.462 0.455 3.16 3.05 3.15 2.93
Table 4
Estimates for probability of a minor epidemic or reaching an endemic level and the mean and standard deviation for duration
of a minor epidemic in the CTMC SIS model (hit zero prior to reaching 30), ℙ0, Mean and STD, are computed from 106 sample
paths. These values are compared to the analytical values ℙext, m. and s in the birth-death process. Parameters are g ¼ 1 and
b ¼ ℛ0 with initial condition Ið0Þ ¼ 3.

N I ℛ0 ℙ0 ℙext Mean m STD s
2000
 98
 1.05
 0.833
 0.864
 5.50
 7.05
 6.48
 10.73

1000
 48
 1.05
 0.840
 0.864
 5.60
 7.05
 6.58
 10.73

500
 24
 1.05
 0 0.859
 0.864
 5.88
 7.05
 7.10
 10.73
2000
 182
 1.1
 0.745
 0.751
 4.94
 5.34
 5.63
 6.71

1000
 91
 1.1
 0.753
 0.751
 5.08
 5.34
 5.87
 6.71

500
 45
 1.1
 0.772
 0.751
 5.36
 5.34
 6.30
 6.71
2000
 667
 1.5
 0.298
 0.296
 2.23
 2.22
 1.93
 1.92

1000
 333
 1.5
 0.300
 0.296
 2.24
 2.22
 1.95
 1.92

500
 167
 1.5
 0.305
 0.296
 2.28
 2.22
 2.00
 1.92
E Branching Process Approximation in CTMC SEIR Model

Given the transition probabilities, defined in (15), the generating function for E and I is defined as follows:
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Gðe;iÞðz1; z2; tÞ ¼
X
l;m

pðe;iÞ;ðl;mÞðtÞzl1zm2 :

Near the DFE, when SzN and N is large, the dynamics of E and I can be approximated by amultitype branching process (Allen,
2017; Athreya & Ney, 1972). Assuming independence of E and I,

Gðe;iÞðz1; z2; tÞ ¼
h
Gð1;0Þðz1; z2; tÞ

ieh
Gð0;1Þðz1; z2; tÞ

ii
; (22)

and applying the backward Kolmogorov differential equations,

dpðe;iÞ;b
dt

¼ bipðeþ1;iÞ;b þ depðe�1;iÞ;b þ gipðe;i�1Þ;b � ½biþ deþ gi�pðe;iÞ;b; (23)

where b ¼ ðl;mÞ, a system of differential equations can be derived for the probability of extinction (Allen, 2017). The deri-
vation is similar to that shown in Appendix A. Differentiation of (22) with respect to t when ðe; iÞ ¼ ð1;0Þ and when ðe; iÞ ¼
ð0;1Þ and application of the backward Kolmogorov differential equation (23) leads to the following differential equations:

vGð1;0Þ
vt

¼ d
h
f1
�
Gð1;0Þ;Gð0;1Þ

�
� Gð1;0Þ

i
vGð0;1Þ
vt

¼ ðbþ gÞ
h
f2
�
Gð1;0Þ;Gð0;1Þ

�
� Gð0;1Þ

i
;

where the offspring probability generating functions are

f1ðu1;u2Þ ¼ u2;

f2ðu1;u2Þ ¼
bu1u2 þ g

bþ g
;

Gð1;0Þð0;0; tÞ ¼ pð1;0Þ;ð0;0ÞðtÞ, and Gð0;1Þð0;0; tÞ ¼ pð0;1Þ;ð0;0ÞðtÞ (Allen, 2017).
The preceding equations are solved numerically and used to compute the pdf for the duration of a minor epidemic (Fig. 8).

Computation of the mean m and standard deviation s from the pdf gives the approximations in Table 5.
Table 5
The probability of a minor epidemic and themean m and standard deviation s for the duration of a minor epidemic in the SEIR
epidemic given initial conditions ðEð0Þ; Ið0ÞÞ ¼ ð0;3Þ or ðEð0Þ; Ið0ÞÞ ¼ ð3;0Þ for parameter values g ¼ 1 ¼ d and ℛ0 ¼ b.

ℛ0 ℙext ðEð0Þ; Ið0ÞÞ ¼ ð0;3Þ ðEð0Þ; Ið0ÞÞ ¼ ð3;0Þ

m
 s
 m
 s
0.9
 1.00
 10.48
 13.53
 11.63
 13.47

0.95
 1.00
 13.82
 21.44
 14.96
 21.38

1.05
 0.864
 11.82
 19.84
 12.81
 19.80

1.1
 0.751
 7.84
 12.20
 8.71
 12.20

1.5
 0.296
 1.325
 2.96
 1.69
 3.25

2
 0.125
 0.353
 1.307
 0.517
 1.614
References

Allen, L. J. S. (2010). An introduction to stochastic processes with applications to biology (2nd ed.). Boca Raton, Fl: CRC Press.
Allen, L. J. S. (2015). Stochastic population and epidemic models, volume 1.3. Mathematical biosciences lecture series, stochastics in biological systems. Springer.
Allen, L. J. S. (2017). A primer on stochastic epidemic models: Formulation, numerical simulation, and analysis. Infectious Disease Modelling, 2, 128e142.
Allen, L. J. S., & Lahodny, G. E., Jr. (2012). Extinction thresholds in deterministic and stochastic epidemic models. Journal of Biological Dynamics, 6(2),

590e611.
Allen, L. J. S., & van den Driessche, P. (2013). Relations between deterministic and stochastic thresholds for disease extinction in continuous-and discrete-

time infectious disease models. Mathematical Biosciences, 243(1), 99e108.
Apostol, T. M. (2010). Zeta and related functions. In F. W. J. Olver, D. W. Lozier, R. F. Boisvert, & C. W. Clark (Eds.), NIST handbook of mathematical functions (pp.

637e650). Cambridge: U.S. Department of Commerce, Cambridge University Press.
Artalejo, J. R. (2012). On the time to extinction from quasi-stationarity: A unified approach. Physica A: Statistical Mechanics and its Applications, 391(19),

4483e4486.
Athreya, K. B., & Ney, P. E. (1972). Branching processes. NewYork: Springer-Verlag.
Bailey, N. T. J. (1975). The mathematical theory of infectious diseases and its applications. Griffin.
Blumberg, S., & Lloyd-Smith, J. O. (2013). Inference of R0 and transmission heterogeneity from the size distribution of stuttering chains. PLoS Computational

Biology, 9(5), e1002993.
Ciupe, S. M., & Heffernan, J. M. (2017). In-host modeling. Infectious Disease Modelling, 2, 188e202.
Daley, D. J., & Gani, J. (1999). Epidemic modelling an introduction. Cambridge, U.K: Cambridge University Press.
van Doorn, E. A. (1991). Quasi-stationary distributions and convergence to quasi-stationarity of birth- death processes. Advances in Applied Probability, 23,

683e700.

http://refhub.elsevier.com/S2468-0427(17)30076-3/sref2
http://refhub.elsevier.com/S2468-0427(17)30076-3/sref3
http://refhub.elsevier.com/S2468-0427(17)30076-3/sref4
http://refhub.elsevier.com/S2468-0427(17)30076-3/sref4
http://refhub.elsevier.com/S2468-0427(17)30076-3/sref5
http://refhub.elsevier.com/S2468-0427(17)30076-3/sref5
http://refhub.elsevier.com/S2468-0427(17)30076-3/sref5
http://refhub.elsevier.com/S2468-0427(17)30076-3/sref6
http://refhub.elsevier.com/S2468-0427(17)30076-3/sref6
http://refhub.elsevier.com/S2468-0427(17)30076-3/sref6
http://refhub.elsevier.com/S2468-0427(17)30076-3/sref7
http://refhub.elsevier.com/S2468-0427(17)30076-3/sref7
http://refhub.elsevier.com/S2468-0427(17)30076-3/sref7
http://refhub.elsevier.com/S2468-0427(17)30076-3/sref8
http://refhub.elsevier.com/S2468-0427(17)30076-3/sref8
http://refhub.elsevier.com/S2468-0427(17)30076-3/sref8
http://refhub.elsevier.com/S2468-0427(17)30076-3/sref9
http://refhub.elsevier.com/S2468-0427(17)30076-3/sref10
http://refhub.elsevier.com/S2468-0427(17)30076-3/sref11
http://refhub.elsevier.com/S2468-0427(17)30076-3/sref11
http://refhub.elsevier.com/S2468-0427(17)30076-3/sref11
http://refhub.elsevier.com/S2468-0427(17)30076-3/sref12
http://refhub.elsevier.com/S2468-0427(17)30076-3/sref12
http://refhub.elsevier.com/S2468-0427(17)30076-3/sref13
http://refhub.elsevier.com/S2468-0427(17)30076-3/sref14
http://refhub.elsevier.com/S2468-0427(17)30076-3/sref14
http://refhub.elsevier.com/S2468-0427(17)30076-3/sref14


W. Tritch, L.J.S. Allen / Infectious Disease Modelling 3 (2018) 60e73 73
Dorman, K. S., Sinsheimer, J. S., & Lange, K. (2004). In the garden of branching processes. SIAM Review, 46, 202e229.
Griffiths, D. A. (1972). A bivariate birth-death process which approximates to the spread of disease involving a vector. Journal of Applied Probability, 9(1),

65e75.
Griffiths, D. A. (1973). Multivariate birth-and-death processes as approximations to epidemic processes. Journal of Applied Probability, 10, 15e26.
Harris, T. E. (1963). The theory of branching processes. Berlin: Springer-Verlag.
Hernandez-Ceron, N., Chavez-Casillas, J. A., & Feng, Z. (2015). Discrete stochastic metapopulation model with arbitrarily distributed infectious period.

Mathematical Biosciences, 261, 74e82.
Hern�andez-Su�arez, C. M., & Castillo-Chavez, C. (1999). A basic result on the integral for birth-death Markov processes. Mathematical Biosciences, 161(1e2),

95e104.
Karlin, S., & Tavar�e, S. (1982). Linear birth and death processes with killing. Journal of Applied Probability, 19, 477e487.
Kimmel, M., & Axelrod, D. E. (2002). Branching processes in biology. New York: Springer.
Kryscio, R. J., & Lef�evre, C. (1989). On the extinction of the SIS stochastic logistic epidemic. Journal of Applied Probability, 27, 685e694.
Lomax, K. S. (1954). Business failures: Another example of the analysis of failure data. Journal of the American Statistical Association, 49(268), 847e852.
Nåsell, I. (1996). The quasi-stationary distribution of the closed endemic SIS model. Advances in Applied Probability, 28, 895e932.
Nåsell, I. (1999). On the quasi-stationary distribution of the stochastic logistic epidemic. Mathematical Biosciences, 156, 21e40.
Nåsell, I. (2001). Extinction and quasi-stationarity in the Verhulst logistic model. Journal of Theoretical Biology, 211, 11e27.
Norden, R. H. (1982). On the distribution of the time to extinction in the stochastic logistic population model. Advances in Applied Probability, 14(4),

687e708.
Novozhilov, A. S., Karev, G. P., & Koonin, E. V. (2006). Biological applications of the theory of birth-and-death processes. Briefings in Bioinformatics, 7(1),

70e85.
Sehl, M. M., Zhou, H. H., Sinsheimer, J. S., & Lange, K. L. (2011). Extinction models for cancer stem cell therapy. Mathematical Biosciences, 234, 132e146.
Singh, S., Schneider, D. J., & Myers, C. R. (2014). Using multitype branching processes to quantify statistics of disease outbreaks in zoonotic epidemics.

Physical Review E, 89(032702), 1e14.
van den Driessche, P., & Watmough, J. (2002). Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease trans-

mission. Mathematical Biosciences, 180, 29e48.
Whittle, P. (1955). The outcome of a stochastic epidemic: A note on Bailey's paper. Biometrika, 42, 116e122.

http://refhub.elsevier.com/S2468-0427(17)30076-3/sref15
http://refhub.elsevier.com/S2468-0427(17)30076-3/sref15
http://refhub.elsevier.com/S2468-0427(17)30076-3/sref16
http://refhub.elsevier.com/S2468-0427(17)30076-3/sref16
http://refhub.elsevier.com/S2468-0427(17)30076-3/sref16
http://refhub.elsevier.com/S2468-0427(17)30076-3/sref17
http://refhub.elsevier.com/S2468-0427(17)30076-3/sref17
http://refhub.elsevier.com/S2468-0427(17)30076-3/sref18
http://refhub.elsevier.com/S2468-0427(17)30076-3/sref19
http://refhub.elsevier.com/S2468-0427(17)30076-3/sref19
http://refhub.elsevier.com/S2468-0427(17)30076-3/sref19
http://refhub.elsevier.com/S2468-0427(17)30076-3/sref20
http://refhub.elsevier.com/S2468-0427(17)30076-3/sref20
http://refhub.elsevier.com/S2468-0427(17)30076-3/sref20
http://refhub.elsevier.com/S2468-0427(17)30076-3/sref20
http://refhub.elsevier.com/S2468-0427(17)30076-3/sref20
http://refhub.elsevier.com/S2468-0427(17)30076-3/sref20
http://refhub.elsevier.com/S2468-0427(17)30076-3/sref21
http://refhub.elsevier.com/S2468-0427(17)30076-3/sref21
http://refhub.elsevier.com/S2468-0427(17)30076-3/sref21
http://refhub.elsevier.com/S2468-0427(17)30076-3/sref22
http://refhub.elsevier.com/S2468-0427(17)30076-3/sref23
http://refhub.elsevier.com/S2468-0427(17)30076-3/sref23
http://refhub.elsevier.com/S2468-0427(17)30076-3/sref23
http://refhub.elsevier.com/S2468-0427(17)30076-3/sref24
http://refhub.elsevier.com/S2468-0427(17)30076-3/sref24
http://refhub.elsevier.com/S2468-0427(17)30076-3/sref25
http://refhub.elsevier.com/S2468-0427(17)30076-3/sref25
http://refhub.elsevier.com/S2468-0427(17)30076-3/sref26
http://refhub.elsevier.com/S2468-0427(17)30076-3/sref26
http://refhub.elsevier.com/S2468-0427(17)30076-3/sref27
http://refhub.elsevier.com/S2468-0427(17)30076-3/sref27
http://refhub.elsevier.com/S2468-0427(17)30076-3/sref28
http://refhub.elsevier.com/S2468-0427(17)30076-3/sref28
http://refhub.elsevier.com/S2468-0427(17)30076-3/sref28
http://refhub.elsevier.com/S2468-0427(17)30076-3/sref29
http://refhub.elsevier.com/S2468-0427(17)30076-3/sref29
http://refhub.elsevier.com/S2468-0427(17)30076-3/sref29
http://refhub.elsevier.com/S2468-0427(17)30076-3/sref30
http://refhub.elsevier.com/S2468-0427(17)30076-3/sref30
http://refhub.elsevier.com/S2468-0427(17)30076-3/sref31
http://refhub.elsevier.com/S2468-0427(17)30076-3/sref31
http://refhub.elsevier.com/S2468-0427(17)30076-3/sref31
http://refhub.elsevier.com/S2468-0427(17)30076-3/sref1
http://refhub.elsevier.com/S2468-0427(17)30076-3/sref1
http://refhub.elsevier.com/S2468-0427(17)30076-3/sref1
http://refhub.elsevier.com/S2468-0427(17)30076-3/sref32
http://refhub.elsevier.com/S2468-0427(17)30076-3/sref32

	Duration of a minor epidemic
	1. Introduction
	2. Simple birth-death process
	2.1. Probability density function for time to extinction
	2.2. Mean and higher-order moments for time to extinction

	3. Application to epidemic models
	3.1. Stochastic SIR epidemic model
	3.2. Stochastic SIS model

	4. SEIR epidemic model
	5. Conclusion
	Acknowledgements
	A Generating Function for Simple Birth-Death Process
	B Higher-Order Moments in the Birth-Death Process
	C Deterministic SIR, SIS and SIRS Models
	D CTMC SIR and SIS Simulations
	E Branching Process Approximation in CTMC SEIR Model

	References


