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Abstract

Hazard ratios are ubiquitously used in time to event analysis to quantify treatment effects. Although hazard ratios are
invaluable for hypothesis testing, other measures of association, both relative and absolute, may be used to fully
elucidate study results. Restricted mean survival time (RMST) differences between groups have been advocated as
useful measures of association. Recent work focused on model-free estimates of the difference in restricted mean
survival through follow-up times, instead of focusing on a single time horizon. The resulting curve can be used to
quantify the association in time units with a simultaneous confidence band. In this work a model-based estimate of
the curve is proposed using pseudo-values allowing for possible covariate adjustment. The method is easily
implementable with available software and makes possible to compute a simultaneous confidence region for the
curve. The pseudo-values regression using multiple restriction times is in good agreement with the estimates
obtained by standard direct regression models fixing a single restriction time. Moreover, the proposed method is
flexible enough to reproduce the results of the non-parametric approach when no covariates are considered.
Examples where it is important to adjust for baseline covariates will be used to illustrate the different methods
together with some simulations.
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Introduction
In most clinical trials and observational studies dealing
with time-to-event as the main outcome, the measure of
association used is the hazard ratio (HR), a quantity which
is typically estimated using Cox regression [1]. When the
proportional hazards assumption holds, Cox regression is,
in fact, the preferred method of estimation due to its effi-
ciency. The use of hazard ratios is well established and
accepted in biomedical literature, sometimes acritically.
In fact, many authors warned against its limitations. First
of all, its interpretation may not always be as straightfor-
ward as could be a time based measure [2]. This is in
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part due to the relative nature of the hazard ratio, which
means that the time gained by treated/exposed versus
non-treated/non-exposed patients is not easily evaluated
as it depends also on the baseline risk. Second, if the PH
assumption is not true, reporting a single HR estimate is
obviously misleading while the reporting of an HR varying
through time does not have a simple interpretation due to
selection of patients during follow-up [3, 4]. In some situa-
tions, the proportional hazards assumption is tenable just
because of the fact that the follow-up length is too short
to show non proportionality [5]. The need for expressing
study results in a way that people can easily understand
[6] is another of the motivations that keep the debate on
the hazard ratio active.
Existing proposed alternatives include the ratio between

median survival times [2], the difference of survival prob-

© The Author(s). 2022 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were
made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative
Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made
available in this article, unless otherwise stated in a credit line to the data.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12874-022-01559-z&domain=pdf
mailto: federico.ambrogi@unimi.it
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Ambrogi et al. BMCMedical ResearchMethodology           (2022) 22:71 Page 2 of 12

abilities at a specific time point, and the difference of the
expected survival times [7, 8]. The latter measure of asso-
ciation is in general referred to a fixed time interval [ 0, τ ],
i.e. the question is if there is a difference in the restricted
(at τ years) mean survival time (RMST) [9]. In the frame-
work of clinical trial planning, the comparison of RMST
has interesting advantages [10].
An extreme form of non PH is when the survival

curves cross and in such a situation a single measure
of association, such as the hazard ratio, is too simple to
summarise the relationship between the exposure or the
treatment and the outcome. The restricted mean survival
time (RMST) has been advocated as a possible alternative
outcome measure for such cases [8, 10].
A possibility, introduced first by Royston and Parmar

(2011) [8], is to estimate the treatment difference in RMST
through the follow-up time, to show how the treatment
comparison varies in time. This approach was developed
non-parametrically introducing the use of simultaneous
confidence bands to make inference at all time points [11]
. This approach could be especially useful for investigating
equivalence or non-inferiority questions.
In this work, we propose a simple, model-based, method

to estimate the difference in RMST curves using pseudo-
values. Such a methodology enables an easy calculation of
the confidence bands for the curve and also the possibility
of adjusting for covariates.
The use of pseudo-values is not the only possibility.

The flexible parametric survival models [8] or the direct
regression method [12], based on weighted estimating
equations, are valid alternatives. Although software is
readily available for all the cited approaches [8, 13, 14], the
approach developed here, based on pseudo-values, allows
an easy estimation of simultaneous confidence bands by
means of available standard software.
Three applications are presented where adjustment by

covariates is needed, together with a simulation study
taking into account different scenarios.

Methods
In this section we will present: 1) the definition of the
RMST; 2) the general regression model on pseudo-values;
3) the modelling of the RMST with right-censored failure
time data with covariates using pseudo-values through a
linear model; 4) the extension to smoothing functions and
time-varying effects; 5) the model-based comparison of
RMST curves.

Restricted mean survival time
In survival analysis the time T elapsed from an initial
event to the possible occurrence of a terminating event is
analysed. Usually, only a right-censored version of the ran-
dom variable T is observed and, therefore, the mean value
of T is not easy to estimate non-parametrically, [15]. As a

replacement, the τ -restricted mean survival time (RMST)
is defined as:

RMST(τ ) =
∫ τ

0
S(t)dt (1)

where S(t) = P(T > t) = exp(− ∫ t
0 λ(u)du) is the

survival function and λ(t) is the hazard function. The
RMST(τ ) represents the expected lifetime, E(T∧τ) over a
time horizon equal to τ . The difference between RMST(τ )

for different treatments has been advocated as a useful
summary measure in clinical applications [7, 8, 10].

General regression model on pseudo-values
The idea of using pseudo-values for censored data analy-
sis was introduced by Andersen et al. (2003) [16]. Let Xi,
i = 1, . . . , n, be independent and identically distributed
random variables and θ be a parameter of the form

θ = E(f (Xi)) (2)

and assume that we have an (at least approximately) unbi-
ased estimator, θ̂ , for this parameter. Let Zi, i = 1, . . . , n
be independent and identically distributed covariates and
define the conditional expectation

θi = E(f (Xi)|Zi) (3)

The ith pseudo-observation is defined as

θ̂i = nθ̂ − (n − 1)θ̂−i (4)

where θ̂−i is “the leave-one-out”estimator for θ based on
Xj, j �= i. If all Xi are observed then θ may be estimated
by the average of the f (Xi) in which case θ̂i is simply f (Xi).
This approach will be used here with a censored sample
of the Xi. A regression model for the parameter θ corre-
sponds to a specification of how θi depends on Zi and this
may done via a generalized linear model

g(θi) = βTZi (5)

where the matrix Z contains a column of 1, correspond-
ing to the intercept. The regression coefficients β can be
estimated using generalized estimating equations [17]

U(β) =
n∑

i=1
Ui(β) =

n∑
i=1

(
∂

∂β
g−1(βTZi)R−1

i (θ̂i − g−1(βTZi))

)

(6)

In the general situation θ may be multivariate and Ri is
a working covariance matrix [18]. Andersen et al. (2003)
[16] argued that the variances of β can be obtained by the
standard sandwich estimator

V̂ = I(β̂)−1 ˆvar{U(β)}I(β̂)−1 (7)

where
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I(β) =
n∑

i=1

(
∂g−1(βTZi)

∂β

)T

R−1
i

(
∂g−1(βTZi)

∂β

)
(8)

ˆvar{U(β)} =
n∑

i=1
Ui(β)Ui(β)T (9)

After the computation of pseudo-values, parameter esti-
mates and their standard errors can be obtained using
standard statistical software for generalized estimating
equations, though the standard errors may be slightly
conservative. In fact, a general asymptotic theory of esti-
mates from estimating functions based on pseudo-values
demonstrated, under some regularity conditions, consis-
tency and asymptotic normality of the estimates [19]. The
ordinary sandwich estimator is however not consistent,
leading to an overestimate of the standard errors. The
demonstration is derived for real-valued pseudo-values,
but, as stated in [19], it can be generalized to handle
vector-valued pseudo-values.
Given the asymptotic normality of the model estimates,

it is possible to adopt the approach based on simultaneous
inference in general parametric models to obtain simulta-
neous test procedures and confidence intervals [20].

Modelling of the RMST with right-censored failure time
data with covariates using pseudo-values through a linear
model
The RMST(τ ) can be estimated non-parametrically based
on the Kaplan-Meier estimator [1] or model-based, possi-
bly resorting to flexible regression.
A model estimate for the RMST can be obtained,

through transformation, adopting a model for the haz-
ard function. The piecewise-exponential model assumes
proportionality for the covariate effects while separate,
piecewise constant, baseline hazards, are used for the dif-
ferent treatments to estimate RMST(τ ) [21]. The model
was further developed using Cox regression with strat-
ification [22]. The method is implemented in the func-
tion restricted.residual.mean in the package
timereg [23], in the free R software, [24]. The function
can use the Cox regression model or the Aalen regression
model to perform the calculations.
A number of different alternatives are available for

model based estimates of RMST(τ ), for example one con-
venient possibility is the use of flexible parametric survival
models [8]. In general, the standard errors of the RMST
(or of the difference of RMST between treatments) are
obtained using the delta method, or using the bootstrap
or other resampling/simulation techniques.
An alternative estimation method is to directly model

RMST as a function of covariate values. This can be
achieved using inverse probability of censoring weight-
ing [12], or with pseudo-values [25]. We will focus on
estimation based on pseudo-values as it allows to use

standard software for generalized linear models and for
simultaneous inference in general parametric models.
For the restricted mean we have θ = E(X ∧ τ) =∫ τ

0 S(t)dt, and we use the estimator obtained by plugging
in the Kaplan-Meier estimator [25]. For this estimator,
results stated in [19] are valid under the assumption of
censoring independent of event times and covariates. The
ith pseudo-value at time τ is therefore defined as:

θ̂τ i = n
∫ τ

0
Ŝ(t)dt − (n − 1)

∫ τ

0
Ŝ−i(t)dt (10)

where Ŝ−i(t) is the Kaplan-Meier estimator excluding
subject i.
Instead of considering a single τ , as in [25], we con-

sider a finite grid of M time points τ1, . . . , τj, . . . , τM and
we compute the pseudo-values for the ith subject at each
τj. Time points can be selected as quantiles of the event
time distribution, e.g. M could be chosen to have approx-
imately 10 events for each pseudo-value while, in general,
it is not useful to havemore than 15-20 time points. In fact
according to [13, 26] a number of points between 5 and
10 is sufficient to provide good estimates of the regres-
sion parameter. In [16], when studying the application to
multi state models, model results using 5, 10 or 20 time
points produced similar results. The problem with using a
large number of time points is the computational burden
as the dataset is being expanded with as many subjects’
replications as the number of time points considered.
A regression model for a vector valued θ̂ i, with compo-

nents calculated at several τ -values, must include terms
for time and possibly interaction terms between covariates
and time to account for time-varying covariate effects.
This was already done for model based on pseudo-values
with applications to competing risks [26, 27]. A general-
ized linear model can be assumed as:

g(θτj i) = αj + γ TCi (11)

where αj determines the baseline (transformed) restricted
mean time at τj and is explicitly estimated andCi are time-
independent covariates.
A presentation of the different methods available for

estimating RMST, applied to the classical Freireich data
[28], can be found in the supplementary material [see
Additional file 1].

Extension to smoothing functions and time-varying effects
The baseline estimate for the grid points can be mod-
elled by including M − 1 dummy variables. It is possible
to include time-varying effects through interaction terms
between time and covariates. To include a reasonable
number of regressors into the model, we propose to use
a smoothing function (e.g. a cubic spline) to model the
restricted mean time of the reference category. In such a
way, model (11) can be rewritten as:
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g[ θτj i]= δTBj + γ TCi + ζTbBjCi = βTZ (12)

where Bj is the vector of the spline basis functions and
δT the corresponding vector of the regression coefficients
and bBjCi represents the interaction terms among covari-
ates and the spline bases to account for time-varying
effects.
When considering the identity link, as covariate effects

estimate differences in RMST, a constant difference
through time is not plausible. Covariates should then be
included together with their time-dependent effects, i.e.
interactions with time.

Model-based comparison of RMST curves
In the following the identity link will be used and, for ease
of notation, only a binary covariate, A, will be considered.
The regression model will therefore be specified as:

RMST(τj | Ai) = θτj i = α1 + αjIj + γAi + ζjIjAi (13)

where the Ij, j = 2, . . . ,M are M − 1 indicator functions
for estimation of the baseline function. The same indi-
cator functions are used to model time-varying covariate
effects.
The estimate of the difference in RMST through follow-

up according to binary covariate A is given by the step
function

D(τj) = �(τj|A) = γ + ζjIj (14)

changing value at each time selected for the computation
of the pseudo-values.
The variance of D(τj) can be estimated for each τj from

model results as in standard GEE modelling (though, as
already said, this may be slightly conservative). For exam-
ple the variance of D(τj), can be computed using the
robust sandwich variance-covariance matrix of the coeffi-
cients γ and ζj and anM-dimensional basis vector, with 1
in the first and j positions and 0 otherwise.:

(
1 . . . 1 . . . 0

)
⎛
⎜⎜⎜⎜⎜⎜⎝

V(γ̂ ) . . . Cov(γ̂ , ζ̂j) . . .

. . . . . . . . . . . .

. . . Cov(̂ζj−1, ζ̂j) V(̂ζj) . . .

. . . . . . . . . . . .

. . . . . . . . . V(̂ζM)

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
...
1
...
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The function D(τj) can also be obtained by incorporat-
ing a smooth spline basis into the regression model. In
this case, without loss of generality, considering just two
basis functions (for ease of notation) B1(t) and B2(t) and
an intercept, to model the baseline RMST through time,
the regression model can be written as:

RMST(t | Ai) = δ0 + δ1B1(t) + δ2B2(t) + γAi+
ζ1B1(t)Ai + ζ2B2(t)Ai (15)

and the difference in RMST curves is given by the smooth
function:

D(t) = �(t|A) = γ + ζ1B1(t) + ζ2B2(t) (16)

The robust variance at time t of the estimate D̂(t),V (D̂(t))
can be computed as:

(
1 B1(t) B2(t)

)
⎛
⎜⎝

V(γ̂ ) Cov(γ̂ , ζ̂1) Cov(γ̂ , ζ̂2)
Cov(γ̂ , ζ̂1) V(̂ζ1) Cov(̂ζ1, ζ̂2)
Cov(γ̂ , ζ̂2) Cov(̂ζ1, ζ̂2) V(̂ζ2)

⎞
⎟⎠

⎛
⎜⎝

1
B1(t)
B2(t)

⎞
⎟⎠

Based on the asymptotic normality of the model esti-
mates, the asymptotic pointwise 95% confidence interval
of R(t) is given by [Dlo(t); Dup(t)]= γ̂ + ζ̂1B1(t) +
ζ̂2B2(t) ± 1.96

√
V(D̂(t)).

The confidence region for the curve, i.e. the simulta-
neous 95% confidence interval of D(t), can be obtained
by adopting the approach developed by Hothorn et al.
(2008) [20]. In order to ensure a coverage probability of at
least 95% for the entire curve, an appropriate critical value
u95% must be chosen instead of the 1.96. The value can be
chosen such that P(tmax � u95%) = 95%, where:

tmax = supt∈[a,b]
[ γ̂ + ζ̂1B1(t) + ζ̂2B2(t)]−D(t)√

V(D̂(t))
(17)

where the limits of the interval [ a, b] span the follow-
up time of interest or, more strictly, corresponds to the
minimum and maximum times used to compute pseudo-
values. In order to compute the u95% value, the supremum
of the function can be obtained using an equally spaced
grid of time points [ a � t1 � t1 � · · · � tk = b].
The obtained value should be sufficiently close to the true
value and this approach makes it possible to use standard
software for the calculation [29]. The function glht from
the package multcomp [20] can be used to compute the
confidence band.

Model selection
An empirical solution for model selection, including for
example the number of spline bases, is to use the quasi
information criterion (QIC) [30]:

QIC = −2QL + 2 tr(N−1V) (18)

where N is the naïve variance estimate, considering inde-
pendent values, while V is the robust variance estimate
and QL is the quadratic quasi likelihood for the model
with pseudo-values

∑N
i=1

∑M
j=1[ θ̂τji − ̂g−1(θτj i)]2. This is

in line with the use of pseudo-residuals for the evaluation
of the goodness of fit used in [31]. When the selec-
tion does not regard the working correlation structure,
the trace could simply be replaced by twice the number
of model parameters. More details are reported in the
supplementary material [see Additional file 1]. More prin-
cipled approaches are emerging in literature [32], and will
hopefully improve also the possibilities of model selection.
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Results
Simulation
Use ofmultiple restriction times
The use of a vector of pseudo-values at a grid of M time
points is standard practice in applications of pseudo
values involving multi state models. In applications with
RMST only a single time point, i.e. the restriction time,
was used. In the applications presented here we are
using a vector of restriction times, and therefore multiple
pseudo-values per subject, in order to estimate the dif-
ference between RMST curves through follow-up time
together with a confidence band. In this simulation we
want to investigate the behaviour of the model estimated
with multiple pseudo-values per subject by comparing it
to the standard application of pseudo values with a single
restriction time. For comparison, the approach proposed
by Tian et al. (2014) [12] based on weighted equations
is also used. In particular, we use the same simulation
design proposed in [25].
Weibull distributed life times were generated with scale

parameter λi = exp (βbZi) and shape parameter δ = 0.5, 1
or 2. Here, Zi is binary with Pr(Zi = 1) = 0.5 and βb = 0
or 1. Exponential censoring at 25% was superimposed and
the restricted mean life time at τ was estimated for values
of τ at the pth percentile when βb = 0, i.e. τ = (−log(1 −
p))1/δ for p = 0.75 and 0.9. The true value of the restricted
mean is

∫ τ

0
exp(−λtδ)dt = 1

δ
λ−1/δ

[
�(

1
δ
, 0) − �(

1
δ
, λ(−log(1 − p)))

]

where �(a, x) is the incomplete gamma function. The
baseline RMST is therefore,

β0 = 1
δ

[
�( 1

δ
, 0) − �( 1

δ
, (−log(1 − p)))

]
, while the Z

effect, i.e. the difference in RMST between Z = 1 and
Z = 0 is given by

β1 = 1
δ
exp−1/δ

[
�

(
1
δ
, 0

)
− �

(
1
δ
, exp(1)(−log(1 − p))

)]
− β0.

For the standard model with pseudo-values proposed in
[25] and for the model of Tian [12], β0 and β1 correspond
to the intercept and to the coefficient of Z. For the model
with a vector of pseudo values, 16 times were selected at
quantiles of the failure time distribution, starting from the
minimum until the 99th percentile, and the pseudo-values
for each subject were calculated. Natural splines were used
to estimate the baseline RMST and an interaction between
splines bases and Z was used to estimate the curve D(t).
The value of baseline RMST and of R(t) at time τ are then
calculated, corresponding to β0 and β1.
Each combination was replicated 1000 times. Simula-

tions in which the last simulated event time was less than
τ were excluded. This happened in an important number
of times with setting δ = 0.5 and βb = 1 (72 times with

p = 0.75 and 472 times with p = 0.90 when N = 250
and 325 times with p = 0.90 when N = 1000). Also with
setting δ = 1 and βb = 1 this happened 140 times with
p = 0.90 when N = 250 and 95 times with p = 0.90 when
N = 1000. In these two settings it happened also that the
last restriction time of the model estimated using a vec-
tor of pseudo-values (the last restriction time is placed at
the 99% percentile of the failure time distribution) was less
than τ (δ = 0.5 and βb = 1: 22 times with p = 0.75
and 988 times with p = 0.90 when N = 250 and 1000
times with p = 0.90 when N = 1000; δ = 1 and βb = 1
this happened 279 times with p = 0.90 when N = 250
and 38 times with p = 0.90 when N = 1000). Results are
shown in Table 1. The biases were everywhere quite small
for all the methods compared, with the exception of the
model with the vector pseudo-values in setting δ = 0.5
and βb = 1, especially for the 90th percentile. This was
due to the fact that for the direct model with a vector of
pseudo-values the estimates at τ were obtained in extrap-
olation. The number of spline bases was chosen in each
simulated data with QIC in a range between 3 and 12.
However, results were not changing fixing the degrees of
freedom to 3 in each simulation (not shown).

RMST curve
In order to examine the proposed method to estimate the
confidence band for the RMST difference curve, differ-
ent simulation scenarios were performed. The simulated
survival functions are represented in Fig. 1.
For RMST curve simulations, event times were simu-

lated according to the following specifications:

• Scenario 1: (1) Weibull with parameters (0.18; 1.5)
and (2) Weibull with parameters (0.20; 0.75).

• Scenario 2: (1) Weibull with parameters (2.5; 30) and
(2) piecewise exponential with
λ = 0.125 I(t < 1) + 0.01 I(t � 1).

• Scenario 3:(1) exponential with λ = 1/12 and a
piecewise exponential with
λ = 0.25 I(t < 2) + 1

35 I(t � 2).
• Scenario 4:(1) Weibull with parameters (1.5; 5) and

(2) piecewise exponential with
λ = 0.5 I(t < 1.5) + 0.1 I(t � 1.5).

• Scenario 5:(1) Weibull with parameters (1.6; 110) and
(2) piecewise exponential with λ = 0.0025 I(t <

12) + 0.01 I(12 � t < 30) + 0.003 I(t � 30). This
scenario is similar to the data from the
EBMT-NMAM2000 study.

For all simulations a 20% random uniform censoring was
considered. The first scenario regards a typical situation
in which the proportional hazards assumption is not rea-
sonable and the curves are crossing at the end of the
considered follow-up. The scenarios from 2 to 4 are taken
from [33] where different testing procedures were com-
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Table 1 Bias of the regression models estimated with pseudo-values using a single restriction time at τ (PV scalar) or multiple
restriction times at quantiles of failure time distribution (PV vector), and with the approach of Tian et al, (2004). For PV vector 16 pseudo
values were used in each setting. QIC was used to select the degrees of freedom of the splines (from a minimum of 3 to a maximum of
12). Two different sample size were considered (250 and 1000 with 25% censoring)

P=0.75 P=0.90

δ βb PV scalar Tian PV vector PV scalar Tian PV vector

N=250 Baseline 0.5 0 -0.001 -0.001 -0.001 0.003 0.003 0.026

0.5 1 0.000 0.001 0.014 0.026 0.025 0.137

1 0 0.000 0.000 -0.001 0.000 0.000 0.011

1 1 -0.003 -0.003 0.002 -0.005 -0.005 0.004

2 0 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001

2 1 -0.001 -0.001 0.001 -0.001 -0.001 0.001

Z effect 0.5 0 0.001 0.001 0.001 0.003 0.003 0.003

0.5 1 0.000 -0.001 -0.006 0.043 0.036 0.181

1 0 0.000 0.000 0.000 0.000 0.000 0.000

1 1 -0.003 -0.003 -0.013 -0.004 -0.005 -0.002

2 0 0.002 0.002 -0.002 0.002 0.002 0.002

2 1 0.002 0.002 -0.002 0.002 0.002 0.002

N=1000 Baseline 0.5 0 0.005 0.005 0.002 -0.003 -0.003 0.023

0.5 1 0.001 0.001 0.014 0.001 0.001 0.084

1 0 0.0003 0.0003 -0.002 0.0001 0.0001 0.013

1 1 -0.001 -0.0005 0.005 -0.001 -0.001 0.002

2 0 0.0003 0.0003 0.0002 0.0003 0.0003 0.0002

2 1 0.0003 0.0003 0.003 0.0003 0.0003 0.003

Z effect 0.5 0 0.001 0.001 0.001 0.005 0.005 0.005

0.5 1 0.002 0.001 -0.007 0.005 0.004 0.120

1 0 0.001 0.001 0.001 0.0002 0.0002 0.0005

1 1 -0.0002 -0.0002 -0.011 -0.001 -0.001 -0.009

2 0 0.0002 0.0002 -0.0002 0.0002 0.0002 0.0002

2 1 0.0004 0.0004 -0.0003 0.0004 0.0004 0.0003

Fig. 1 Solid and dotted lines represent the survival curves simulated according to the 5 different scenarios described in RMST curve section
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pared in the presence of crossing survival curves. The
crossing is at different probability levels.
The fifth simulation scenario is used to mimic the cross-

ing of survival curves found in the NMAM2000 trial.
In this scenario, the two survival curves are practically
superimposed at the beginning, then separate and then
cross.
For each simulation the RMST difference curve was cal-

culated, using the KM estimator, together with its 95%
confidence band, according to the nonparametric method
[11]. The curve and the 95% confidence band were also
estimated using pseudo-values and GEE regression. To
calculate the confidence band with pseudo-values a grid
of 10 or more, equally spaced, time points was used. In
general the result is quite stable using 10 or more time
points. To evaluate the coverage, it was checked if the
band included the true RMST difference value, for all the
time points of the grid. The average length of the band
was also computed together with the average bias in the
estimate. Results are reported in Table 2. For the pseudo-
value model, 16 time points were considered, at quantiles
of the event time distribution.
For each scenario, natural splines with different degrees

of freedom were used varying from 4 to 12. QIC was used
to select the degrees of freedom in each simulated data set.
Boundary knots were set to the minimum and maximum
time used for pseudo-value calculation.
Results from simulations show that the regression

model with pseudo-values has results comparable with
those of the non-parametric estimators. The coverage
of the band is good and approximates quite closely the
desired 95%.

Table 2 Comparison of the results obtained with the
non-parametric estimator and the regression model on pseudo
values. Sixteen pseudo values are used in each setting. QIC was
used to select the degrees of freedom of the splines (from a
minimum of 4 to a maximum of 12). The different scenarios are
described in Fig. 1. Two different sample size are considered (200
and 400 per group with 20% censoring)

Non Parametric Pseudo-Values

Scenario Bias Coverage Length Bias Coverage Length

200 1 0.095 0.941 0.643 0.096 0.941 0.612

2 0.719 0.931 4.297 0.717 0.943 4.425

3 0.702 0.937 4.634 0.704 0.952 4.524

4 0.172 0.928 1.140 0.172 0.938 1.115

5 1.434 0.973 9.886 1.446 0.954 9.499

400 1 0.069 0.946 0.464 0.069 0.928 0.437

2 0.502 0.939 3.138 0.503 0.937 3.225

3 0.502 0.948 3.539 0.506 0.929 3.398

4 0.125 0.944 0.866 0.125 0.945 0.839

5 1.033 0.965 7.143 1.038 0.942 6.931

Applications
The CSL1 trial in liver cirrhosis
The CSL1 trial was already analysed in [25] with pseudo-
values considering both mean and restricted mean sur-
vival time, with restriction at 5 years. The random-
ized trial studied the effect of prednisone on survival in
patients with liver cirrhosis [34]. An interesting finding
was that only patients without ascites seemed to benefit
from the treatment.
The reanalysis presented here aims to compare three

different approaches to the analysis of restrictedmean: the
method based on a single pseudo value at a specified τ ; the
weighted regression of Tian [12] with restricted mean at
a specified τ ; the method with multiple pseudo values per
patient at multiple restriction times, useful to estimate the
RMST difference curve. All regression models were fitted
considering an adjustment by age as in [25]. To compare
the results from the different approaches, the first two
methods were applied multiple times, varying the restric-
tion time from 1 until 9 years. Regarding the last method,
16 pseudo-times, at quantiles of the failure time distri-
bution (minimum 0.01 and maximum 9.90 corresponding
to 99 percentile), were used, obtaining 16 pseudo-values
for each patient. Then a regression model with identity
link function and interaction between ascites and treat-
ment was estimated. All effects were time dependent as
required by the identity link. Two degrees of freedomwere
used for the spline function according to QIC. The QIC
of the model with interaction between ascites and treat-
ment was lower than that of the model without (19497 vs
19775).
The model can be written as:

RMST(t) = δ0 + δ1B1(t) + δ2B2(t)
+ γ1Asc + γ2A + γ3Age + γ4Asc × A
+ ζ1B1(t) × Asc + ζ2B2(t) × Asc
+ ζ3B1(t) × A + ζ4B2(t) × A. (19)
+ ζ5B1(t) × Age + ζ6B2(t) × Age
+ ζ7B1(t) × Asc × A + ζ8B2(t) × Asc × A

where B1(t), B2(t) are the 2 spline bases, Asc is equal to
1 for patients with ascites and 0 otherwise, A is 1 for
patents treated with prednisone and 0 otherwise, and the
variable Age is measured in years. The interest here is in
the estimated difference between treatments of the RMST
curves, according to the presence of ascites and adjusted
by age that is given by:

�(t | Asc) = γ2 + γ4Asc + ζ3B1(t) + ζ4B2(t)
+ ζ7B1(t) × Asc + ζ8B2(t) × Asc

The Kaplan-Meier curves in the ascites and no ascites
groups and the difference between treatments of the
RMST curves, estimated withmultiple pseudo values with
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their 95% point-wise confidence intervals and bands, are
reported in Fig. 2.
Moreover, the estimates obtained applying multiple

times pseudo-value regression with a single restriction
time, varying τ from 1 until 9 years, are reported. The
model with τ = 5 is the one used in [25].
The same procedure was applied for the model of

Tian [12] using the R function rmst2 from the pack-
age survRM2 [14]. In this case it was also necessary to
perform two separate regressions in the ascites and non
ascites groups, adjusted by age. Results from the three
different modelling approaches are quite similar with the
advantage, for our method, of making possible the estima-
tion of the simultaneous confidence bands for the curves.

Colon cancer trial
We used colon cancer data, available in the survival R
package [35], from a trial of adjuvant chemotherapy for
colon cancer comparing Levamisole and Levamisole plus

5-FU (a chemotherapy agent) ([36, 37]). The re-analysis
presented by Eng and Seagle (2017) [38] explored the
complex pattern of interaction between age and treatment
using RMST. In fact it appeared that age was significantly
associated with relapse in the Levamisole plus 5-FU arm
but not the Levamisole alone arm. Looking at how RMST
(restricted at 60 months) varied with age it appeared
that for patients who were younger than 50 years there
was no difference between treatments, whereas for those
older than 50 years there was up to a 12-month delay in
relapse. The analysis was repeated with 16 pseudo-times,
at quantiles of the failure time distribution. A regres-
sion model with identity link function and a time-varying
interaction between age and treatment was estimated.
Four degrees of freedom were used for the natural spline
function according to QIC. Moreover, the model with
interaction between age and treatment had a lower QIC
than the model without (865558 vs 869017) and was
selected.

Fig. 2 CSL1 Trial in Liver Cirrhosis. On the top the Kaplan-Meier survival curves for the ascites and no ascites groups of patients. On the bottom the
difference of RMST in the two groups for different restriction times and direct modelling approaches. The small vertical lines on the x axis represent
the times used to calculate the pseudo-values. All estimates are adjusted by age (years)
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The model can be written as:

RMST(t) = δ0 + δ1B1(t) + . . . + δ4B4(t)

+ γ1A + γ2Age + γ3Age × A

+ ζ1B1(t) × Age + . . . + ζ4B4(t) × Age

+ ζ5B1(t) × A + . . . + ζ8B4(t) × A.

+ ζ9B1(t) × Age × A + . . . + ζ12B4(t) × Age × A

(20)

where B1(t), . . . , B4(t) are the 4 spline bases, A is 1 for
patents treated with Levamisole plus 5-FU and 0 other-
wise, and the variable Age is measured in years.
The difference between treatments of the RMST curves

is therefore varying with age and given by:

�(t | Age) = γ1 + γ3Age
+ ζ5B1(t) + . . . + ζ8B4(t). (21)
+ ζ9B1(t) × Age + . . . + ζ12B4(t) × Age

The analysis of the difference between treatments of the
RMST curves confirms previous findings. The right panel
of Fig. 3 shows �(t | Age) with t = 60, reproducing the
results obtained in [38]. It is possible to see how the RMST
difference between treatments, restricted at 60 months,
is varying with age. The difference is significant for ages
greater than 50 as shown by the 95% confidence interval.
The difference between treatments of the RMST can be

estimated for all the follow-up times to evaluate the asso-
ciation with age. The left panel of Fig. 3 reports the lower

limit of the 95% confidence band of the curve through
follow-up for different values of age. It is possible to
observe how the lower limit is above 0 for all the follow-up
times when considering ages greater than 53.

EBMT-NMAM2000 study
The third application refers to the NMAM2000 trial com-
paring tandem autologous/reduced intensity condition-
ing allogeneic transplantation (auto+allo) to autologous
transplantation alone (auto) on an intent-to-treat basis.
The analysis and the corresponding clinical considera-
tions are published in [39] while those presented here
are illustrative considerations for the statistical methods
presented.
The overall survival probability curves are reported in

the top right panel of Fig. 4. The curves have a sim-
ilar pattern for the first year, then they separate with
auto+allo group having more events than auto group, later
the curves cross at about 33 months where auto+allo
seems superior to the auto group. Considering the cross-
ing of the curves, based on a clinical rationale, a com-
parison at a fixed point in time was used, namely 96
months (13% difference, p=0.03). The same comparison
using RMST at 96 months did not provide evidence
of difference (4.4 months difference, p=0.27). When the
analysis was stratified by age group (using 55 as cut-
off ), the survival curves for younger patients showed that
the initial disadvantage was, unexpectedly, worse than in
elderly.

Fig. 3 Colon cancer. Left: difference in restricted mean time to relapse between the Levamisole and Levamisole plus 5-FU at time 60 for different
ages. The lower limit of the 95% pointwise confidence interval is above 0 for ages greater than 50. Right: For different ages, the lower 95%
confidence band through follow-up is shown
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Fig. 4Multiple Myeloma: Overall survival curves (left panels) and differences in RMST between the treatments estimated non-parametrically
(continuous) and with the pseudo values (dot) (right panels). Top and middle panels refer to patients with less and more than 55 years, respectively.
The bottom panel shows the overall sample of patients. In right panels, the grey areas correspond to the 95% confidence band estimated with the
non-parametric method while the thick dotdashed lines correspond to the 95% confidence bands estimated with pseudo-values. The figures also
show the point-wise 95% confidence interval for the non-parametric method (dashed) and for the pseudo-values method (longdashed). The
bottom right panel shows also the difference in RMST adjusted for age (twodash)

The analysis of the RMST curve was performed with
16 pseudo-times, at quantiles of the failure time distribu-
tion. Two regression models with identity link function,
with and without a time-varying interaction between age
and treatment, were estimated. Three degrees of free-
dom were used for the natural spline function. The model
with interaction had a lower QIC than the model without
(1644218.3 vs 1645363.9). The interaction was not statis-

tically significant (Wald test p=0.97, df=4), while the effect
of age was significant (p=0.03, df=4).
The entire RMST curves are reported in the bottom

right panels of Fig. 4, for the stratified and the overall
sample.
The curves show the difference in the area under the

overall survival curve between the auto-allo and auto
groups. Considering the overall sample, the difference was
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near 0 at the beginning, then becomes negative turning
definitely positive afterwards by crossing the x axis. The
upper and the lower limits of the confidence band never
crossed the x axis. The curve for younger patients was, for
almost the entire follow-up, below 0, showing no advan-
tage for the auto+allo group. The curve for older patients
started to show an advantage for auto+allo group at about
5 years.
The unadjusted and the age adjusted difference between

RMST were reported in the bottom right panel of Fig. 4.
It is possible to see how the adjusted curve crossed the x
axis later in time with respect to the unadjusted estimate.

Discussion
The use of HR in clinical studies is generally accepted as
a useful measure of association. Notwithstanding this, the
debate about the use of HR is always active, especially
because its use is strictly tied with the Cox regression
model and the assumption of proportional hazards. In
fact, especially with long follow-up length, the tenability of
this assumption becomes more questionable [10]. More-
over, concerns about the clinical usefulness of the HR are
always present, as it is difficult to translate an HR in terms
of clinical benefit. In general, as no single measure can be
useful in all circumstances, it is advisable not to simply
rely on the HR to quantify the association in time to event
analysis.
Many alternatives have been proposed in the literature.

For example, the difference (or ratio) in survival probabil-
ities at a specific time point, or the difference (or ratio) of
RMST at a specific time point could be taken into con-
sideration. These proposals have the obvious drawback
that a single time point should be selected for the analy-
sis. In some circumstances, as in the application presented
on multiple myeloma, a clinically relevant time horizon is
present but this is not always the case.
In this perspective, the proposal to look at how the dif-

ference of RMST varies through follow-up is particularly
appealing and dates back to the work of Royston and Par-
mar (2011) [8]. Themain caveat when looking at the entire
curve is that it would be appropriate to resort to a con-
fidence band instead of the point-wise confidence limit.
This was the object of a recent proposal based on the
Kaplan-Meier estimator [11].
In this work, direct modelling of RMST through a

regression model using pseudo-values with time depen-
dent effects, was proposed with the advantage of including
different covariates, thus proving an adjusted RMST dif-
ference and a confidence band. The method is in good
agreement with the estimates obtained by direct regres-
sion models fixing one restriction time. Moreover, the
method is flexible enough to reproduce the results of the
model-free method when no covariates are considered.
We showed the method in several examples where age

plays an important role and must be considered in the
analysis.
In principle, other flexible regression models could be

used for the same purpose. In practice, the estimation
based of pseudo-values can rely completely on standard
available software for the confidence band calculation.
Moreover through the use of pseudo values it should
be possible to extend the approach to the competing
risks setting considering the cause-specific years lost as
described in [15]. One drawback is that it is necessary to
choose how many time points to use for pseudo-values
calculations and how to space them. Although this aspect
should be further investigated, it seems that varying the
number of time points does not alter substantially the
results. On the other hand, at present, only the non-
parametric estimator of the RMST curve [11] does not
require to specify the time points for the curve estimation.
The analysis of the curve through all the regression mod-
els considered here is, in fact, a collection of analyses at
different restriction times.
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