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Purpose: Expectation affects pain experience in humans. Numerous studies have reported 
that pre-stimulus activity in the anterior insular cortex (aIC), together with prefrontal and 
limbic regions, integrated pain intensity and expectations. However, it is unclear whether the 
resting-state functional connectivity (rs-FC) between the aIC and other brain regions affects 
chronic pain. The purpose of this study was to examine the rs-FC between the aIC and the 
whole brain regions in female patients with severe knee osteoarthritis (OA).
Patients and Methods: Nineteen female patients with chronic severe knee OA and 15 
matched controls underwent resting-state functional magnetic resonance imaging. We com-
pared the rs-FC from the aIC seed region between the two groups. A disease-specific 
measurement of knee OA was performed.
Results: The aIC showed stronger rs-FC with the right orbitofrontal cortex (OFC), sub-
callosal area, and bilateral frontal pole compared with controls. The strength of rs-FC 
between the left aIC and the right OFC was positively correlated with the knee OA pain 
score (r = 0.49, p = 0.03). The strength of rs-FC between the right aIC and right OFC was 
positively correlated with the knee OA total score (r = 0.48, p = 0.036) and pain score (r = 
0.46, p = 0.049). The OFC, subcallosal area, and frontal pole, together with the aIC, were 
activated during anticipation of pain stimulus. These areas have been reported as representa-
tive pain-related expectation regions.
Conclusion: This was the first study to show the stronger rs-FCs between the aIC and other 
pain-related expectation regions in female patients with severe knee OA. Female sex and 
preoperative pain intensity are risk factors of persistent postoperative pain after total knee 
arthroplasty. It is suggested that the functional relationship between pain-related expectation 
regions affects the formation of severe knee OA and persistent postoperative pain following 
total knee arthroplasty.
Keywords: functional magnetic resonance imaging, chronic pain, insular cortex, 
orbitofrontal cortex

Introduction
Expectation strongly modulates pain experience in humans. In our brain, the insular 
cortex (IC) plays an important role in pain processing. Particularly, the anterior 
insular cortex (aIC) is involved in pain processing, such as expectation,1–14 cogni-
tive control (attention, value, reward, decision-making),3,4,8–11 salience,10,11 and 
prediction errors (PEs).12–14 Recently, magnetic resonance imaging (MRI) studies 
have revealed that the aIC integrated pain intensity and expectation in healthy 
subjects. Moreover, the aIC is activated with the prefrontal cortex (PFC) and limbic 
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regions during anticipation of a pain stimulus.1–13 The IC, 
PFC, and limbic regions are activated by a pain stimulus 
even in patients with chronic pain.15 In addition, the IC 
activity was correlated with pain intensity in patients with 
knee osteoarthritis (OA) during anticipation of pain.16 

Therefore, functional coupling between the aIC and the 
other pain-related expectation regions may be involved in 
the mechanism of chronic pain and occur even at rest 
without a pain stimulus. However, thus far, there are no 
studies examining the relationship of resting-state activity 
between the aIC and other pain-related expectation regions 
in patients with chronic pain.

Knee OA is a chronic pain disease, with 
a predominance in female patients.17,18 Total knee arthro-
plasty for patients with severe knee OA is a common 
procedure applied to improve pain and disability; however, 
this procedure is occasionally associated with persistent 
postoperative pain.19–21 Female sex19,22 and preoperative 
pain intensity19,21,22 are recognized as risk factors of per-
sistent postoperative pain. The pathology of knee OA 
differs depending on sex and pain severity. Therefore, in 
this study, we targeted only female patients with severe 
knee OA. In a resting-state functional MRI (rs-fMRI) 
study, Baliki et al and Cottam et al23,24 identified that 
resting-state functional connectivity (rs-FC) between the 
aIC and the default mode network was altered in patients 
with chronic knee OA. These studies focused on the sal-
ience role of the aIC. As a result, the region of interest 
(ROI) of the aIC used by Baliki et al and Cottam et al was 
involved in the salience network. However, the ROI of the 
aIC involved in expectation can be larger and close to the 
anatomical size.5,12,13

The objective of this study was to examine the charac-
teristics of rs-FC between the anatomically defined aIC and 
the whole brain regions in female patients with severe knee 
OA using rs-fMRI. We hypothesized that the rs-FC between 
the aIC and other pain-related expectation regions would be 
altered in patients versus healthy controls, and the strength 
of the rs-FC of aIC would be associated with pain scores in 
female patients with chronic severe knee OA.

Patients and Methods
Participants
We recruited 19 female patients diagnosed with chronic 
knee OA and 15 age- and gender-matched controls. The 19 
patients with Kellgren–Lawrence25 grade 3 (N = 6) and 
grade 4 (N = 13) knee OA underwent knee arthroplasty. 

Five of the 15 controls had knee pain. Considering that 
their degree of pain using a visual analog scale (VAS) was 
<30/100, and the duration of pain was <3 months, these 
patients were not diagnosed with chronic pain. Two 
patients and two controls received medication. One patient 
received tramadol and acetaminophen, while the other 
patient received tramadol and pregabalin. Two controls 
received celecoxib, as required.

The exclusion criteria were history of neurological 
disease, brain injury, psychiatric disorders, rheumatoid 
arthritis, claustrophobia, and insertion of metal or electro-
nic devices. This study was conducted in accordance with 
the tenets of the Declaration of Helsinki, and approved by 
the Hiroshima University Ethics Committee (E-302). 
Written informed consent was provided by all participants.

Clinical Measurements
Participants underwent the following measurements prior 
to MRI scans. The VAS was used to measure current pain 
intensity (range: 0–100). A disease-specific measurement 
of knee OA was performed using the Western Ontario and 
McMaster Universities Osteoarthritis Index (WOMAC).26 

The WOMAC consists of 24 questions (five for pain, two 
for stiffness, and 17 for physical function), which are rated 
using an intensity scale of 0–4. The pain score (range: 
0–20), stiffness score (range: 0–8), physical function score 
(range: 0–68), and the total score (range: 0–96) are deter-
mined based on this index. The Pain-DETECT27 was used 
to measure elements of neuropathic pain (range: 0–35). 
The Pain Catastrophizing Scale (PCS)28 was used to mea-
sure the degree of catastrophic thoughts regarding pain 
(range: 0–52). High scores indicate worse outcome in all 
measurements. In patients with bilateral knee OA, the side 
most affected by pain was evaluated.

Acquisition of Neuroimaging Data
The fMRI procedure was performed using a 3.0-Tesla 
MRI scanner (Ingenia Elition; Philips, Amsterdam, 
Netherlands) equipped with a 32-channel head coil. 
Functional images were captured using a single-shot T2*- 
weighted echo-planar imaging sequence (time repetition: 
2500 ms; time echo: 30 ms; flip angle: 80°; matrix: 64 × 
64; field of view: 212 × 212 mm2; 40 slices, slice thick-
ness: 0.8 mm without gap; no oblique axial images; voxel 
size: 3.3 mm × 3.3 mm × 3.2 mm; 240 volumes; scan time: 
10 min). During the functional scan, the patients were 
requested to keep their eyes open, relax, and look at 
a cross mark in front of them without moving or falling 
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asleep. A three-dimensional high-resolution anatomical 
image was captured using a T1-weighted gradient echo 
pulse sequence (time repetition: 6.8 ms; time echo: 3.1 ms; 
flip angle: 9°; field of view: 256 × 240 mm2; voxel size: 
1 mm × 1 mm × 1.2 mm; scan time: 6 min 58 s).

Statistical Analysis
Statistical analysis was performed using the Stata/MP, 
version 15.1 (Stata Corporation, College Station, TX, 
USA). A nonparametric statistic test (Mann–Whitney 
U-test) was used for the age, VAS, WOMAC, Pain- 
DETECT, and PCS.

FC Analysis
Rs-fMRI data were analyzed using the SPM12 
(Welcome Department of Cognitive Neurology, 
London, UK; http://www.fil.ion.ucl.ac.uk/spm/software/ 
spm12/), CONN (Functional Connectivity Toolbox; 
http://www.nitrc.org/projects/conn),29 and Matlab ver-
sion 8.5 (R2017b; MathWorks, Natick, MA, USA). 
After discarding the first 10 images to eliminate any 
signal decay, preprocessing was performed including 
realignment, slice-timing correction, outlier detection, 
co-registration to the anatomical image, segmentation 
of the anatomical image (gray matter, white matter, 
and cerebrospinal fluid), normalization with the standard 
Montreal Neurological Institute brain, and smoothing 
with an 8-mm Gaussian kernel. After preprocessing, 
signal and motion artefacts (global signal z-value thresh-
old ≥5; composite motion threshold ≥0.9 mm) were 
removed from the data using a CompCor strategy,30 

and the data were band-pass filtered (0.02–0.08 Hz) to 
reduce the influence of noise.

A seed-to-voxel analysis was performed using the 
left and right aIC as the region of ROI. The ROIs of 
the left and right aIC were generated using the 
Neuromorphometrics atlas in SPM12, provided by 
Neuromorphometrics, Inc. (http://neuromorphometrics. 
com) under academic subscription.

The within-group imaging analysis was performed 
using a one-sample test, with age as a covariate. The 
threshold for statistical significance was determined at 
p < 0.001 for the uncorrected peak-level and p < 0.05 for 
the cluster-level after family-wise error correction.

Spearman’s rank correlation coefficients were calcu-
lated to investigate the relationship between the strength 
of rs-FC with the aIC and clinical measurements in female 
patients with chronic severe knee OA.

Results
Demographic and Clinical Measurements
The demographic and clinical measurements of the parti-
cipants are shown in Table 1. Compared with the controls, 
patients with chronic knee OA exhibited significantly 
higher scores in the VAS, WOMAC, pain-DETECT, and 
PCS; however, they did not differ in age.

The rs-FC of aIC
In female patients with chronic severe knee OA, the left aIC 
showed stronger rs-FC with the right orbitofrontal cortex 
(OFC) and the subcallosal area (SCA) compared with con-
trols (Table 2; Figure 1). The right aIC showed stronger rs- 
FC with the right OFC, SCA, and the bilateral frontal pole 
(FP) compared with controls (Table 2; Figure 2).

Correlation Between FC and Clinical 
Measurements
In female patients with chronic severe knee OA, the cor-
relation analyses revealed that the strength of rs-FC 
between the left aIC and right OFC was correlated with 
the WOMAC pain score (r = 0.49, N = 19, p = 0.03; 
Figure 3A). Moreover, the strength of rs-FC between the 
right aIC and right OFC was correlated with the WOMAC 
total score (r = 0.48, N = 19, p = 0.036; Figure 3B) and 
WOMAC pain score (r = 0.46, N = 19, p = 0.049; 
Figure 3C). We did not detect any significant relationship 
between the strength of FC and other clinical measure-
ments (Table 3).

Table 1 Demographic and Clinical Measurements of the Participants

Data Patients with Knee 
OA

Controls p

(N = 19) (N = 15)

Age, year 73.2 ± 5.1 74.9 ± 4.6 0.25

Duration, month 102.9 ± 88.6

VAS 64.5 ± 15.1 5.1 ± 8.1 < 0.001

WOMAC

total 61.1 ± 12.4 7.9 ± 14.7 < 0.001
pain 12.3 ± 3.0 1.1 ± 1.6 < 0.001

stiffness 5.1 ± 2.5 0.9 ± 1.8 < 0.001

physical activity 43.2 ± 9.9 5.9 ± 11.6 < 0.001
Pain-DETECT 9.2 ± 5.4 2.6 ± 2.9 < 0.001

PCS 26.3 ± 10.8 9.2 ± 13.0 < 0.001

Note: Data are presented as the means ± SD. 
Abbreviations: OA, osteoarthritis; PCS, Pain Catastrophizing Scale; SD, standard 
deviation; VAS, visual analog scale; WOMAC, Western Ontario and McMaster 
Universities Osteoarthritis Index.

Journal of Pain Research 2020:13                                                                                            submit your manuscript | www.dovepress.com                                                                                                                                                                                                                       

DovePress                                                                                                                       
3229

Dovepress                                                                                                                                                            Ushio et al

http://www.fil.ion.ucl.ac.uk/spm/software/spm12/
http://www.fil.ion.ucl.ac.uk/spm/software/spm12/
http://www.nitrc.org/projects/conn
http://neuromorphometrics.com
http://neuromorphometrics.com
http://www.dovepress.com
http://www.dovepress.com


Discussion
Using rs-fMRI, we investigated the abnormality of rs-FCs 
between bilateral aIC and other brain regions in female 
patients with chronic severe knee OA. We found that the 
patients exhibited an increased rs-FC of left aIC to right 
OFC, and SCA. In addition, the rs-FC with the right aIC, 
SCA, right OFC, and bilateral FP was increased. 
Furthermore, we showed that the strength of rs-FC 
between the left aIC and right OFC was significantly 
associated with the WOMAC pain score. Moreover, the 
strength of rs-FC between the right aIC and right OFC was 
significantly associated with the WOMAC total score and 
WOMAC pain score.

Previous studies suggested that healthy subjects per-
ceived a noxious stimulus as more painful or fearful when 

they expected aversiveness or experienced a nocebo effect 
prior to the stimulus. In addition, the FC of the aIC and 
OFC was increased prior to or during the stimulus.4,7,31,32 

During anticipation of dental treatment and hyperventila-
tion, an increased activation of the aIC and OFC was also 
found in healthy subjects.8,33 The OFC represents and 
retains the affective value of past comfort- 
discomfort.34–36 Atlas et al4 suggested that the aIC mod-
ulates pain perception by integrating aversive expectation 
from the OFC during anticipation. On the other hand, the 
expectation of pleasure mediates pain. The FC of the aIC 
and OFC was decreased when a pain stimulus and mone-
tary wins occurred simultaneously.37 In summary, the OFC 
is an expectation region of value and reward for pain, and 
involved in the modulation of pain processing. Our results 
suggested that the increased rs-FC of the aIC and OFC 
affect subjective pain by increasing the aversive expecta-
tion for pain. In fact, we found that the strength of rs-FC 
between the aIC and OFC exhibited a positive correlation 
with the disease-specific measurement of knee OA. 
Approximately 15–30% of patients experience persistent 
postoperative pain after undergoing total knee 
arthroplasty.19–21 This may be due to the aversive expecta-
tion of pain remaining after total knee arthroplasty, which 
completely removes the sensory aspects of pain.

The SCA is connected to the medial OFC and subgen-
ual anterior cingulate cortex (ACC). Moreover, the amyg-
dala, ventral striatum, and hippocampus are involved in 
emotion experience and processing.38 The aIC, SCA, 
OFC, and ACC are composed of agranular visceromotor 
cortices. These areas contribute to generating predictions 

Table 2 Brain Regions Showing Increased Functional 
Connectivity with the Left and Right Anterior Insular Cortex in 
Patients with Knee Osteoarthritis Relative to Control Subjects

Anatomical Location MNI 
Coordinates

Cluster 
Size

p-FWE

X Y Z

Left

Rt. orbitofrontal cortex 18 14 −30 150 < 0.005
subcallosal area 87

Right
Rt. orbitofrontal cortex 14 20 −22 171 < 0.005

subcallosal area 96

Bil. frontal pole 8 68 20 519 < 0.001

Note: The X, Y, and Z coordinates accord with the MNI atlas. 
Abbreviations: Rt, right; Bil, bilateral; MNI, Montreal Neurological Institute; FWE, 
family-wise error corrected.

Figure 1 Resting-state functional connectivity of the left anterior insular cortex. Brain regions showing a significant increase in the functional connectivity of the left anterior 
insular cortex in patients with knee osteoarthritis relative to controls (p < 0.001 uncorrected, peak-level and p < 0.05 cluster-level, after FWE correction). 
Abbreviations: FWE, family-wise error; Rt, right; OFC, orbitofrontal cortex; SCA, subcallosal area.
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for somatosensory inputs, such as pain stimulus, and indir-
ectly enabling the creation of PEs.39,40 In fact, PEs to 
a cued pain stimulus have been found in the aIC, PFC, 
and limbic regions.12,13 Geuter et al12 indicated that the 
predictions and PEs played an important role in our pain 
perception, and brain processes of the predictions and PEs 
may contribute to chronic pain. Therefore, it is suggested 

that the increased rs-FC with the aIC, SCA, and OFC may 
be involved in our pain perception by increasing the emo-
tional experiences and creating the predictions and PEs 
without a stimulus.

The SCA, medial FP, and medial OFC are included in 
medial PFC (mPFC), together with pregenual ACC. In 
female patients with chronic pelvic pain, the rs-FC 

Figure 2 Resting-state functional connectivity of the right anterior insular cortex. Brain regions showing a significant increase in the functional connectivity of the right 
anterior insular cortex in patients with knee osteoarthritis relative to controls (p < 0.001 uncorrected, peak-level and p < 0.05 cluster-level, after FWE correction). 
Abbreviations: FWE, family-wise error; Rt, right; Bil, bilateral; OFC, orbitofrontal cortex; SCA, subcallosal area; FP, frontal pole.

Figure 3 Correlations between the anterior insular cortex-right orbitofrontal cortex functional connectivity and clinical measurements. Scatter plots showing the 
correlations of functional connectivity with the (A) WOMAC pain score in the Lt. aIC and Rt. OFC; (B) WOMAC total score in the Rt. aIC and Rt. OFC; and (C) 
WOMAC pain score in the Rt. aIC and Rt. OFC. 
Abbreviations: aIC, anterior insular cortex; Lt, left; Rt, right; OFC, orbitofrontal cortex; WOMAC, Western Ontario and McMaster Universities Osteoarthritis Index.
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between the aIC and mPFC (medial FP) increased, and the 
increased rs-FC between these regions was positively cor-
related with pain intensity, anxiety, and depression scale.41 

In nonspecific chronic low back pain patients with a high 
clinical sign, activation of the aIC and mPFC (medial FP, 
pregenual ACC) showed a positive covariance in anxiety 
and depression scales in response to expected pain.42 In 
major depressive disorder, an increased rs-FC of the aIC/ 
ventrolateral PFC and FP with the SCA was associated 
with remission and treatment failure.43 Although we did 
not evaluate anxiety and depression scores in this study, it 
has been reported that chronic pain patients with knee OA 
have higher scores versus healthy controls.24,44 Moreover, 
older knee OA patients with depressive symptoms are at 
elevated risk for incidental major depression or anxiety 
disorders.45 On the other hand, it was reported that 
decreased rs-FC between the aIC and mPFC (medial FP) 
was negatively associated with pain score in females with 
primary dysmenorrhea during menstruation.46 The role of 
connectivity between the aIC and mPFC in chronic pain is 
inconsistent. However, our results suggest that the 
increased rs-FC between the aIC, SCA, and FP may be 
a neural network change, indicating the psychological 
aspects of female patients with chronic severe knee OA.

The present study had several limitations. Firstly, owing 
to the cross-sectional design of this study, we could not 
determine the causal relationships between chronic pain and 
cerebral abnormalities. Further longitudinal studies would be 
necessary to answer this question. In fact, it was reported that 
structures in the brain were altered following surgery in 
patients with chronic knee and hip OA.47,48 Secondly, two 
subjects received medicines, which could affect the central 
nervous system. In a sub-analysis excluding those two sub-
jects, the stronger rs-FC between the aIC and pain-related 
expectation regions remained. However, it is possible that 
medicines may have influenced the results. Thirdly, the num-
ber of participants was small. In this study, we targeted only 
females and showed a significant correlation between the 
strength of rs-FC and pain scores. For the generalization of 
the present findings, it would be important to also examine 
males and increase the number of participants. Fourthly, we 
did not directly measure pain expectation. It would be neces-
sary to investigate the effect of expectation on pain and 
subsequently evaluate its relationship with rs-FC. Recently, 
pain-free rs-FC has been reported to predict individual pain 
sensitivity or the placebo effect.49,50 In fact, Wagner et al50 

identified that placebo-induced pain reduction (positive 
expectation effect) was associated with pain-free rs-FC net-
works, including the aIC. Finally, it has been reported that the 
activity of the ventral aIC was different from that of the dorsal 
aIC in the expectation or PEs.12,13 The ventral aIC contrib-
uted to both expectation and PEs, while the dorsal aIC did 
only to the former.13 Future studies should investigate the 
subdivisions of ROIs in the aIC.

Conclusion
Using rs-fMRI analysis, this was the first study to show 
that the rs-FC between the aIC and other pain-related 
expectation regions was already increased in female 
patients with chronic severe knee OA. The extent of this 
increase was significantly associated with disease-specific 
measurement. These findings enhance our understanding 
of the neuropathology and treatment of female patients 
with chronic severe knee OA.

Abbreviations
ACC, anterior cingulate cortex; aIC, anterior insular cor-
tex; FP, frontal pole; IC, insular cortex; MRI, magnetic 
resonance imaging; OA, osteoarthritis; OFC, orbitofrontal 
cortex; PCS, Pain Catastrophizing Scale; PEs, prediction 
errors; PFC, prefrontal cortex; ROI, region of interest; rs- 

Table 3 Correlation Between the Anterior Insular Cortex-Right 
Orbitofrontal Cortex Functional Connectivity and Clinical 
Measurements

Lt.aIC- 
Rt.OFC

WOMAC 
total

WOMAC pain WOMAC 
stiffness

WOMAC 
physical

cc 0.29 0.49* 0.15 0.23

p 0.22 0.03 0.52 0.34

VAS Pain-DETECT PCS

cc 0.26 −0.02 0.05

p 0.28 0.92 0.84

Rt.aIC- 
Rt.OFC

WOMAC 
total

WOMAC pain WOMAC 
stiffness

WOMAC 
physical

cc 0.48* 0.46* 0.24 0.37

p 0.04 0.049 0.31 0.12

VAS Pain-DETECT PCS

cc 0.26 −0.01 0.02

p 0.28 0.97 0.94

Note: *p < 0.05 denotes significant correlation. 
Abbreviations: Lt, left; Rt, right; aIC, anterior insular cortex; cc, Spearman’s rank 
correlation coefficients; OFC, orbitofrontal cortex; PCS, Pain Catastrophizing Scale; 
VAS, visual analog scale; WOMAC, Western Ontario and McMaster Universities 
Osteoarthritis Index.
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FC, resting-state functional connectivity; rs-fMRI, resting- 
state functional magnetic resonance imaging; VAS, visual 
analog scale; WOMAC, Western Ontario and McMaster 
Universities Osteoarthritis Index.
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