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Abstract: A growing body of evidence suggests that nucleus accumbens (NAc) plays a significant
role not only in the physiological processes associated with reward and satisfaction but also in
many diseases of the central nervous system. Summary of the current state of knowledge on the
morphological and functional basis of such a diverse function of this structure may be a good
starting point for further basic and clinical research. The NAc is a part of the brain reward system
(BRS) characterized by multilevel organization, extensive connections, and several neurotransmitter
systems. The unique role of NAc in the BRS is a result of: (1) hierarchical connections with the other
brain areas, (2) a well-developed morphological and functional plasticity regulating short- and long-
term synaptic potentiation and signalling pathways, (3) cooperation among several neurotransmitter
systems, and (4) a supportive role of neuroglia involved in both physiological and pathological
processes. Understanding the complex function of NAc is possible by combining the results of
morphological studies with molecular, genetic, and behavioral data. In this review, we present
the current views on the NAc function in physiological conditions, emphasizing the role of its
connections, neuroplasticity processes, and neurotransmitter systems.
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1. Structure and Function of Nucleus Accumbens
1.1. Localization of Nucleus Accumbens on the Border between Motor and Limbic Areas Suggests
Its Integrative Role in the Brain Reward System

A group of morphologically and functionally related brain structures receiving and in-
terpreting stimuli associated with satisfaction, positive feeling, and addiction is commonly
defined as the brain reward system (BRS). This system consists of subcortical mesolimbic
structures, such as the nucleus accumbens (NAc), ventral tegmental area (VTA), amygdala
(Amg), striatum (Str), and septum (Spt). It also includes several meso-corticolimbic regions,
such as the hippocampus (Hip), prefrontal cortex (PFC), para-hippocampal, entorhinal,
and motor function-related cortical areas [1]. NAc is regarded as one of the most important
elements of the BRS [2]. It occupies the ventral part of the brain hemisphere (Figure 1a).
Situated below the internal capsule, NAc extends beneath its anterior crus posteriorly,
until the end of anterior commissure. Without clear boundaries, it goes into two areas of
the motor system: the putamen (Put) laterally, and the caudate nucleus (CDn) medially.
Together with the olfactory tubercle, the NAc is included in the ventral Str, being a part of
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the limbic system [3]. Localization of the NAc determines its integrative role within the
BRS and involvement, along with other structures, in physiological processes. Difficulties
in precisely defining NAc borders using classical morphological methods justify further
studies employing neuroradiological imaging techniques, which could allow for objective
assessment of its volume. Based on morphological and immunohistochemical studies, as
well as on the analysis of its connections, two parts of the NAc have been distinguished:
the shell and the core [4–6].
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Figure 1. Nucleus accumbens localization and connections. (a) Coronal cross-section through the human brain at the level
of nucleus accumbens (NAc) occupying the lowest part of striatum, poorly separated from the other areas and divided into a
centrally localized core (NAcc) and a peripherally situated shell (NAcs). Medially and upwards, it changes into the caudate
nucleus (CDn), and laterally into the putamen (Put). Whereas the dorsal part of the striatum belongs to the locomotor system,
its ventral part is considered as a structure of the limbic system. Fibers of the internal capsule (IC) surround NAc superiorly.
The localization of NAc on the border of motor and limbic structures enables its integrative and coordinating function
upon both systems. (b) Due to its localization in the center of the hemisphere, NAc can develop extensive connections
with numerous brain areas that can be divided into structural and functional levels (i.e., cortical structures, hemispheric
subcortical structures, diencephalic structures, and brain stem structures). This hierarchical arrangement reflects not only
the consecutive stages of phylogenetic brain development but also the pattern of cooperation among several functional
systems representing various levels of integration.
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1.2. Morphological and Molecular Characteristics of the Accumbal Neurons Determine Their
Integrative Role in the Brain Reward System

NAc contains predominantly small and medium-sized spiny neurons (MSNs) [7,8].
Among them, the GABA-ergic neurons with dopaminergic and glutamatergic synapses
on dendritic spines are the most numerous [9,10]. Characteristic differences have been
found in cellular structure between the shell and core [8,11]. These concern not only the
shape and neuronal density, but also the morphology of dendritic trees and spines. In
humans, neurons are more densely distributed in the shell than in the core [7]. These
are predominantly fusiform and multipolar cells, with well-developed dendritic trees,
visible second- and third-order branches, and numerous dendritic spines. In the core, the
most numerous are pyramidal and multipolar neurons, with clearly visible spines on their
secondary branches. Interspecies differences concerning neuronal size and number of
dendritic tree branches in the two parts of NAc have also been reported [8,9,11].

Each part of NAc, namely shell and core, has different molecular characteristics
considering the type of released neurotransmitters and their receptors. Levels of neu-
rotransmitters, such as dopamine (DA), serotonin (5-HT), and norepinephrine (NE) are
different in the two parts of NAc [12,13]. While the basal concentration of NE is higher in
the shell than in the core in resting conditions, DA basal concentration in the core is twice as
high as in the shell [14]. After stimulation with amphetamine, the increase in concentration
of both neurotransmitters has been observed in both parts of NAc. However, the increase
of NE is higher and lasts longer in the shell compared to the core, while DA concentration
is higher in the core and lasts equally long in both parts of the nucleus. These observations
suggest a functional differentiation between the two parts of NAc. Different morphological
adaptations to turnover of NE and DA, as well as variations in neuronal sensitivity to the
action of amphetamine can explain the differences in both neurotransmitters’ concentration
observed in NAc shell and core. The category of morphological adaptations includes a dif-
ference in the innervation density of both parts of NAc by noradrenergic and dopaminergic
projections, as well as differences in the structure of synapses and density of transporters
representing both neurotransmitter systems [15]. Functional adaptations include a differ-
ent sensitivity of neurotransmitter transporters to the effects of amphetamine, which is
associated with reuptake-blocking and neurotransmitter release from vesicular pools in
the NAc shell and core [16,17]. Moreover, due to the interaction of both neurotransmitter
systems, the amphetamine action upon dopamine transporters may cause changes in the
concentration of not only DA but also NE in the NAc shell and core [18].

In humans, the concentration of NE is different in various portions of NAc. Tong
et al. reported three-fold higher concentration of this neurotransmitter in the caudomedial
portion than in its caudolateral part, and 12-fold higher in the caudal fragment compared
to the rostral [18]. DA levels in NAc are more evenly distributed in an antero-posterior
direction, demonstrating a decreasing trend towards its caudal fragment. The caudomedial
portion of the human NAc contains equally high concentrations of NE and DA, probably
the only area in the brain where the levels of both these transmitters are comparable [18].
Interestingly, the comparable, high concentrations of NE and DA in the caudomedial
portion of NAc have not been reported in other mammalian species, such as the rat [19],
rabbit [20] or non-human primates [21], in which the NE content does not exceed 20% of
the DA concentration [18]. So far, the functional significance of these apparent evolutionary
differences has not been elucidated.

Apart from the internal functional specialization within NAc, high concentrations of
NE and DA in the same area may suggest an interrelationship between both neurotrans-
mitter systems and their reciprocal modulatory function upon controlled processes. On
the other hand, the 5-HT content is higher in the shell compared to the core, although its
utilization is greater in the latter [12]. High levels of γ-aminobutyric acid (GABA) and
glutamate (Glu) are present in both parts of NAc [9,22]. Apart from neurotransmitters,
neuropeptides, proteins, and some types of receptors also have characteristic distribution
patterns within NAc. Relatively large amounts of substance P and calretinin are found



Int. J. Mol. Sci. 2021, 22, 9806 4 of 37

in the shell [23,24], while calbindin [24], enkefalin [24,25], and GABA receptors [26] are
present mainly in the core.

The degree of morphological differentiation of neurons in NAc, their molecular charac-
teristics, as well as the development of their spino-dendritic system determine the optimal
adaptation of this brain structure to the integrative function which it plays within the BRS.

1.3. Nucleus Accumbens Connections Enable Coordination of Limbic, Motor and Vegetative Functions

A functionally important feature of NAc is its extensive system of connections with
numerous brain areas. These can be divided into structural levels of cortical, hemispheric
subcortical, diencephalic, and brain stem areas (Figure 1b). This hierarchical schedule
of connections is useful not only for understanding the phylogenetic sequence of brain
development [27–29] but also for explanation of the cooperation patterns and various levels
of integration between the functional systems supporting the NAc activity within the BRS.

Significant differences in the topography of connections between the two parts of NAc
can be explained by their functional diversity (Figure 2) [2–4]. The shell receives projections
originating from the cortical areas of the limbic system, such as the medial prefrontal cortex
(mPFC; i.e., infralimbic and ventral prelimbic cortex), subiculum (Sub), as well as the dorsal
and ventral hippocampus (dHip and vHip, respectively). In addition, this part of NAc
receives projections from subcortical limbic structures, such as the basolateral part of Amg
(AmgBL) and the midline and intralaminar thalamic nuclei (MThn and IThn, respectively).
Functionally important projections from the brain stem centers, such as VTA, dorsal raphe
nucleus (DRn), locus coeruleus (LC), and bulbar tegmentum (TegB) also terminate in the
shell (afferent projections) [4,6,30,31]. A characteristic feature of these projections is the
involvement of various neurotransmitters, such as DA, Glu, GABA, 5-HT, and NE.

The target areas of projections originating from the shell are limbic structures, such as
extended Amg (Amgex), Spt, basal forebrain (BF), ventral pallidum (VP), and diencephalic
areas involved in the regulation of vegetative and limbic functions, such as lateral preoptic
area (LPa), lateral hypothalamus (LHTh), and lateral habenular nucleus (LHn) [2–4]. The
NAc shell also projects to the brain stem areas involved in motor functions, such as pars
compacta of substantia nigra (SNpc), structures of the BRS, such as VTA or those involved
in the activation of diencephalic and telencephalic regions responsible for maintenance
of consciousness, attention and learning, like pedunculopontine nucleus (PPn) [32–35].
The similarities between the efferent projections of the shell and Amg are at the basis of
the hypothesis that the shell is a transitional zone between Str and Amg [36]. Through
the indirect pathway via VP and the mediodorsal thalamic nucleus (MDThn), projections
from the shell influence VTA and the PFC. This results in alterations in DA release and,
consequently, its effects exerted upon meso-cortical areas related to the reward mecha-
nisms [4,37,38]. Finally, projections from the shell are also involved in the function of the
motor system [39,40]. The NAc connections to cortical areas related to motor function,
such as motor cortex (Mctx) and premotor cortex (preMctx), are not direct. On their way
to these cortical areas, the impulses pass through the subcortical structures, such as VP,
SNpc, and thalamic nuclei (e.g., MDThn) [3,4,6]. This pattern of connections within the
basal ganglia-cortico-thalamic loop enables integration of signals of different origins. In
contrast to the cortical projections from the dorsal part of striatum, the projection from its
ventral part is more dispersed [39,40].

The NAc core is a source of efferent projections targeting areas of the basal ganglia
related to the limbic and motor systems, e.g., VP, external and internal parts of globus
pallidus (GPex and GPin, respectively). Neurons located in the core also project to pars
reticulata of substantia nigra (SNpr) [4,6,30].

Altogether, both parts of NAc have extensive ascending and descending connections
which allow this nucleus activity to be coordinated with several cortical areas related to
the association, limbic and projection functions (Figure 3) [27]. This enables conscious and
precise planning of behavioral activity based on an integration of multimodal information
(association cortex) along with a planned and consciously performed locomotor activity
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(projecting cortex), and information coming from the declarative (explicit) memory reser-
voirs (limbic cortex) [41]. Afferent connections of NAc with the hemispheric subcortical
structures transfer information from the areas responsible for creating emotional reactions
(Amg), locomotor coordination (GP and Put), and from those related to increase in the
concentration of attention and learning ability (BF) [4,6,30]. They also allow the use of
data stored in the reservoirs of emotional and procedural (implicit) memory (Amg and
basal nuclei, respectively) [36]. Additionally, NAc connects with several diencephalic
structures that allows the inflow of information about the current state of consciousness
and concentration of attention (Th). This enables coordination of the NAc’s activities
with the endocrine system, activation of the autonomic nervous system, and metabolic
processes (HTh). Finally, connections of NAc with the brain stem structures, due to the
involvement of several neurotransmitter systems, ensure the precision of their regulation
and functioning [4,6,30,31]. These connections allow transfer of information about the
state of consciousness and attention (VTA and LC), motor activity (SN), mood (DRn), and
physiological homeostasis (LC).
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between the NAcc and NAcs afferent and efferent connections. While afferent projections to NAcc originate from all
structural levels i.e., cortical, hemispheric subcortical, diencephalic, and brain stem areas, its efferent projections mainly
reach the subcortical brain structures and the brain stem. Afferent and efferent NAcs projections are more widely distributed
and come from/to all brain structural levels. Furthermore, to a large extent they comprise other structures than those
related to NAcc. This emphasizes the structural and functional differentiation between the two parts of NAc. The core of
NAc receives afferents from the cortical limbic areas, such as the dorso-medial PFC (dmPFC; dorsal prelimbic, anterior
cingulate cortex), medial and lateral orbital PFC (mloPFC), and para-hippocampal gyrus (PHpg). This part of the BRS
also receives projections from the anterior part of AmgBL, as well as from the thalamic nuclei associated with nonspecific
cortical stimulation (e.g., MThn and IThn). Finally, it is also a target of the brain stem projections originating from the motor
system-related area in SNpc.
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Figure 3. Functional significance of the nucleus accumbens connections. The hierarchical arrangement of NAc connec-
tions with cortical, hemispheric subcortical, diencephalic, and brain stem structures illustrates its involvement in the
activation of different functional systems and explains the NAc’s integrative and coordinative role on different functional
levels. NAc has connections with the fields of association, projection and limbic cortices. This enables conscious and
precise planning of behavioral activity based on integration of multimodal information (association cortex), along with
planned and consciously performed locomotor activity (projecting cortex), and information coming from the declarative
(explicit) memory reservoirs (limbic cortex). Afferent connections of NAc with the hemispheric subcortical structures
transfer information from the areas responsible for creating emotional reactions (Amg), locomotor coordination (GP and
Put), and from those related to increase in the concentration of attention and learning ability (BF). They also allow the
use of data stored in the reservoirs of emotional and procedural (implicit) memory (Amg and basal nuclei, respectively).
Afferent connections of NAc with the diencephalon structures, on the one hand, allow the inflow of information about the
current state of consciousness and concentration of attention (Th). They allow coordination of the NAc’s activities with the
endocrine system, activation of the autonomic nervous system, and metabolic processes (HTh). The NAc’s connections
with the brain stem structures, due to the involvement of several neurotransmitter systems, ensure the precision of their
regulation and functioning. These connections allow transfer of information about the state of consciousness and attention
(VTA and LC), motor activity (SN), mood (DRn), and physiological homeostasis (LC). The multilevel system of the NAc
connections with the other brain areas is based on a dynamic balance between the stimulatory and inhibitory effects of
numerous neurotransmitters and modulators.
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1.4. Integrative Role of the Nucleus Accumbens Requires Cooperation of Several Neurotransmitter
Systems and Receptors, Which Modulate Synaptic Plasticity and Determine the Effects of Drugs on
Behavioral Responses

The role of NAc as an important integrating center in the elaboration of behavioral
reactions of the limbic, motor and vegetative systems is possible due to projection pathways
using several neurotransmitters, of which DA, Glu and GABA could be considered as of
primary importance, although serotoninergic and noradrenergic projections also contribute
to the specific NAc functions.

Numerous studies indicate a crucial role of receptors representing all the main neuro-
transmitter systems in physiological and pathological processes in NAc [2,42–44]. Their
function is based on the initiation not only of the molecular processes of synaptic plas-
ticity but also morphological changes in the spino-dendritic system, being the base for
development of short- and long-term synaptic plasticity processes.

1.4.1. Dopaminergic System

The sources of dopaminergic projections that reach the NAc shell and core are VTA
and SN, two mesencephalic structures involved in functioning of the limbic and motor
systems, respectively [45–47]. While the projections coming from VTA terminate mainly
in the shell, the target of the SNpc-originating projections is primarily the core [48–50].
This suggests that the shell interacts with the mesolimbic system, and the core with the
nigrostriatal [42,51].

The DA released in NAc affects many physiological processes. The level of this
neurotransmitter increases in this brain area with the reward approaching, which reflects
the awaiting state for its achievement. DA in NAc has also a positive effect on motivation for
reward-achievement behaviors and reward-driven learning. Finally, it enhances learning
of prediction errors, important in planning new adaptive behaviors [52]. Regulation of
DA release is a complex process which depends on the cause of activation and the goal
to be achieved, as well as on origin of the activated projection. Consequently, there is a
specific impulse-like pattern of DA release in learning and motivational activities [53]. The
manner in which DA is released could determine the type of activated behavioral response.
Recent studies have shown that the release of DA in the core of NAc can be a signal to
focus attention on behaviors aimed at reward achievement, although it does not have to be
a direct consequence of VTA neuronal stimulation [53–55]. Therefore, there is no simple
relationship between the stimulation of dopaminergic neurons in VTA and the amount
of DA released in NAc. The complicated regulation of DA release allows for increased
precision in controlling the NAc functions.

The modifying effect of DA on synaptic plasticity is based on changes in receptors’
activation and on the stimulating or inhibiting character of their response, changing the
probability of neurotransmitter release and cell excitability, as well as on triggering synaptic
potentiation or depression [56]. Located in the GABA-ergic projecting MSNs, dopaminer-
gic D1 and D2 receptors (D1R and D2R) exert stimulatory and inhibitory effects, respec-
tively [48]. Whereas projections of GABA-ergic neurons localized in the dorsal striatum
form well-defined direct and indirect pathways, the GABA-ergic projections originating
from NAc are not so clearly distinguished [42]. It has been suggested that the target area for
D1R-containing MSN projections is primarily VTA, while both D1R- and D2R-containing
MSNs project to VP [57,58]. Poorly defined projection targets, together with different mecha-
nisms of synaptic plasticity in both subpopulations of neurons, could explain their different
functions in behavioral responses in both physiological and pathological conditions.

One of the most important functions of DA in NAc is its modulatory effect on the
processes of short- and long-term homeostatic synaptic plasticity [59,60]. However, it often
requires an interaction with other neurotransmitter systems, such as glutamatergic, nora-
drenergic, and serotonergic [2,56,61]. The modulatory effect of DA is based on regulation
of the amount of neurotransmitters released in the area of dendritic spines [62], receptor
externalization [59], and trafficking of AMPAR, GluA1, NMDAR receptors [59,63,64]. All
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these processes occurring in the BRS require involvement and cooperation among receptors
representing all major neurotransmitter systems [56].

Apart from the essential physiological functions, the dopaminergic system plays fun-
damental role in development of addiction [65] which is the result of interaction of several
factors, such as the influence of the environment, internal factors such as metabolic and
genetic conditions, coexisting diseases, as well as pharmacokinetic and pharmacological
properties of the drug itself [66]. According to the most recent hypothesis, an involvement
of the dopaminergic mesolimbic system best explains the pathophysiological effects dur-
ing the development of the addiction, and a characteristic feature of a considerable part
of addictive drugs i.e., dopamine-agonists properties [66]. The most important part of
this system are dopaminergic neurons located in the VTA which project to the NAc and
elaborate behavioral responses initiated by addictive drugs or other forms of rewarding
stimuli [67]. Drug abuse changes the effectiveness of DA neurotransmission in synapses of
the reward system structures, especially within NAc. The nature of these changes depends
on a type of addictive substance [65,68]. The dopaminergic system has a multidirectional
effect not only on the neuronal activity but also on the synaptic plasticity and molecular
processes related to the gene expression and epigenetic modifications [69,70].

1.4.2. Glutamatergic System

Glutamatergic projections terminating in NAc originate from Hip, Sub, Amg, thalamus
(Th), VTA, and from the mPFC and prelimbic cortical areas [22,30,71–74]. The role of
Glu in the BRS is associated not only with locomotor [75] and reward- or drug-seeking
behaviors [76,77] but also with response-reinforcement learning [78].

Action of Glu on NAc is associated mainly with the development of LTP [79,80]. How-
ever, in particular cases, this process requires cooperation with other neurotransmitters, such
as DA [59,63,64] or NE [81]. Involvement of several neurotransmitter systems is required
for the effective functioning of the dendritic spines of MSNs in NAc [62,79]. Both AMPA
and NMDA ionotropic glutamatergic receptors (iGluRs), as well as some metabotropic
glutamatergic receptors (mGluRs) from group I (mGluR1 and mGluR5), are involved in a
long-term potentiation (LTP) [72,80,82]. The unique role of AMPA receptors (AMPARs) in
the NAc’s MSNs activation and LTP has been emphasized by some authors [79,83]. This is
due to changes in their number occurring through externalization at extra-synaptic sites
and trafficking into synapses, which significantly affects the synaptic strength [84–86]. The
action of glutamatergic projection via AMPARs was demonstrated in both rapid and pro-
longed homeostatic plasticity [87]. It also requires a modulatory effect of DA, which affects
insertion of the activity-dependent synaptic receptors [59] and synaptic scaling [60].

Activation of different types of glutamatergic receptors in NAc induces the development
of dendritic spines in the MSNs. During maturation, they go through the stage of “silent”
synapses with NMDARs, but not AMPARs [88]. Later on, they transform into “unsilenced
synapses” characterized by the presence of AMPARs [42,89,90]. Glu plays an important role
in the relapse mechanism during protracted drug use and compulsive drug seeking [91]. This
can be explained by changes in the expression of AMPARs in the synaptic membrane [92,93],
which results in enhanced effectiveness of Glu interactions within NAc [94,95]. Taken together,
the presented data indicate a significant role of glutamatergic plasticity impairment within
NAc in the disturbances of the goal-directed and motivated behaviors. A drug-induced
long-term disruption of the balanced glutamate transmission leads to the addiction-related
relapse vulnerability and enhancement of drug-seeking behaviors [41].

As mentioned before, the mechanism of drug addiction is associated with the mod-
ification of iGluRs (e.g., AMPARs and NMDARs), which is based on changes in their
number and function [89]. First-time alcohol consumption has been shown to increase
synaptic expression of the AMPAR GluA1 subunit and Homer proteins in NAc [96]. It also
triggers plasticity processes in the D1R-containing synapses through enhancing mTORC1-
dependent translation of proteins responsible for the stimulatory effect. On the other hand,
prolonged ethanol withdrawal caused a reduction of the NMDARs expression, followed by
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the inhibitory effect in the hypersensitive mice [97]. Changes in the expression of AMPARs
receptors in NAc are also responsible for cocaine exposure-induced affection of synaptic
transmission and plasticity [79].

Altogether, the role of glutamatergic projection in the functioning of NAc involves vari-
ous types of receptors, although the contribution of AMPARs and NMDARs is probably the
most significant. Changes in the expression of these receptors correlate with morphological
modifications of the spino-dendritic system, contributing to the development of synaptic
plasticity and playing an important role in the processes of both short- and long-term
synaptic potentiation.

1.4.3. GABA-ergic System

The main target of GABA-ergic projection from NAc is pallidum (predominantly
VP) [10,32,98]. Other functionally important GABA-ergic projections from NAc terminate
in areas of BF responsible for acetylcholine (ACh) production. In these areas, GABA
has a modulating effect upon ACh release, which is of importance for the appropriate
functioning of neocortex and limbic structures [99,100]. Apart from these, other GABA-
ergic projections from NAc terminate in several cortical, subcortical, diencephalic, and
brain stem structures related to various functions. The characteristic distribution of the
GABA-ergic efferent fibers coming from NAc suggests the role of this brain region in the
coordination of the motor functions with some behavioral reactions based on emotions,
mood, concentration of attention, and context-dependent arousal. Interestingly, the effects
exerted by GABA in various brain areas are most likely to depend on its concentration.
While in low concentrations it evokes hyperactivity, the effect can be the opposite when
GABA concentration increases [10,101,102]. This mechanism provides the GABA-ergic
system with the additional opportunity to influence the processes controlled by NAc.

The role of GABA-ergic projection and relevant receptors, necessary for the functioning
of NAc and the whole BRS, have been raised in several excellent publications [2,42]. Among
the most important functions of the GABA-ergic receptors are the following: regulation of
release of the other neurotransmitters, alleviating the effects of stress and emotions, control
of motor and metabolic functions, and modulation of the effects exerted by alcohol and
addictive substances. Regulation of DA release in NAc is a complex process that involves
GABAA and GABAB receptors (GABAARs and GABABRs, respectively) [103,104]. Both
are located in the accumbal dopaminergic nerve endings and inhibit DA release. Activation
of GABAARs in NAc induces disinhibition of local GABA signaling. This augments
GABA release and, through interaction with GABABR, decreases DA efflux. Interestingly,
inhibition of DA release due to activation of GABABRs leads to a decreased activation of
delta1- and delta2-opioid receptors in accumbal GABA-ergic interneurons, whereas their
stimulation has the opposite effect and increases DA efflux [105].

Some evidence suggests the presence of functionally diverse GABA pools in the
axonal endings of neurons in NAc [106]. Newly synthesized GABA acts through the
interaction with GABABRs. Apart from that, there is a certain amount of previously
stored neurotransmitter that can inhibit the release of DA via the GABAARs, regardless
of glutamic acid decarboxylase (GAD) inhibition which is responsible for the current
GABA synthesis. Besides inhibition of DA release, GABA also exerts an inhibitory effect
upon acetyl-cholinergic interneurons in NAc, via its interaction with GABAARs and
GABABRs [107]. Stimulation of these receptors in cholinergic neurons in NAc results in a
reduction of acetylcholine efflux [108]. Considering that the DA release in NAc from the
axonal terminals of the VTA neurons is under the simultaneous control of the GABA-ergic
(release inhibition) and cholinergic (release stimulation) systems, an appropriate level of
activation of the cholinergic interneurons is required for DA release in NAc to balance the
inhibitory effect of the GABA-ergic system and maintain the DA concentration at a level
sufficient for the physiological functions of NAc [109]. Moreover, maintaining the balance
between the cholinergic and GABA-ergic systems in NAc is important for the function of
this structure in the striato-thalamo-cortical circuit [110]. Through this connection, NAc
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may influence the level of activity of the prefrontal cortex, by modifying the intensity
of inhibition in VP and changes in the stimulation of the thalamo-cortical projection.
Dysregulation of this system is responsible for the prefrontal cortex hyperactivity in the
course of the obsessive-compulsive disorder [91].

The GABA-ergic receptors play an important role in controlling Glu release in NAc [111].
The parvalbumin-expressing GABA-ergic interneurons, interposed within the NAc mi-
crocircuits, stimulate GABAB heteroreceptors in glutamatergic terminals. Activation of
these pre-synaptically expressed heteroreceptors causes a reduction in Glu efflux and,
consequently, Glu-dependent synaptic efficacy in the D1- and D2-containing accumbal
MSNs [111]. Consequently, by changing glutamatergic stimulation, GABAB heterorecep-
tors exert a significant effect on reward circuitry, selectively modulating glutamatergic
transmission and NAc impact exerted upon other brain regions.

GABARs also play a significant role in the regulation of mechanisms related to the
consequences of alcohol consumption. The reinforcing effect of ethanol in the NAc’s
shell can be modulated by activation of GABAARs and GABABRs, together with 5-HT3
receptors [112]. Interestingly, the results of animal studies show that the effect of ethanol
on the BRS, regulated by GABA-ergic receptors, is age-dependent [113]. Through the
inhibitory effect exerted upon glutamatergic projections in NAc, GABAARs and GABABRs
participate in enhancement of the inhibitory effect of ethanol, which leads to disruption in
the reward system’s functioning. This effect has been more pronounced in adolescent than
in adult mice [113]. This mechanism could explain the stronger and more uncomfortable
feeling after alcohol drinking in adolescents than in adults.

Furthermore, GABARs play a crucial role in the regulation of addiction processes in-
duced by psychostimulant drugs. For example, activation of GABAARs, but not GABABRs,
modulates the reinforcing effects of morphine in NAc [114]. The GABABRs activation has
also been shown to modulate behavioral and molecular processes related to reward feeling
induced by nicotine consumption [115].

Additionally, the GABA-ergic system in NAc is involved in alleviating the effects
of stress and emotions. Activation of the GABABRs in NAc ameliorates spatial memory
impairment after stress exposition [116], and exerts an anxiolytic effect in the rat model
of stress [117]. Another function of GABAARs in NAc, together with the D1R and D2R,
is modulation of motor activity, which also involves extensive reciprocal connections and
cooperation with other basal ganglia nuclei [118]. Finally, stimulation of GABAARs and
GABABRs in the NAc shell increases feeding in satiated rats [117,119]. This suggests
another, although so far poorly explored, physiological function of the shell related to the
GABA-ergic control of vegetative functions.

In summary, GABA-ergic receptors in NAc have important regulatory functions
associated with direct inhibition of other cell populations and controlling the release of
several neurotransmitters. Regulation of NAc activity via GABA-ergic receptors enables
precise control of processes occurring in the BRS.

1.4.4. Serotoninergic System

Large projections originating from the small population of neurons concentrated in
the raphe nuclei complex (e.g., DRn) deliver 5-HT to the BRS. This monoamine neuro-
transmitter is involved essentially in all physiological processes controlled by NAc. The
5-HT function in this brain area depends on the dynamic balance between other neuro-
transmitters’ systems and concentrations of the relevant neurotransmitters. One of the
important functions of 5-HT in NAc is its role in motivation. This function is closely related
to the facilitating activity of DA. Impairment of interactions between the serotoninergic
and dopaminergic systems may result in anhedonia, lack of motivation, and finally in
depression [120]. Interestingly, 5-HT has different actions upon various structures of the
BRS. While its effect upon NAc is generally related to the enhancement of motivation, its
impact on VTA is inhibitory [121].
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Another important function of 5-HT in NAc is the regulation of prosocial interactions
and behaviors, which is closely related to the rewarding effect of such interactions [122].
Additionally, results of animal studies have shown that an interaction between 5-HT and
oxytocin is required as signal reinforcement for normal social relations [123]. Consequently,
5-HT deficits may lead to disruption of social relations and contribute to the development
of some psychiatric disorders (e.g., autism).

The role of 5-HT in NAc is also associated with the reinforcing effect of ethanol. This
effect is further enhanced by DA release, which leads to an increased reward experience
and impulsivity. In combination with some drugs, such as mephedrone, 5-HT and DA
can increase the susceptibility to alcohol abuse, due to their increased release in NAc and
mPFC [124]. The increase in 5-HT, as well as DA and NE content in NAc might also occur
after administration of cocaine [125] and monoamine uptake blockers [61]. However, there
are some premises indicating that, apart from contributing to the addictive effect, 5-HT
may also participate in reducing the risk of addiction. Serotonin can exert such an effect
when administered along with some hallucinogenic agents from the group of indoleamines
and phenylalkylamines (e.g., psilocybin and lysergic acid diethylamide) [126].

The serotonergic system has a complex influence on NAc. This is due to the large
number of receptors, their distribution on many types of cells, and to the use of several neu-
rotransmitters. Among different types of receptors, at least two representing the 5-HT2R
group (i.e., 5-HT2AR and 5-HT2CR) play an important role in control of addiction mecha-
nisms. Taking into account the fact that development of addiction is associated with an
increase in DA released in the NAc, it has been suggested that the role of these receptors is
based on a regulation of the DA concentration [127]. They can either intensify or weaken
the effects of psychoactive and addictive drugs, and thus indirectly affect behavioral reac-
tions [126]. There is evidence for the opposite effects of stimulation of 5-HT2A and 5-HT2C
receptors leading in the first case to an increased DA release, and in the second to its
decrease [128–130]. On the one hand, activation of the 5-HT2AR may initiate or augment
drug craving and relapse behaviors [126]. On the other hand, 5-HT2AR antagonists can
inhibit drug-seeking or drug-taking behaviors [131]. This explains attenuation of the stim-
ulatory effects of cocaine and amphetamine [132–134]. It has been shown that 5-HT2CR
stimulation inhibits self-administration and the addictive effects of drugs [135–137]. The
5-HT action at this receptor is believed to be the primary mechanism responsible for its
anti-addictive effect upon the NAc. Selective agonists of this receptor have a similar ef-
fect [126]. The molecular mechanism is based on activation of the 5-HT2CR in GABA-ergic
neurons in the VTA, which inhibit stimulation of the dopaminergic neurons, thus reducing
the release of DA from their axonal terminals in the NAc [121,136,138,139]. In addition,
5-HT2CR also modulates the DA signaling at the postsynaptic level in the NAc core [140].
Hence, two types of serotonergic receptors 5-HT2AR and the 5-HT2CR allow the 5-HT
acting upon the NAc to influence the development, as well as alleviation or inhibition, of
the addiction process [126,128]. Furthermore, it is believed that selective antagonists and
agonists acting on 5-HT2AR and 5-HT2CR, respectively, may contribute to alleviation of
addiction [126]. The role of other serotonergic receptors, such as 5-HT2BR, in the regulation
of drug addiction process is still not fully elucidated [141–143].

Apart from the aforementioned agonists and antagonists of the serotonergic recep-
tors, other drugs such as partial agonists of serotonergic receptors, inhibitors of the 5-HT
transporters and multiple neurotransmitter uptake inhibitors also act on the serotonergic
system [144,145]. Their contribution relies on changes in the 5-HT concentration, prolonga-
tion of its action, inhibition of reuptake, different specificity and selectivity [146,147]. In
addition, their action is associated with different affinity to receptors located in various
types of neurons, using several different neurotransmitters, as well as with the interac-
tion between neurotransmitter systems [61,148]. All this explains the variation in the
efficiency of drugs and initiation of different behavioral response patterns after their use.
It is worth noting that, whereas the experimental studies on candidate antidepressant
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substances yielded promising results, development of drugs having sufficient specificity
and effectiveness requires further research [126,128].

In addition to all the above-mentioned functions, 5-HT also plays a regulatory role in
the metabolic processes in NAc, leading to an increase in glucose blood levels [149]. Studies
show, on the one hand, the significant role of 5-HT in the regulation of several processes
controlled by NAc. On the other hand, they emphasize the importance of cooperation
among all neurotransmitter systems in controlling these processes.

Although stimulation of different types of 5-HT receptors in NAc can enhance the
effect of some addictive substances such as alcohol, stimulation of other types of receptor
in this brain area leads, paradoxically, to a lower likelihood of addiction in response to
the other psychostimulants [112,126]. The reinforcing effect of ethanol is based on 5-HT
interaction with 5-HT3 receptor (5-HT3R), in cooperation with GABA-ergic system and
activation of GABAARs and GABABRs in the NAc shell [112]. However, 5-HT may
also play a different role. By acting on 5-HT2C receptors localized in the GABA-ergic
MSNs in the NAc shell, it induces inhibition of the potassium Kv1.x channels activated by
classic hallucinogens, such as indoleamines and phenylalkylamines [126]. The presented
mechanism of 5-HT action could explain the lower likelihood of addiction induced by
these substances.

1.4.5. Noradrenergic System

NE, as one of the most important brain neurotransmitters, is also represented in the
BRS. Its sources are neurons localized in TegB, mostly in LC. Extensive projections of this
relatively small population of neurons allow the distribution of NE to almost all brain
regions. Under stressful and rewarding stimuli, NE is released in NAc and mPFC [150].
The amount of released neurotransmitter depends largely on the nature of the stimulus.
This emphasizes the importance of NE in the regulation of behavioral responses. Due to
a wide range of noradrenergic projections, reaching not only NAc but also AmgBL and
PFC, NE is an important factor regulating social interactions [151]. Functional balance
between dopaminergic, serotoninergic, and noradrenergic systems in NAc is crucial for
maintenance of the appropriate level of motivation and hedonia [120]. On the other
hand, dysregulation of this balance can lead to depression. Additionally, NE plays an
important role in the formation of fear memory, which results from its coordinated action
exerted upon NAc, dHip, and mPFC [152]. Moreover, the results of animal studies have
shown that NE administration into NAc induced an increase in 24-h water intake. This
suggests another important function of NAc as a water balance and drinking behavior
controlling center [153]. Finally, NE released in NAc can modulate pain sensation in
morphine-dependent rats [154].

Another study has shown that cocaine administration enhances the release of NE, DA,
and 5-HT in NAc [155]. The dynamics of this process are different for each neurotransmitter.
Stimulated release of NE enhances DA efflux and its action on NAc [61]. Interestingly,
the release of NE in NAc is controlled by DA and its effect may be either stimulatory or
inhibitory, depending on DA concentration. At moderate DA concentration, NE release is
inhibited mainly by D2 receptors in appropriate axonal terminals, whereas, at increased
DA concentration, NE release is stimulated by D1 receptors [156].

In addition to the abovementioned functions, increasing evidence points to NE in-
volvement in the mechanism of alcohol addiction. Karkhanis et al. reported that chronic
early-life stress resulting from social isolation has an impact on the behavioral risk of alco-
holism manifested by a greater tendency to alcohol self-administration [157]. This could
be explained by an increased sensitivity to NE and DA, as well as an increased NE and
DA release in NAc in response to alcohol administration. This interesting mechanism indi-
cates an important role of functional interrelationship between the main neurotransmitter
systems in NAc and addiction.

Altogether, NE via its action in NAc, as well as in other BRS structures, regulates a
wide spectrum of physiological processes and plays a role in the development of addiction.
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Moreover, cooperation with other neurotransmitters, such as DA or 5-HT, determines the
NE action upon NAc and its regulatory role in these processes.

NE plays a role in several processes, such as concentration of attention, wakefulness,
drug addiction, and psychostimulants relapse. Action of this neurotransmitter within NAc
is based mainly on its interaction with the α1-adrenergic receptor (α1AR) [158]. A rare
colocalization of α1bAR with D1R has been reported in postsynaptic elements of neurons
within the shell of NAc [158]. The characteristic distribution pattern of α1bARs (mostly
in unmyelinated axons and axon terminals, and less often in dendrites), suggests that the
function of these receptors (and consequently of the whole noradrenergic system) is based
on the regulation of activity of other neurons and synchronization of the release of the other
neurotransmitters within the NAc. Another type of adrenergic receptor identified in NAc is
the α2-adrenergic receptor (α2AR), whose function is related to the reduction of NE release,
but not DA release, in this brain area [159]. The effect of α2AR activation on DA release in
NAc is indirect. When activated with NE, α2ARs present in dopaminergic neurons in VTA
cause reduced DA release via the axonal terminals localized in NAc [159]. Thus, the action
of NE in NAc via specific receptors is based mainly on regulation of the release of other
neurotransmitters and modulation of the activity level of the projection neurons.

In summary, the release of neurotransmitters in NAc is precisely adjusted to the
cause of activation, the goal to be achieved, and the origin of the activated projection.
The action of a neurotransmitter depends on its concentration in NAc and its binding to
specific receptors. The important role of neurotransmitter receptors the NAc functioning
is related to changes in their expression level, subunit composition, and externalization
or displacement within the plasma membrane or outside the synapses. The cooperative
effect and synergistic action of receptors representing different neurotransmitter systems
are critical for motivation, learning, and addiction.

2. Neuroglia Participates in a Wide Spectrum of Physiological and Pathological
Processes within the Nucleus Accumbens

The proper functioning of the BRS requires cooperation among all morphological
elements of brain tissue. Structural and functional relationships occurring between neu-
roglia and neurons form the basis not only for processes of motivation and reward-aimed
behaviors, but also for the development of addiction and mental diseases (Figure 4). As
can be inferred from the results of previously published studies, the role of neuroglial sub-
populations in the NAc function could be significant, although it is still poorly understood.
This warrants further research in the field.

Astrocytes are an important element of the brain tissue involved, together with neu-
rons, in the regulation of reward and addiction mechanisms [160]. An important function
of astrocytes in NAc is participation in Glu/GABA release and uptake, and activation of
the Ca2+ ion-dependent signaling pathways [161,162]. As a component of the tripartite
synapse, astrocytes influence synaptic activity in NAc and, by releasing gliotransmitters
and neuromodulators, they modulate the response generated by external stimuli influ-
encing motivation, reward-aimed behaviors, and addiction [163]. Finally, resistant to
fluctuations in cerebral blood flow, astrocytes are responsible for maintaining an adequate
level of brain tissue metabolism in physiological and pathological conditions.

Interesting data about the role of microglia in NAc come from animal studies. Mi-
croglia activation has been reported in mice fed with a high-caloric chocolate cafeteria
diet [164]. Apart from weight gain, this resulted in a modification of structural plasticity
represented by dendritic spine pruning (removal of synapses) and synaptic remodeling,
initiated by microglial release of inflammatory mediators, such as interleukin-1β (IL-1β)
and interferon gamma (IFN-γ). The effect of mediators released by the activated microglia
in NAc on the dendritic system and spines depends on external stimuli acting on the BRS.
Thus, a decrease in dendritic spine density in the shell corresponds to decrease in the
sense of reward in animals fed ad libitum. On the other hand, an increase in the dendritic
spine density correlates with compulsive seeking behavior [165]. In cases of drug abuse,
an activation of microglia has been reported. Repeated cocaine administration triggered
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microglia activation in Str, leading to increase in tumor necrosis factor α (TNF-α) levels and
internalization of synaptic AMPA receptors [166]. This resulted in inhibition of synaptic
plasticity and behavioral sensitization.
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nerve fibers, these cells have the potential to influence activity and plasticity processes in the BRS. All neuroglial cell
subpopulations play an important role in the pathological processes affecting the NAc integrity, although their contribution
to these processes is still poorly understood.

Oligodendrocytes, like other neuroglial cell subpopulations, play an important role in
the BRS, both in physiological conditions and pathology. Their role in myelin metabolism is
important for the functioning of the brain tissue. Through controlling myelin metabolism,
oligodendrocytes can influence the plasticity processes related to transmission efficiency of
excitatory stimuli along the neuronal fibers. Consequently, myelin metabolism seems to
be a good indicator of the BRS status during stress or anxiety. Down-regulation of myelin
genes and oligodendrocyte-specific genes in NAc and PFC was recorded after four weeks of
stress exposure in mice [167]. Similarly, chronic social defeat stress initiated region-specific
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differences in myelination. After exposure to this type of stress, decrease in myelin protein
content was observed in the limbic areas, including NAc [168].

Another important issue represents myelination disorders and changes in myelin
synthesis, resulting in impairment of the brain function observed in the course of some
mental illnesses. The major depressive disorder (MDD) is associated with changes in the
myelin content in several brain regions, but in particular in structures of the limbic system,
including NAc [169]. Further research is needed to explain the relationship between the
severity of emotional, cognitive, and behavioral symptoms and extent of changes in myelin
content within the limbic system.

Results of a postmortem study showed myelination impairment in several brain areas,
including NAc, after chronic cocaine abuse [170]. Dysregulation of myelin metabolism
results from alterations in gene expression. A reduced expression of proteins encoded
by myelin-related genes, such as myelin basic protein (MBP), myelin-associated oligo-
dendrocyte basic protein (MOBP), and proteolipid protein 1 (PLP1) was observed after
cocaine administration [170]. Because PLP1 is crucial for myelin stability, a decrease in
expression of this protein can be an indicator of changes in myelin structure in consequence
of chronic cocaine abuse. Furthermore, reduction in the number of MBP-immunoreactive
oligodendrocytes was observed in the NAc after cocaine intake [171]. Other interesting data
showed inhibition of white matter loss in NAc during cocaine withdrawal after chronic
abuse in mice treated with ceftriaxone [172]. Nonetheless, the mechanism of action and
potential strategies for therapeutic application of this antibiotic in addiction therapy require
further research.

To conclude, neuroglia participates in a wide spectrum of processes occurring in
NAc and other areas of the BRS. Its role includes modulation of synaptic transmission and
signaling pathways within tripartite synapses, as well as regulation of energetic metabolism
by astrocytes. It also takes part in the regulation of the BRS activity, through the release
of inflammatory mediators by activated microglia. Finally, these cell populations regulate
myelin metabolism, expression of oligodendrocyte-specific proteins and, consequently,
the efficiency of stimuli conduction along the neuronal fibers. The modifying effect of
neuroglia upon the BRS activity (including NAc) involves both physiological processes
and a wide spectrum of pathologies associated with addiction, neurodegeneration, and
mental illnesses. Further studies on the role of neuroglia in these processes are needed.

3. Nucleus Accumbens Is Responsible for Executive Behaviors Aimed at Motivation,
Survival, and Reward Achievement

In the 1980s, Mogenson and colleagues formulated a hypothesis that NAc functions as
an interface between the limbic and motor systems [10]. More recent studies have confirmed
this concept, extending it with new morphological and functional data [1,3,42,47,173]. Due
to its localization on the border between the limbic and motor systems, and its extensive
connections, NAc can integrate stimuli coming from different brain areas. For example,
it coordinates emotional inputs originating in Amg with stimuli enhancing motivational
drive, resulting from the interaction of dopaminergic and serotoninergic signals generated
in the brain stem and diencephalic areas. Moreover, NAc receives contextual information
from Hip, and information about the current level of attention from MThn and IThn.
This integrating function of NAc is then precisely coordinated with cognition, planning,
and execution processes developed in the PFC. Hence, the role of NAc is to integrate
executive behavior, motor reactions, motivation, learning and memory, and vegetative
reactions important in physiological conditions. All these processes are important for
both an individual’s survival and survival of the species [174,175]. These activities could
be manifested in feeding [176], sexual [177], and risk-undertaking behaviors, which are
aimed at reward achievement and pleasure [178]. NAc has also been involved in learning
processes. Results of animal studies showed an important role of this BRS area in place
preference behaviors [179,180], and in the avoidance of life-threatening situations [181].
Other studies reported that NAc modulated incentives to achieve rewards of both a natural
and unpredictable character [182,183]. Finally, NAc is involved in drug addiction [184].
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Differences in functioning of the two parts of NAc have previously been
reported [42,50,185–187]. The shell, activated by external stimuli or substances, strengthens
the reward feeling. This part of NAc also plays an important role in shaping innate and
unconditioned behaviors related to feeding and defense. This is related to biological drives
based on cooperation among visceral, limbic, and motor systems [3,42,187]. Additionally,
the medial part of the shell is believed to be involved in strengthening of the novelty
effect [183,188] associated, for example, with feeding behavior [189], but also with the
administration of substances having rewarding properties, including psycho-stimulating
drugs [190–192].

The core of NAc is involved in responses to motivational stimuli [193], impulsive and
emotional responses [194,195], responses developed during instrumental learning and, fi-
nally, conditioned responses [188,196]. There is also evidence of the core involvement in the
spatial learning processes [197]. Although most of the studies connect the function of NAc
to positive emotional responses, some studies suggest its role in aversive motivation [198]
and, together with Amg, in the elaboration of negative emotional responses [199].

4. Stress, Psychostimulants and Experience Impact NAc Function during Early
Development and Adolescence

Like other brain regions, NAc undergoes characteristic morphological and functional
changes during ontogenesis. At the subsequent stages of development, changes in the
cellular structure, formation of connections with other brain areas, along with development
of neurotransmitter systems and signaling pathways, as well as development of structural
and functional plasticity, occur [200,201]. Numerous reports suggest that the effects of
such factors as stress, drugs and various forms of addiction, as well as experience during
development, are different from the effects of these factors in the adult period [202,203].
Importantly, although it is still poorly understood, the action of these factors affects the
further development and functioning of NAc in adulthood.

The action of the above-mentioned factors at different stages of ontogenesis results in
development of behavioral disorders and mental dysfunctions either during adolescence or
in adulthood. This could be a consequence of an impairment in functioning of the endocrine
system (e.g., hypothalamus-pituitary-adrenal axis; HPA), disturbances in the functioning
of neurotransmitter systems (e.g., dopaminergic, serotonergic, glutamatergic, GABA-ergic,
noradrenergic and others), as well as changes in the expression of neurotrophic factors
(e.g., BDNF) and transcription factors (e.g., pCREB, deltaFosB) [204–208].

4.1. Mechanisms and Effects of Stress Acting on Nucleus Accumbens during Early Development
and Adolescence

During early development, due to an incomplete development of endocrine regula-
tory mechanisms, stress hormones (glucocorticoids) may be harmful to immature NAc,
and induce abnormal behavioral responses [209,210]. Defense mechanisms during that
period are based on a higher threshold of the HPA activation and attenuation of the stress
response [211]. The result of these processes is the stress hypo-responsive period [211,212].
This is characterized by a rise in the threshold of excitability of the HPA axis, and activation
only after the action of very strong stimuli [213]. The long-term effect of mild stress during
this period may, by increasing the level of glucocorticoids, lead to a decrease in a production
of BDNF [204,214]. A protracted consequence of this process may be a disturbance of the
structural and functional plasticity in NAc, which is manifested by disturbances in the
formation of the spino-dendritic system and even the death of neurons [215]. The negative
consequences of these phenomena are present not only during development, but also in
adulthood. In the case of NAc, they may manifest themselves as behavioral responses to
environmental stimuli such as stress and addictive substances.

Adolescence is the period in NAc development characterized by the final formation
of connections, shaping balanced functional relations between neurotransmitter systems,
as well as stabilization in the production level of neurotrophic factors and balanced gene
expression. In addition, the development of hormonal maturity related to the HPA axis,
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both in terms of controlling stress reactions and achieved sexual maturity, is important
for the functioning of the reward system during that period. Despite these changes,
during adolescence there is a greater susceptibility to stressful and aversive stimuli than in
adulthood [214]. This can result in functional disorders manifested by many symptoms,
such as anxiety, aggression or depression, having either a transient nature or persisting
later in life [216]. It should be noted, however, that the relationship between the effects of
stress in adolescence and occurrence of the psychopathological disorders in adulthood is
complex and requires further research.

4.2. Mechanisms and Effects of Nucleus Accumbens Exposition to Addictive Substances
during Development

The susceptibility of NAc to the harmful effects of addictive substances during devel-
opment can be illustrated by the effects exerted by nicotine. Exposure to this commonly
consumed psychostimulant has been linked to NAc impairment. The most important
research includes the effects of early exposure to nicotine and its long-term consequences,
the effects of nicotine withdrawal during development and adolescence, and mechanisms
shaping the reward feeling triggered by nicotine during development. It has been shown
that exposure to nicotine already in the fetal period affects the expression of genes of growth
factors, death receptors, and some kinases related to the regulation of cell death or survival
in adolescence [217]. Maternal smoking induces a modification of cell adhesion molecules
(CAM) such as neurexin, immunoglobulin, cadherin, and adhesion-GPCR superfamilies
in the fetus [218]. The CAM-initiated signal transduction is modified by a gestational
nicotine treatment. In the NAc, it may reduce a number of the excitatory synapses which
can lead to neurobehavioral deficits in adolescence. Furthermore, exposure to nicotine
during adolescence, which is a time window for sensitivity to its effects, reduces cognitive
abilities and diminishes attentional performance in pursuit of the goal of satisfaction and
reward in adulthood [219].

Nicotine withdrawal has different effects on the functioning of NAc in adolescence as
compared to adulthood. Studies have shown that discontinuation of nicotine in juveniles
causes less side effects than in adults [220]. This may be due to an underdevelopment of the
GABA-ergic system and a weaker inhibition of dopaminergic neurons in the VTA, which,
to a lesser extent, reduces the dopamine content in NAc. Negative aversive symptoms
resulting from nicotine withdrawal are less pronounced in adolescence [221]. It is believed
that the glutamatergic system supporting DA release and action in NAc is more developed
than that of the GABA-ergic system. As a result, in young people, nicotine increases the
reward effect, weakening negative reactions. Thus, the development of neurotransmitter
systems and plasticity in NAc influence the nature of the interaction of the nicotine-
stimulated dopaminergic projection.

4.3. Reward Mechanisms in Adolescence—Role of the Neurotransmitters and Neurotrophic Factors

There are premises indicating involvement of different mechanisms triggering the
reward and satisfaction feelings at various ages [222]. These can be triggered by different
neurotransmitters depending on the stage of development. Apart from DA, other neu-
rotransmitters such as NE and 5-HT, whose concentration is increased in NAc, could be
involved in these processes [222]. Greater nicotine preference and its effect in juveniles
may depend on the content of neurotransmitters and on a different composition of re-
ceptors in the NAc shell, as well as on changes in neuropeptide expression, compared
to adults [223]. An exposure to nicotine during adolescence initiates structural plasticity
changes such as an increase in the number and length of dendrites [224]. Furthermore,
peri- and post-adolescent nicotine exposure induces an increase in FosB expression in NAc
and the hippocampus [225]. This, in turn, contributes to the increase in the activity of these
structures related to the sense of reward and memory.
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4.4. Influence of Learning and Gained Experience on the NAc Function in Adolescence

Adolescence is a period of development associated with intensive learning, gaining
various types of experience, as well as developing a responsiveness to stressful stimuli
resulting from action of environmental factors and social interactions [226]. All of these
significantly affect the functioning of the BRS, including NAc. It should be noted that the
behavioral reactions developed and shaped during this period may differ significantly from
those occurring in adulthood. Adolescence is a period associated with gaining experience
in social relations, characterized by the choice of behaviors and decision-making frequently
involving risk of uncertain consequences [226]. The neurobiological basis of such behaviors
is related to incompletely shaped interactions among the three functional brain systems:
the reward system (with a significant role of NAc), the limbic system related to emotional
activity (represented by the amygdala), and the coordinating system (with contribution of
the ventro-medial prefrontal cortex) [226]. The disproportion in the development of these
three systems, with the predominance of NAc and amygdala development over the pre-
frontal cortex, may explain the specificity of behavior and decision choices in adolescence,
as well as the susceptibility to psychopathological disorders, including depression and
anxiety.

Chronic juvenile (pre- and adolescent) stress of different nature has a significant
impact on development of many brain areas, including NAc and the prefrontal cortex,
important for shaping of the reward processing and the executive functions. Disturbances
in the functioning of these areas resulting from impact of stressful stimuli on the immature
structures may manifest in psychopathological symptoms during development and in
adulthood, and sometimes may lead to the development of mental illnesses [227].

Some evidence indicates that early-life adversity experiences like poverty, chaotic
environment, maternal separation or poor parental care may significantly contribute to
dysfunction of the BRS [228]. They may lie at the base of the affective disorders, such as
depression and anhedonia at the later stages of development. Moreover, they also make
those in that stage prone to the development of addiction. One of the patho-mechanisms at
the base of these disorders is associated with changes in the expression of the corticotropin-
releasing factor (CRF) and, indirectly, with decreased effectiveness of the connections
between NAc and amygdala nuclei involved in fear and anxiety reactions, with a simulta-
neous impairment of the pleasure and reward reaction [228].

5. NAc Participates in Elaboration of Aversive Reactions

The plasticity processes occurring during adolescence in the shell and core of NAc
not only have different dynamics but also reveal a different involvement in rewarding
and aversion effects, thus emphasizing the functional differentiation of both parts of this
nucleus [229]. Some authors have suggested that the functional differentiation between
the NAc shell and core is due to involvement of the D1 and D2 receptors in the reward
and aversion reactions [230]. Stimulation of the D1 receptors in the medium spiny neurons
(D1-MSNs) in the NAc leads to generation of the reward-related response, while activa-
tion of the D2 receptors in MSNs (D2-MSNs) is responsible for aversion [230]. Another
concept states that both the D1- and D2- receptors containing MSNs control reward and
aversion, and the nature of the reaction generated in NAc is determined by the pattern of
neuronal stimulation [231]. While brief optogenetic stimulation of D1- or D2-MSNs elicited
a positive reinforcement, their prolonged activation induced an aversion. Moreover, the
final type of response is also influenced by the activity status of the opioid system [231].
Blocking κ-opioid receptors in the VTA eliminates results of the D1-MSN prolonged stim-
ulation, whereas blockade of δ-opioid receptors inhibits behavioral response initiated
by the D2-MSN prolonged stimulation. According to other authors, the glutamatergic
projection originating from neurons located in the VTA and reaching NAc may play a
significant role in the formation of the aversive reaction. By stimulating AMPA receptors
in asymmetric synapses on parvalbumin-containing GABA-ergic interneurons leading to
their activation, output MSNs of NAc are inhibited, which ultimately results in the aversive
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reaction [232]. Finally, other reports show functional differentiation between the NAc re-
gions associated with different distribution of dynorphinergic cells involved in generation
of the aversive and rewarding reactions [233]. The photo-stimulation of the dynorphin
cells localized within the ventral part of the NAc shell is responsible for the formation of
the aversive behavior, while stimulation of dynorphin cells in the dorsal part of the NAc
shell favors positive reinforcement in the place preference test in mice [233]. Finally, some
studies suggest that dynorphin induces negative affective symptoms related to nicotine
withdrawal, such as anxiety, aversion and decrease of reward system function [234,235].

Overall, the presented data indicate the complex character of the NAc function in
the rewarding or aversive responses. This implicates the existence of different regula-
tory mechanisms depending on the situational context of the shaped reaction, which are
disturbed in the course of such pathological processes as addiction, stress, depression or
mental disorders.

6. Mechanisms of Neuroplasticity within Nucleus Accumbens
6.1. Morphological Changes in the Dendritic Tree and Dendritic Spines of the Accumbal Neurons
Are Triggered by Both External and Internal Stimuli

The importance of dendritic spines in the NAc neurons results not only from their
involvement in synaptic transmission and plasticity, shaping motivational behavior and
reward feeling, but also from their role in the development of addiction. Morphology of
dendritic spines in NAc, predominantly bearing excitatory synapses, is determined by
processes that occur both in the prenatal and postnatal period [236]. The development of
the dendritic system is influenced by factors such as growth regulators, stress, learning,
administered drugs and psychostimulants. All these factors influence the shape and density
of dendritic spines, which develop according to different patterns in various brain areas,
such as NAc, PFC and Hip [237,238]. Maturation of dendritic spines in NAc is based on
morphological changes from the stage of thin spines to mature mushroom-shaped ones [42].
Learning and memory processes improve the efficiency of synaptic plasticity, also through
changing the morphology of dendritic spines in Hip neurons [239,240]. While thin spines
are associated with learning processes, mature mushroom-shaped spines are related to
long-term memory and the maintenance of neuronal networks in Hip [241]. In addition,
mushroom-shaped spines with small heads are characteristic for weak or silent synaptic
connections [242]. Long-term stress affects the morphology and density of dendrites
and dendritic spines in NAc, promoting their atrophy and decrease in number [236].
This results in spine reduction in some brain areas, such as Hip and PFC, but also in an
increase in others, such as Amg and NAc. These chronic stress-induced changes occur
via activation of signaling pathways involving cAMP-ERK1/2-CREB, TNFα-NF-κB, and
Ras-ERK [243–245].

Drugs of abuse, such as cocaine, change the number and structure of dendritic spines
in NAc [43,44,246]. Cocaine-induced reward and seeking behaviors are driven by mor-
phological, neuroplastic and functional changes in NAc [41,247–250]. An important factor
responsible for the cocaine-induced changes in the dendritic spine morphology is a small
GTPase, Rap1b [42]. The increase in the expression of this protein occurs after cocaine
exposure and correlates with the morphological changes of dendritic spines in the NAC
neurons, which initially show an increase in the number of immature spines with a con-
comitant decrease in synaptic strength [251]. Later on, an increase in both mature spine
density and in synaptic strength are observed. These morphological changes in NAc
correspond to behavioral reactions based on an increase in locomotor activity directed at
cocaine searching and accompanying increase in reward feeling. Similarly, activation of
the BDNF-tyrosine kinase B (TrkB) signaling pathway, with the following activation of
pERK-dependent cascades, has been shown to induce spine formation in the hippocampal
neurons [252,253].

In summary, both external and internal stimuli can initiate morphological changes in
dendritic spines in NAc and other regions of the BRS. The importance of dendritic spine
modifications results from their involvement in the synaptic transmission and neuroplas-
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ticity processes. These modifications are accompanied by activation of signaling pathways
contributing to an increase in efficiency of synaptic transmission, which enables specific
behavioral reactions. The modifications occur not only in physiological processes, but also
in pathological processes, such as addiction, mental, and neurodegenerative diseases.

6.2. Mechanisms of Synaptic Neuroplasticity within the Spino-Dendritic System of the
Reward-Related Brain Areas Require Changes in Gene Expression and Activation of Specific
Signaling Pathways

Growing evidence shows the relationship between stress, taken psychostimulants,
and some mental disorders and changes in the synapto-dendritic system of the reward-
involved brain structures [42,44,89,95]. However, the molecular bases of these relations
remain poorly understood. An example of such a relationship are changes in the activation
of genes encoding cytoskeleton regulatory proteins, observed in stress and depression [254].
Remodeling of the actin cytoskeleton in the BRS in response to addictive substances expo-
sure has been extensively demonstrated [255–257]. Up-regulation of GTPase RhoA and
stimulation of its effector Rho-kinase (ROCK) result in dysregulation of the production
of actin, a protein which is one of the most important components of the cellular skele-
ton’s microfilaments [254]. This initiates the reconstruction of dendritic tree leading to a
reduction in its complexity [258–261]. Loss of dendritic spines is followed by atrophy of
the dendritic arbor, which finally results in the reduction of synaptic drive in the MSNs
with dopaminergic D1 receptor (D1R-MSNs) in NAc.

Some addictive substances can also induce molecular changes in the BRS. Cocaine
and morphine induce a decrease in content of Homer1 protein and postsynaptic density of
protein 95 (PSD95) in the BRS [43,262]. The levels of small G proteins such as Rho, Rac1,
and Cdc42 are also reduced after morphine consumption [262]. These proteins trigger
signaling pathways which initiate remodeling of actin in the cellular cytoskeleton. All of
these are activated by guanine nucleotide exchange factors (GEFs), which are responsible
for the conversion of GDP into GTP. Further activation of the regulators of cytoskele-
ton transformation requires activation of GTP-ases, which occurs after their binding to
GTP [43,262]. Therefore, changes in the spino-dendritic system caused by disturbances
in production of cytoskeleton regulatory proteins are an important feature of the BRS
dysfunction, manifested by plasticity disorders and development of addiction.

A recent study found a correlation between drug addiction and dysregulation of the
circadian rhythm of sleep and wakefulness [263]. These disturbances can promote the
appearance or intensify already present drug abuse in susceptible persons. The neuronal
PAS domain 2 (NPAS2) protein, which regulates the circadian cycle, plays an important
role in the regulation of glutamatergic neurotransmission in the MSNs of NAc [263].
NPAS2 also has a modulatory effect on synaptic plasticity, affecting the strength and
sensitivity of the excitatory synapses in D1R-MSNs in NAc. In this way, it modulates the
cocaine-induced reward-related behavior. As NPAS2 inhibits synaptic plasticity in NAc, a
decrease in its concentration in the D1R-MSNs results in an increased cocaine preference.
Results of preclinical studies have shown that downregulation of NPAS2 in D1R-MSNs in
NAc modifies a cocaine-conditioned behavioral response and a cocaine-conditioned place
preference in mice [263]. A selective influence on the NPAS2-containing subpopulation of
D1R-MSNs in NAc could be, at least in theory, a good strategy allowing for precise control
over the mechanisms of reward- and addiction-related processes in the subpopulation of
projection neurons in NAc.

Further research on the molecular basis of plasticity mechanisms in the spino-dendritic
system in the BRS is warranted, since it might contribute to a better understanding of
the causes of numerous pathological processes and to the development of new and more
effective therapies.
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7. Role of Neurotransmitters Transporters and BDNF in Synaptic Plasticity within
Nucleus Accumbens
7.1. Neurotransmitter Transporters

The main role of neurotransmitter transporters in the CNS is removal of the appropri-
ate mediators from the synaptic cleft [264]. Therefore, they exert a significant effect on the
strength and duration of stimulation in synapses belonging to various functional systems
represented in a given brain area. By changing the affinity and the duration of action, they
can indirectly influence the final effect induced by a specific stimulus. In the case of NAc,
transporters of neurotransmitters such as DA, Glu, GABA, 5-HT and NE are of practical
importance.

From a practical point of view, the effects of inhibition of the individual transporters
are of great importance, on the one hand affecting the dynamics of psychopathological
disorders such as depression, anxiety, obsessive-compulsive disorder, attention deficit
hyperactivity disorder (ADHD), and addiction [264]. On the other hand, they are of interest
in research focused on searching for effective treatments for these disorders.

7.2. DA Transporter (DAT)

DAT plays an important role in eliminating DA from the synaptic space, ensuring
physiological homeostasis in the neurotransmitter system [265]. By inhibiting its action,
it is possible to alleviate psychopathological symptoms in the course of diseases such as
schizophrenia, ADHD, bipolar disorder, and Parkinson’s disease.

Bahi et al. reported the crucial role of DAT in ethanol-seeking behavior, as well
as acquisition and retrieval of ethanol contextual memory in mice [266]. Consequently,
by influencing DAT expression it is possible to modulate the rewarding properties of
ethanol. Inhibition of DAT enhances DA neurotransmission induced by cocaine [267]. The
addictive cocaine effect is mediated primarily by blocking DA uptake, while NE and 5-HT
have modulatory roles [268]. Alterations in DA uptake inhibition are responsible for the
rewarding and addictive properties of cocaine. Tolerance to cocaine’s effects is considered
as an enhancing factor for this drug taking behavior [269]. The reinforcing effect of cocaine’s
addictive properties is based on an action of the dopaminergic system in NAc through
inhibition of DAT. There are alternative ways to achieve such an effect e.g., by modulation
of the serotonergic system function in the VTA, which results in an increase of DA levels in
NAc [270]. Interestingly, results of study by Siciliano et al. have shown that exposition to
amphetamine can lead to decrease in cocaine intake by reducing cocaine tolerance [271].
It has been suggested that amphetamine contributes to the deconstruction of multi-DAT
complexes responsible for the effect of tolerance and decreased cocaine seeking. Therefore,
deconstruction of these complexes could be used for treatment of cocaine addiction [271].
Martin and Naughton have shown that DAT inhibition induces an increase in the dendritic
spine density in the NAc [272]. Consequently, DAT-inhibition may have an effect on the
long-lasting morphological changes in neurons associated with cocaine exposition and
drug addiction.

7.2.1. Glu Transporters

Apart from the receptors, Glu transporters also play an important role in the efficiency
of synaptic transmission in NAc [273]. Their function relies on adjustment of the level of
synaptic excitation/inhibition in response to different types of stimuli, duration of this
effect, and its synchronization in different parts of NAc or in different subpopulations of
projection neurons [273]. Natural reward and pain have different effects on expression of
the vesicular glutamate transporters (VGLUTs) in NAc, which is related to specific types of
excitation exerted by these stimuli [274]. For example, these differences are reflected by the
expression level of VGLUT type 3 (VGLUT3) and VGLUT type 1 (VGLUT1) transporters
in NAc after applying a natural reward or chronic pain. Sucrose consumption has been
reported to increase only VGLUT3 expression, while chronic pain leads to a decrease in
both VGLUT3 and VGLUT1 [73]. Interesting preliminary results regarding the function of
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glutamate transporters in regulation of physiological processes occurring in NAc and other
BRS structures justify further research to clarify their role in addiction and CNS diseases.

7.2.2. GABA Transporters

Activity of GABA-ergic neurons and release of GABA have a significant impact on the
activity of projection neurons and, thus, indirectly on the concentration of DA in NAc [275].
This process is controlled by the plasma membrane GABA uptake transporters (GATs)
located on astrocytes and neurons. It should be emphasized that there are differences in the
mechanisms controlling DA release in the dorsal striatum and the NAc core resulting from
different concentration of GAT transporters [275]. In the former, its release is controlled
primarily by GAT-1 and GAT-3 transporters, which are more numerous in this area than in
the NAc core.

Expression level of vesicular GABA transporter (vGAT) and vesicular glutamate
transporter 2 (vGlut2) in NAc of the adolescent and adult rats after ethanol exposure
shows a characteristic ontogenetic pattern with lower vGlut2/vGAT ratios in adolescents
compared to adults [276]. The presented data suggest the constantly changing influence
of excitatory (glutaminergic) and inhibitory (GABA-ergic) projections on NAc at various
stages of ontogenetic development.

As shown by studies performed in mouse experimental models, chronic unpredictable
mild stress is often associated with development of major depression [277]. During this
process, the GABA-ergic neurons in NAc are damaged. One of the consequences of this
damage, apart from a decrease in GABA release, is also a reduction in the levels of vesicular
GABA transporters [277]. The presented results of the studies conducted so far indicate, on
the one hand, the diversified role of GABA-ergic transporters in a number of regulatory
processes in NAc. On the other hand, they show our still fragmentary knowledge about
the meaning of these processes and underline the need for further research.

7.2.3. 5-HT Transporter (SERT)

Results of a recent study have shown that SERT deletion contributes to the protection
against the development of behavioral sensitization by increasing serotonergic neurotrans-
mission, which is accompanied by dendritic remodeling of the MSNs in NAc [278]. These
results could be useful for better understanding the evolution of changes in the course of
addiction to methamphetamine and other psychotropic agents [278]. Other studies have
shown that reduced expression of SERT could be a risk factor for development of cocaine
addiction [279]. According to some authors, molecular, cellular and behavioral changes in-
duced by cocaine abuse are the result of simultaneous modulation of the DA, NE and 5-HT
transporters function [280]. Inhibition of these transporters may favor the development
of morphological changes in the form of an increased density of dendritic spines in the
NAc neurons [272]. These changes are an important element in the development of drug
addiction.

7.2.4. NE Transporter

Results of the study by Verheij and Karel have shown that changes in NE content do
not have a decisive influence on the enhancement of cocaine intake in the SERT knockout
rats [279]. In the NAc shell, as well as other brain regions, DA reuptake occurs by NE
terminals [281]. In the NAc shell of the DAT knock-out mice exposed to cocaine, DA
level can also be raised due to preventing its uptake by the NE transporter [281,282]. This
phenomenon explains the causes of psychostimulant addiction. Moreover, antidepres-
sants that bind selectively the NE transporter exert their therapeutic effect by increasing
concentration of both DA and NE [281].

7.2.5. DAT and SERT Knock-Out Models in Studies on NAc and BRS

Studies on the mechanisms of reward, stress, depression and addiction involve animal
knock-out models of serotonin and dopamine transporters (SERT ko and DAT ko, respec-
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tively) [283–286]. Taking into account the fact that serotonin (SERT) plays a significant
role in modulation of Glu neurotransmission in many brain areas, attention was drawn to
this relationship occurring in NAc in the cocaine addiction [146]. In the SERT ko mouse
model, effects of the reduced 5-HT content in both naïve mice and these previously exposed
to cocaine were investigated [146]. In the cocaine-naïve mice, SERT deletion induced a
reduction of Glu signaling leading to a decrease in its transmission efficiency. This is
confirmed by the reduced expression of vGLUT1 and GLT-1 transporters which is related
to the release and clearance of Glu from the synaptic cleft, respectively. In addition, there
is a decrease in expression of the NMDA and AMPA receptor subunits. Overall, these
changes suggest their adaptive character, resulting from the reduced glutamatergic trans-
mission and lack of the modulating effect in mice with SERT deletion. This may explain
the cocaine seeking behavior and increased self-administration observed in the mice with
SERT deletion [287–289]. On the other hand, in rats exposed to cocaine for a long time, an
increase in the content of vGLUT1 and GLT-1 was observed together with up-regulation of
NMDA and AMPA receptor subunits [146]. These changes may be explained by sensitizing
of the glutamatergic synapses during the long-lasting cocaine access.

The dopamine transporter (DAT) is responsible for removing the neurotransmitter
from the synaptic cleft to the presynaptic terminal. The DAT ko mice show symptoms
resulting from the increased DA content [284]. The use of DAT ko allows the evaluation of
the biochemical and behavioral effects of an increase in DA concentration in the structures
of the BRS [290]. DAT ko could be a useful model in studies on interaction mechanisms
between psychostimulants and addictive drugs, such as amphetamine and cocaine, also
taking into account the role of transporters for other neurotransmitters, such as 5-HT and
NE [284,285].

7.3. Brain-Derived Neurotrophic Factor

Some authors emphasize the importance of brain-derived neurotrophic factor (BDNF)
for proper functioning of connections between structures of the BRS, such as VTA, NAc,
and PFC [291–293]. The specific role of BDNF in reward mechanisms results, among other
factors, from its action on the VTA dopaminergic neurons projecting to NAc. BDNF plays
an important role in synaptic plasticity [294]. There is well-documented data on the role of
BDNF in LTP in several brain areas [295]. However, it should be emphasized that BDNF
activity in this process is largely dependent on the brain region, nature of the stimulus,
and age. The results of animal studies have shown that the expression levels of BDNF and
the TrkB receptor differ between young and adult individuals [296]. Moreover, there are
region-specific differences in BDNF expression between young and old individuals [296].
In general, while in NAc the BDNF expression is higher in adolescence than in adulthood,
the opposite effect is observed in the PFC. The diversity of BDNF expression in the specific
age groups, on the one hand, reflects the role of this neurotrophic factor in the processes of
brain maturation associated with the development of learning, memory and elaboration of
behavioral responses under the influence of natural stimuli [296]. On the other hand, it
may be related to differences between the specific age groups in terms of susceptibility to
drug-induced addiction and certain mental illnesses.

The relationship between changes in BDNF expression and altered functioning of the
limbic system’s structures (e.g., PFC, NAc, Hip, Amg) has been documented in several men-
tal disorders such as depression, schizophrenia, and drug-induced addiction [42,297–299].
In summary, BDNF plays an important role in the regulation of synaptic plasticity in the
BRS. Concentration of this neurotrophic factor varies depending on age, brain area, and
type of stimulus.

8. Conclusions

Data presented in this review show a wide range of NAc functions, not only under
physiological conditions but also in pathological processes. The unique role of NAc among
the structures of the BRS is a consequence of: (1) a widely distributed hierarchical system of
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connections with other brain regions, (2) cooperation with the limbic and motor functional
systems in regulating the state of consciousness and behavioral reactions, and with the
vegetative system, in coordinating metabolic, endocrine, and autonomic nervous systems
functions, (3) cooperation among several neurotransmitter systems, (4) well-developed
morphological and functional plasticity processes enabling control of the short- and long-
term synaptic enhancement, and (5) supportive role of the NAc neuroglia in physiological
and pathological processes.

Changes in NAc functioning contribute to the development of several CNS diseases,
such as depression, schizophrenia, and AD. In all these cases, the NAc dysfunction should
be analysed in the context of its hierarchical connections with the other CNS structures
and functional systems, impairment of the neurotransmitter systems and neuroplasticity
processes. Further research on the structure and function of NAc will provide relevant infor-
mation, useful not only for a better understanding of the mechanisms regulating motivation
processes and striving for reward-achievement but possibly also for the development of
effective therapies for some CNS diseases.
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Abbreviations

α1AR α1-adrenergic receptor
α2AR α2-adrenergic receptor
Amg amygdala
AmgBL basolateral part of amygdala
Amgex extended amygdala
AMPARs α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-type glutamate receptors
BDNF brain-derived neurotrophic factor
BF basal forebrain
BRS brain reward system
CDn caudate nucleus
cAMP cyclic adenosine monophosphate
CREB cAMP-response element-binding protein
DA dopamine
dHip dorsal hippocampus
dmPFC dorso-medial prefrontal cortex
D1R D1 dopamine receptor
D2R D2 dopamine receptor
DRn dorsal raphe nucleus
ERK extracellular signal-regulated kinase
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GABA γ-aminobutyric acid
GDP guanosine diphosphate
Glu glutamate
GP globus pallidus
GPex external globus pallidus
GPin internal globus pallidus
GTP guanosine triphosphate
Hip hippocampus
5-HT serotonin
HTh hypothalamus
IFN-γ interferon gamma
IL-1β interleukin-1 beta
IThn intralaminar thalamic nuclei
LC locus coeruleus
LTP long-term potentiation
LHn lateral habenular nucleus
LHTh lateral hypothalamus
LPa lateral preoptic area
LV lateral ventricle
MBP myelin basic protein
Mctx motor cortex
MDD major depressive disorder
MDThn mediodorsal thalamic nucleus
mloPFC medial and lateral orbital prefrontal cortex
MOBP myelin-associated oligodendrocyte basic protein
mPFC medial prefrontal cortex
MThn midline thalamic nuclei
NAc nucleus accumbens
NAcc core of nucleus accumbens
NAcs shell of nucleus accumbens
NE norepinephrine
NF-κB nuclear factor-kappa B
NPAS2 neuronal PAS domain 2 protein
PFC prefrontal cortex
PHpg para-hippocampal gyrus
PLP1 proteolipid protein 1
PPn pedunculopontine nucleus
preMctx premotor cortex
PSD95 postsynaptic density of protein 95
Put putamen
SNpc substantia nigra pars compacta
SNpr substantia nigra pars reticulate
Spt septum
Sub subiculum
TegB bulbar tegmentum
Th thalamus
TrkB tyrosine receptor kinase B
VGLUT vesicular glutamate transporter
vHip ventral hippocampus
VP ventral pallidum
VTA ventral tegmental area
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