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Abstract

Purpose: Confounding adjustment is required to estimate the effect of an exposure

on an outcome in observational studies. However, variable selection and unmeasured

confounding are particularly challenging when analyzing large healthcare data.

Machine learning methods may help address these challenges. The objective was to

evaluate the capacity of such methods to select confounders and reduce unmeasured

confounding bias.

Methods: A simulation study with known true effects was conducted. Completely

synthetic and partially synthetic data incorporating real large healthcare data were

generated. We compared Bayesian adjustment for confounding (BAC), generalized

Bayesian causal effect estimation (GBCEE), Group Lasso and Doubly robust estima-

tion, high-dimensional propensity score (hdPS), and scalable collaborative targeted

maximum likelihood algorithms. For the hdPS, two adjustment approaches targeting
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the effect in the whole population were considered: Full matching and inverse proba-

bility weighting.

Results: In scenarios without hidden confounders, most methods were essentially

unbiased. The bias and variance of the hdPS varied considerably according to the

number of variables selected by the algorithm. In scenarios with hidden confounders,

substantial bias reduction was achieved by using machine-learning methods to iden-

tify proxies as compared to adjusting only by observed confounders. hdPS and

Group Lasso performed poorly in the partially synthetic simulation. BAC, GBCEE,

and scalable collaborative-targeted maximum likelihood algorithms performed

particularly well.

Conclusions: Machine learning can help to identify measured confounders in large

healthcare databases. They can also capitalize on proxies of unmeasured confounders

to substantially reduce residual confounding bias.
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algorithms, biostatistics, confounding factors, machine learning, pharmacoepidemiology,
propensity score

1 | INTRODUCTION

Large healthcare database (LHDs) are frequently used to estimate

treatment effects in a real-world setting. Such data have many advan-

tages, including the possibility of obtaining a sufficient sample size to

investigate rare events,1–3 and population representativeness.2,3

Despite these advantages, because treatment is not randomized, the

treatment-outcome association is susceptible to confounding bias.1–3

Various adjustment methods can be employed to control this bias,

such as propensity score matching or inverse probability of treatment

weighting (IPTW).

The application of adjustment methods in LHD studies is faced

with particular challenges. First, hundreds of variables are available in

LHDs. Identifying true confounders based on substantive knowledge

alone can be difficult. Omitting a true confounder may produce biased

results, whereas including nonconfounders can increase the variance.

In addition, confounders such as lifestyle habits, are often missing

from LHDs.

Machine learning algorithms may help address these challenges.4

Indeed, several algorithms have been developed for performing con-

founder selection. It has also been proposed that machine-learning

algorithms could identify proxies for unmeasured confounders within

the rich information available in LHD (see Figure 1).5

Some studies support that machine learning can be useful to

control confounding in LHD. In a few studies, estimates closer to

those of randomized trials were observed when using the high-

dimensional propensity score (hdPS) than when adjusting only for

user-defined covariates.5,6 Moreover, it has been observed that

the hdPS can produce balanced treatment groups relative to clini-

cally identified confounders that were excluded from the

algorithm,7 suggesting that proxies for unmeasured confounders

can be identified by machine learning. Conversely, another study

indicated that estimates obtained using the hdPS on data typically

available in LHDs may substantially differ from those obtained

when clinical data are additionally available,8 suggesting that

machine learning is sometimes unable to compensate for

unmeasured confounders.

Overall, there is currently contradictory evidence concerning

the usefulness of machine learning algorithms to control

unmeasured confounding in LHDs. This may be because it arises

from “case studies” where one or several real datasets are analyzed.

A first limitation of such studies is that the true effect is unknown.

Even when a benchmark is available, such as randomized trials, it is

unclear whether the true effect in the population covered by the

LHDs is the same as the one from the benchmark. In addition, results

from “case studies” may reflect random fluctuations instead of the

true properties of the methods investigated. Computer simulation

studies can alleviate these challenges because the true effect is

known and comparisons can be replicated multiple times to reduce

random variability.

The goal of the present paper is to investigate the ability of differ-

ent machine learning algorithms to select variables among potential

confounders and to compensate for unmeasured confounders, and to

compare different confounding adjustment methods.

2 | METHODS

An overview of the simulation framework is provided in Figure 2. The

effect of interest is the risk difference between the exposed and

unexposed groups among the whole population. Simulations were

conducted in R.9

BENASSEUR ET AL. 425



2.1 | Synthetic data generation

We considered four different synthetic simulation scenarios,

described hereafter, inspired by those presented in Shortreed and

Ertefaie (2017).10 Scenarios 1 and 3 represent situations with no

unmeasured confounders, whereas Scenarios 2 and 4 feature an

unmeasured confounder. Moreover, to explore the role of correlations

between covariates in the ability of machine learning methods to

identify proxies for unmeasured confounders, Scenarios 1 and 2 fea-

ture weaker correlations than Scenarios 3 and 4. These scenarios lack

features of real LHDs but were explored to better understand proper-

ties of each algorithm in a simple setting.

A total of 1000 replications of each scenario were generated. For

each replicate, 1000 independent observations were generated,

where each observation consisted of 100 potential confounding

covariates (X¼ X1,X2,…,X100ð Þ), the exposure (A) and the outcome (Y),

all binary. The covariates Xj were divided in four sub-groups to mimic

the structure of LHDs (Table 1), where variables are commonly

grouped in “dimensions” such as inpatient diagnoses. To generate the

potential confounders, we first simulated 100 variables, X�
1,X

�
2,…,X

�
100,

from a multivariate normal distribution with mean 0, then dichoto-

mized the values around 0 (if X�
j >0 then Xj ¼1, otherwise Xj ¼0, j¼

1,…,100Þ such that the prevalence of each covariate was 50%. The

variance of each variable X�
j was 1, but the correlation differed

between scenarios (see Table 1).

The exposure and the outcome were generated from a Bernoulli

distribution with logit P A¼1ð Þ½ � ¼P100
j¼1 αjXj and logit P Y¼1ð Þ½ � ¼

2AþP100
j¼1 βjXj. The prevalence of the outcome was approximately

65%. The true confounders (related to both exposure and

outcome) were X1,X2,X41,X42,X71,X72,X91,X92ð Þ, the risk

factors for the outcome (related to the outcome only) were

X3,X4,X43,X44,X73,X74,X93,X94ð Þ, the instruments (related to the

exposure only) were X5,X6,X45,X46,X75,X76,X95,X96ð Þ and the other

variables were superfluous (not related to exposure or outcome). The

coefficients are provided in Table 1. Adjusting for risk factors of the

outcome, in addition to true confounders, allows for unbiased estima-

tion with increased precision,10–12 whereas including instruments

increases the variance and may also increase bias.10,12–15 In Scenarios

1 and 3, all Xjs, j = 1, …, 100, were supplied to the machine learning

algorithms, whereas X1 was hidden from the algorithms in Scenarios

2 and 4.

2.2 | Plasmode data generation

The plasmode simulation used data from an ongoing real-world study

comparing the use of direct oral anticoagulants (DOACs) and warfarin

as treatments for nonvalvular atrial fibrillation in Quebec (Canada).

Briefly, we received data from the Régie d'assurance maladie du Qué-

bec (RAMQ) on 60 093 patients with nonvalvular atrial fibrillation

who were newly initiated on either warfarin (N = 21 514) or DOACs

(N = 38 579) between January 1st 2010 and March 31st 2017. We

used four of the available datasets (i.e., the Patient Demographics

dataset [patients' date of birth and biological sex]; Inpatient Diagnoses

and Clinical Interventions dataset [hospital length of stays, primary

and secondary diagnoses during a hospitalization]; Inpatient and Out-

patient Physician Billings dataset [billing dates, physician billing codes,

physician specialty]; and the Outpatient Drug Dispensations dataset

[date of the drug dispensation, class of molecule, dosage and number

of pills dispensed]) provided to us by RAMQ; linking of patients across

the different datasets is made available via the use of a unique

anonymized identification number. Cohort entry was at the date of

first dispensation of DOACs or warfarin. The outcome was death

within 5 years of cohort entry. Except for the demographic variables,

the covariates represent the number of occurrences of a given code

(e.g., drug dispensation) in the 12 months preceding cohort entry.

Two different plasmode scenarios were considered. Baseline

covariates with less than 2% of values different from zero in Scenario

1 and 1% in Scenario 2 were first excluded to avoid numerical prob-

lems. The 336 and 573 remaining covariates (out of 12 465) were

then divided into five dimensions: One for each of the four datasets

that form the original data, and one for the clinically important

covariates. The median prevalence of the remaining variables was

4.7% (interquartile range = 2.8%–9.6%). Of note, the hdPS may create

F IGURE 1 Directed acyclic graph
illustrating the problem of unmeasured
confounders. Double-arrows between
variables are used as notational shorthand
to mean that unobserved common causes
may exist resulting in correlations. True
confounders affect both the exposure and
the outcome, but only measured
confounders can be included in the

analysis (box). Proxies for unmeasured
confounders are variables that are
affected by or correlated with the
unmeasured confounders but are not
confounders themselves
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F IGURE 2 Flowchart of the simulation study

TABLE 1 Summary of the parameters for simulating the synthetic data

Scenario Sub-groups Correlations Exposure-covariate associations (α) Outcome-covariate associations (β) Hidden variable

1 (X1,…, X40), (X41,…,X70),

X71,…,X90), (X91, X100)

W. = 0.2

B. = 0.1

(α1, α2, α5, α6,
α71, α72, α75, α76) = 1

(α41, α42, α45, α46,
α91, α92, α95, α96) = 1

all other α¼0

(β1, β2, β3, β4
β71, β72, β73, β74) = 0.6

(β41, β42, β43, β44,

β91, β92, β93, β94) = �0.6

all other β¼ 0

None

2 W. = 0.2

B. = 0.1

X1

3 W. = 0.4

B. = 0.2

None

4 W. = 0.4

B. = 0.2

X1

Abbreviations: W. = within dimensions, B. = between dimensions.
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up to three times as many empirical covariates by categorizing the fre-

quency of occurrence of codes. Among the original variables, 18 were

randomly chosen to be related to the outcome (potential “unknown”
confounders) in Scenario 1 and 38 in Scenario 2. Age and sex were

selected as “known” potential confounders. The observed outcome

was then modeled according to the treatment and potential con-

founders using a random forest procedure.16 Then, to create each

plasmode dataset, 10 000 and 20 000 observations were randomly

sampled with replacement from the original dataset in Scenario 1 and

Scenario 2, respectively. A new synthetic outcome was generated

using the previously fitted outcome model; the observed outcome

was discarded. The prevalence of the simulated outcome was around

16%. Finally, one of the potential “unknown” confounders was ran-

domly selected to be excluded from the analysis in Scenario 1, and

five were excluded in Scenario 2. Only 400 and 110 plasmode

datasets were generated for Scenarios 1 and 2, respectively, because

of the greater computational burden.

2.3 | Statistical analysis

We first searched the literature to find machine-learning algorithms

developed for the identification of confounders. We excluded algorithms

for which no R software code was available, those that were not adapted

to the LHD setting, and those that did not allow for the estimation of a

risk difference. We selected five algorithms among those that met our

criteria: Bayesian adjustment for confounding (BAC)17,18; generalized

Bayesian causal effect estimation (GBCEE)19; Group Lasso and doubly

robust estimation (GLiDeR)20; the hdPS5; the scalable collaborative

targeted maximum likelihood estimation (SC-TMLE).21 We also consid-

ered a modified version of the hdPS (m-hdPS), where Step 2 of the

algorithm,5 which involves selecting potential confounders based on their

prevalence, was omitted.22 In the analysis of plasmode data, age and sex

were forced to be included in software that allowed this option (hdPS,

m-hdPS, and GBCEE, only in the outcome model for SC-TMLE). An over-

view of the algorithms as well as details concerning their implementation

are provided in Web Appendix 1. The parameters of hdPS and m-hdPS

(e.g., final number of covariates to include) were adapted to the number

of covariates available in each scenario. In synthetic Scenarios 1–4, the

n = 8most prevalent covariates of each dimension were initially selected

for hdPS and k = 10 variables were retained at the end for both hdPS

and m-hdPS. In the plasmode simulations, the parameters were n = 25

and k = 50 in Scenario 1, and n = 100 and k = 200 in Scenario 2. Addi-

tional parameter values were explored in Web Appendix 4.

BAC adjusts for confounding using an outcome-model-based stan-

dardization procedure (g-computation), GBCEE and SC-TMLE use a

TMLE estimator, GLiDeR uses an augmented inverse probability of

treatment weighting estimator, and hdPS and m-hdPS yield a propensity

score. For hdPS and m-hdPS, we employed two different adjustment

methods: IPTW23 and full matching with replacement based on the logit

of the propensity score with a 0.2 SD caliper (matching).24,25 We chose

this specific matching algorithm because it estimates the average treat-

ment effect in the whole population, as the other estimators do.

Numerical methods allowed us to determine that true risk differ-

ences were 0.32 in all scenarios of the synthetic simulation, �0.18 in

plasmode Scenario 1 and � 0.12 in plasmode Scenario 2 (more details

in Web Appendix 2).

The risk difference was estimated in each simulated dataset

using BAC, GBCEE, GLiDeR, SC-TMLE, and hdPS and m-hdPS using

IPTW and matching. A crude unadjusted difference and a “true”
logistic regression model adjusting for all available true confounders

and risk factors for the outcome (not for hidden variables) were also

employed as benchmarks. The risk difference was estimated from

the output of this “true” model by standardization.26 This “true”
model served two purposes. First, in Scenarios without hidden vari-

ables, it allows us to determine the “cost” of learning the role of

covariates from the data. In Scenarios with hidden covariates, it per-

mits evaluating the benefit of identifying proxies for unmeasured

confounders.

For each scenario, we computed the bias as the difference

between the average estimate and the true risk difference. We also

computed the SD of the estimates, the root mean squared error

(
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bias2þSD2

p
), the average of the estimated standard error (ESE) and

the proportion of replicates where the 95% confidence intervals

included the true risk difference (CP). The ratio of the root mean

squared error of each method over that of the true model (Rel. RMSE)

is reported below. BAC, GBCEE and SC-TMLE directly yield confi-

dence intervals. For GLiDeR, we estimated the variance as the sample

variance of the empirical efficient influence function, scaled by a fac-

tor 1/n.27 For IPTW, the ESE was obtained using a robust variance

estimator.28 For matching, we used Abadie and Imben's variance esti-

mator of the risk difference.25 We note that, except for BAC, GBCEE

and SC-TMLE, these variance estimators lack theoretical support,

notably because they do not account for the variability attributable to

variable selection. The proportion of inclusion of observed con-

founders, risk factors, instruments and superfluous variables was also

computed for the synthetic scenarios. In the plasmode simulation, the

exact role of variables is unknown since the relationship between

treatment and covariates is not determined by the simulation model.

3 | RESULTS

The results of the simulations are summarized in Tables 2–7, Figures 3

and 4, and Web Tables 1–10. In Scenarios 1 and 3 where there was

no hidden confounder (Tables 2 and 4, Figure 3, and Web Tables 5

and 7), most estimators almost eliminated the bias. The bias for hdPS

and m-hdPS was high when few variables were included and essen-

tially null when more variables were included. Most methods had simi-

lar SD. The SD of hdPS and m-hdPS was comparable to the other

methods when few variables were included, but much larger other-

wise. The variance estimator of SC-TMLE and GLiDeR under-

estimated the true variability (ESE < SD). The RMSEs of hdPS IPTW

and hdPS Match were much greater than those of other methods. All

methods except BAC and BCEE yielded confidence intervals that

included the true effect much less often (<90%) than the expected
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95%. The coverage of hdPS and m-hdPS improved when more vari-

ables were included.

In Scenarios 2 and 4 (Tables 3 and 5, Figure 3, and Web Tables 6

and 8), where a confounder was hidden, adjusting only for observed

confounders was insufficient to eliminate confounding, as illustrated

by the bias of the “true” model (≈0.09). Most estimators reduced the

bias considerably and had somewhat similar SD. As in Scenarios 1 and

3, the bias and SD of hdPS and m-hdPS varied considerably according

to the number of variables included. Again, the true variability of SC-

TMLE and GLiDeR was underestimated (ESE < SD). The methods that

had the lowest RMSE were SC-TMLE, BAC and GBCEE in both sce-

narios. The coverage of 95% confidence intervals of all methods was

below 90%, but BAC and GBCEE had the coverage closest to the

desired value (>86%).

TABLE 2 Results of simulation
Scenario 1 (weak correlations, no hidden
confounder)

Method Bias SD ESE Rel. RMSE CP

True 0.003 0.030 0.030 1.00 94.4

Crude 0.155 0.027 0.026 5.14 0.0

BAC 0.008 0.035 0.032 1.19 90.8

GBCEE 0.005 0.037 0.036 1.24 92.5

GLiDeR 0.026 0.034 0.025 1.40 72.6

SC-TMLE 0.005 0.037 0.023 1.23 77.8

hdPS IPTW (n = 8, k = 10) 0.094 0.039 0.033 3.33 23.6

hdPS Match (n = 8, k = 10) 0.094 0.042 0.041 3.38 26.3

m-hdPS IPTW (k = 10) 0.018 0.042 0.041 1.49 91.4

m-hdPS Match (k = 10) 0.018 0.046 0.039 1.61 88.9

Abbreviations: CP, Coverage of 95% confidence intervals; ESE, estimated standard error; Rel. RMSE,

relative root-mean squared error (compared to true model); SD, standard deviation.

TABLE 3 Results of simulation
Scenario 2 (weak correlations, one
hidden confounder)

Method Bias SD ESE Rel. RMSE CP

True 0.091 0.029 0.029 1.00 13.0

Crude 0.153 0.025 0.026 1.63 0.0

BAC 0.029 0.034 0.032 0.47 84.0

GBCEE 0.026 0.036 0.035 0.46 87.8

GLiDeR 0.042 0.032 0.025 0.55 58.1

SC-TMLE 0.025 0.035 0.024 0.45 70.6

hdPS IPTW (n = 8, k = 10) 0.095 0.035 0.033 1.06 20.1

hdPS Match (n = 8, k = 10) 0.094 0.039 0.035 1.07 25.3

m-hdPS IPTW (k = 10) 0.032 0.039 0.040 0.52 83.8

m-hdPS Match (k = 10) 0.031 0.042 0.039 0.55 85.7

Abbreviations: CP, Coverage of 95% confidence intervals; ESE, estimated standard error; Rel. RMSE,

relative root-mean squared error (compared to true model); SD, standard deviation.

TABLE 4 Results of simulation
Scenario 3 (strong correlations, no hidden
confounder)

Method Bias SD ESE Rel. RMSE CP

True 0.002 0.031 0.031 1.00 94.4

Crude 0.189 0.026 0.026 6.14 0.0

BAC 0.009 0.036 0.034 1.18 92.6

GBCEE 0.005 0.040 0.039 1.30 93.3

GLiDeR 0.037 0.035 0.024 1.64 61.2

SC-TMLE 0.004 0.037 0.023 1.19 77.1

hdPS IPTW (n = 8, k = 10) 0.109 0.040 0.035 3.73 17.1

hdPS Match (n = 8, k = 10) 0.108 0.044 0.035 3.74 19.9

m-hdPS IPTW (k = 10) 0.040 0.048 0.044 2.00 78.2

m-hdPS Match (k = 10) 0.041 0.049 0.039 2.05 77.2

Abbreviations: CP, Coverage of 95% confidence intervals; ESE, estimated standard error; Rel. RMSE,

relative root-mean squared error (compared to true model); SD, standard deviation.
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In the plasmode scenarios (Tables 6 and 7, Web Tables 9 and

10, Figure 4), where potential confounders were hidden, a bias was

present when using the ”true” model that excluded the hidden poten-

tial confounders. All methods managed to reduce this bias, except

hdPS and m-hdPS. GLiDeR failed to produce admissible results in

many replications. BAC, GBCEE and SC-TMLE performed similarly in

terms of bias, SD and RMSE. BAC, GliDeR and GBCEE had close to

appropriate coverage of their 95% confidence intervals in Scenario

TABLE 5 Results of simulation
Scenario 4 (strong correlations, one
hidden confounder)

Method Bias SD ESE Rel. RMSE CP

True 0.087 0.029 0.030 1.00 18.5

Crude 0.188 0.025 0.026 2.06 0.0

BAC 0.027 0.036 0.034 0.49 85.3

GBCEE 0.023 0.040 0.038 0.50 88.7

GLiDeR 0.051 0.035 0.024 0.66 46.0

SC-TMLE 0.022 0.038 0.023 0.47 72.5

hdPS IPTW (n = 8, k = 10) 0.110 0.039 0.035 1.27 16.6

hdPS Match (n = 8, k = 10) 0.110 0.041 0.035 1.27 17.7

m-hdPS IPTW (k = 10) 0.050 0.044 0.043 0.72 71.7

m-hdPS Match (k = 10) 0.052 0.046 0.039 0.75 70.2

Abbreviations: CP, Coverage of 95% confidence intervals; ESE, estimated standard error; Rel. RMSE,

relative root-mean squared error (compared to true model); SD, standard deviation.

TABLE 6 Results of plasmode
simulation Scenario 1 based on electronic
health record data from Quebec, Canada,
public insurance (N = 10 000; 336
covariates, one hidden confounder)

Method Bias SD ESE Rel. RMSE CP

True �0.009 0.008 0.007 1.00 76.8

Crude �0.059 0.009 0.009 5.14 0.0

BAC 0.000 0.009 0.008 0.78 91.7

GBCEE 0.002 0.009 0.009 0.81 93.8

GLiDeR* 0.001 0.095 0.035 8.16 91.5

SC-TMLE 0.002 0.009 0.008 0.81 86.5

hdPS IPTW (n = 25, k = 50) 0.019 0.017 0.014 2.23 91.0

hdPS Match (n = 25, k = 50) 0.016 0.011 0.010 1.70 86.5

m-hdPS IPTW (k = 50) 0.028 0.028 0.019 3.40 89.8

m-hdPS Match (k = 50) 0.018 0.011 0.010 1.82 82.5

Note: *12 replications were dropped due to estimates lying outside the possible range values (RD < �1

or RD > 1).

Abbreviations: CP, Coverage of 95% confidence intervals; ESE, estimated standard error; Rel. RMSE,

relative root-mean squared error (compared to true model); SD, standard deviation.

TABLE 7 Results of the plasmode
Scenario 2 based on electronic health
record data from Quebec, Canada, public
insurance (N = 20 000; 573 covariates,
one hidden confounder)

Method Bias SD ESE Rel. RMSE CP

True �0.016 0.008 0.006 1.00 26.4

Crude �0.072 0.006 0.006 3.88 0.0

BAC 0.001 0.007 0.003 0.36 59.1

GBCEE 0.003 0.008 0.007 0.47 92.7

GLiDeR* NA NA NA NA NA

SC-TMLE 0.002 0.008 0.007 0.42 88.2

hdPS IPTW (n = 100, k = 200) 0.102 0.215 0.067 12.83 61.8

hdPS Match (n = 100, k = 200) 0.016 0.010 0.010 1.04 71.8

m-hdPS IPTW (k = 200) 0.107 0.202 0.069 12.35 63.6

m-hdPS Match (k = 200) 0.017 0.011 0.010 1.06 65.5

Note: *Most estimates of GLiDeR (88/110) lay outside the possible range values (RD < �1 or RD > 1).

Abbreviations: CP, Coverage of 95% confidence intervals; ESE, estimated standard error; Rel. RMSE,

relative root-mean squared error (compared to true model); SD, standard deviation.

430 BENASSEUR ET AL.



F IGURE 3 Bias (squares) and SD (bars) of the estimates according to simulation scenarios. Scenario 1: Weak correlations, no hidden
confounders; Scenario 2: Weak correlation, one hidden confounder; Scenario 3: Strong correlations, no hidden confounders; Scenario 4: Strong
correlations, one hidden confounder

F IGURE 4 Bias and SD (bars) of the different estimators in the plasmode simulation based on electronic health record data from Quebec,
Canada, public insurance. In scenario 1, n = 10 000, 336 covariates are considered, and one confounder is hidden. In Scenario 2, n = 20 000,
573 covariates are considered, and five confounders are hidden
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1 (91.7%, 91.5% and 93.8%, respectively), and only GBCEE in Scenario

2 (92.7%). The coverage of the other methods was poor (below 90%).

The results concerning the probability of variable selection are

referred to Web Appendix 3. BAC, GBCEE and GLiDeR had high proba-

bility of including confounders and outcome risk factors. Although the

m-hdPS had high probability of including confounders (>80%), it had a

probability of including risk factors close to 0%. BAC had probability of

including instruments close to 100%, unlike other methods whose proba-

bility of including instruments was low or moderate. All methods had low

probability of including superfluous variables (<10%).

The computing time of each method was evaluated in a single

replication of plasmode Scenario 2: 32 s for hdPS, 1.2 min for SC-

TMLE, 3.1 h for GBCEE, 4.8 h for GLiDeR and 10.6 h for BAC.

4 | DISCUSSION

We investigated the ability of machine learning confounder selection

methods to control for measured and unmeasured confounder bias in

LHDs. The hypothesis was that proxies for unmeasured confounders

could be identified and may help reduce bias. Under the scenarios we

generated, our results support this hypothesis since a substantial

reduction of the bias was observed when using some of the machine

learning methods as compared to a model that only included the

observed confounders and outcome risk factors. In terms of bias and

RMSE, BAC, GBCEE and SC-TMLE all performed similarly well. In

comparison, the hdPS and m-hdPS performed worse, especially in the

plasmode simulation. Regarding adjustment methods, full matching

and IPTW performed similarly, except in the plasmode scenario

2 where matching outperformed IPTW.

Most methods, including SC-TMLE, produced 95% confidence

intervals that included the true effect substantially less than 95% of

the time. Except for BAC, GBCEE and SC-TMLE, this was expected

since the variance estimators did not account for variable selection.

Post-selection inference is challenging.29,30 Unfortunately, the usual

bootstrap is inappropriate.31 Alternative bootstrap procedures could

perhaps be employed,31 but this would have excessively increased the

computational burden. GBCEE offers an option to employ the boot-

strap in a suitable manner for variance estimation and this was

observed in previous work to yield adequate inferences when its the-

oretical variance estimator could not.19

Using a simulation study allowed us to overcome several limitations

of previous studies. However, simulation studies are also subject to limi-

tations. Notably, only a limited number of settings were explored. Our

synthetic simulation scenarios were arguably simplistic, but they were

helpful to understand how methods compared in situations where the

data-generating mechanism is fully user-specified. Our plasmode simula-

tion allowed us to investigate a more realistic setting. However, many

real LHD applications feature much larger samples and many more

covariates. In addition, we chose to allow only a limited number of

covariates to affect the synthetic outcome, which may be unrealistic.

Only a binary outcome was considered, but time-to-event outcomes are

also frequent in LHD studies. Among the algorithms we have

considered, only the hdPS currently accommodates such outcomes.

Additional simulations are thus required to assess the generalizability of

our findings. Another limitation is that it was possible to include all

covariates in the outcome model when fitting the SC-TMLE, which may

not be possible in all applications and would affect the performance of

the algorithm. In addition, we did not consider methods that combine

hdPS with other machine learning methods such as Super Learner.32–35

Finally, our results do not allow to determine if the better performance

of certain algorithms is due to their adjustment methods or to their vari-

able selection algorithms, since most methods differed on both

accounts.
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