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Abstract 

Background: Acute myeloid leukemia (AML) is a heterogeneous and aggressive blood cancer that results from 
diverse genetic aberrations in the hematopoietic stem or progenitor cells (HSPCs) leading to the expansion of blasts 
in the hematopoietic system. The heterogeneity and evolution of cancer blasts can render therapeutic interventions 
ineffective in a yet poorly understood patient-specific manner. In this study, we investigated the clonal heterogeneity 
of diagnosis (Dx) and relapse (Re) pairs at genetic and transcriptional levels, and unveiled the underlying pathways 
and genes contributing to recurrence.

Methods: Whole-exome sequencing was used to detect somatic mutations and large copy number variations 
(CNVs). Single cell RNA-seq was performed to investigate the clonal heterogeneity between Dx-Re pairs and amongst 
patients.

Results: scRNA-seq analysis revealed extensive expression differences between patients and Dx-Re pairs, even for 
those with the same -presumed- initiating events. Transcriptional differences between and within patients are associ-
ated with clonal composition and evolution, with the most striking differences in patients that gained large-scale 
copy number variations at relapse. These differences appear to have significant molecular implications, exemplified 
by a DNMT3A/FLT3-ITD patient where the leukemia switched from an AP-1 regulated clone at Dx to a mTOR signaling 
driven clone at Re. The two distinct AML1-ETO pairs share genes related to hematopoietic stem cell maintenance and 
cell migration suggesting that the Re leukemic stem cell-like (LSC-like) cells evolved from the Dx cells.

Conclusions: In summary, the single cell RNA data underpinned the tumor heterogeneity not only amongst patient 
blasts with similar initiating mutations but also between each Dx-Re pair. Our results suggest alternatively and cur-
rently unappreciated and unexplored mechanisms leading to therapeutic resistance and AML recurrence.
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Background
Acute myeloid leukemia (AML) is a malignancy of 
hematopoietic stem cells or early progenitors result-
ing from the accumulation of genetic aberrations that 
disturb key biological processes. Mutations may occur 
in myeloid progenitor populations, which confer self-
renewal capacity to the progenitors [1]. In the past 
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decades, numerous AML associated gene alterations 
have been identified that can be broadly grouped into 
seven functional categories [2]. The most frequent cat-
egory comprises mutations that activate signal trans-
duction pathways and induce proliferation or survival 
of HSPCs, such as FLT3, NRAS/KRAS and KIT. A sec-
ond category describes mutations or fusions in genes 
coding for transcription factors that are required for 
hematopoietic maturation, like AML1-ETO (RUNX1-
RUNX1T1) and CEBPA. Mutations in epigenetic 
regulators like IDH1/2, TET2, DNMT3A and ASXL1 
comprise the third category of somatic events that are 
often acquired at an early stage [3]. The four remaining 
categories include aberrations in the Nucleophosmin 
(NPM1) gene, tumor suppressors and members of the 
spliceosome- and cohesin complexes.

Despite that current chemotherapies efficiently 
induce complete remission, AML patients frequently 
suffer from relapse and have low overall 5-years sur-
vival rates [4, 5]. Recurrence can emerge for example as 
a result of the expansion of pre-existing chemo-resist-
ant subpopulations or by acquiring novel chemo-resist-
ant subpopulations due to genomic alterations [6]. The 
advent of single-cell RNA sequencing provides revo-
lutionary opportunities to assess the heterogeneity of 
cancer populations at the single-cell level and explore 
the transcriptional features of individual cell types, 
such as subpopulations contributing to the relapse. 
Several single-cell RNA sequencing studies revealed 
this transcriptional heterogeneity between and within 
tumor samples [7–9].

The prime aim of our study was to define the tran-
scriptional changes between the Dx and Re samples. 
We used whole-exome sequencing (WES) to study the 
somatic mutations and copy number variations (CNVs) 
at Dx and Re. Furthermore, we applied single-cell RNA 
sequencing to analyze gene expression changes in AML 
samples between diagnosis and relapse. We profiled 
5,612 high-quality cells at diagnosis and relapse from 6 
AML patients, two intermediate risk cases with t(8;21) 
(AML1-ETO), three DNMT3A and one NUP98/NSD1. 
The latter four presented FLT3-ITD at the time of diag-
nosis and three of these patients were treated with the 
FLT3 inhibitor Midostaurin. Our study provides novel 
insights into recurrence and unveils vulnerabilities that 
could serve as new entry points for targeting relapse 
AMLs.

Methods
This is a brief description of the methods. A detailed 
description of each method is provided in Additional file 1.

AML samples and cell preparation
We processed 6 paired Dx-Re bone marrow aspi-
rates from adult AML patients, with AML1-ETO 
(n = 2 intermediate risk cases), DNMT3A (n = 3) and 
NUP98-NSD1 fusion gene (n = 1). The latter four pairs 
presented FLT3-ITD at diagnosis with variable allele 
frequencies, and three of four patients were treated 
with FLT3-ITD inhibitor Midostaurin. Although FLT3-
ITD is not an AML initiating lesion, nor an acknowl-
edged World Health Organization (WHO) 2016 AML 
category, the mutation landscape and treatment is dis-
tinct from the AML1-ETO patients. Hence, we labelled 
patient s220 and s914 as “AML1-ETO” patients and 
termed patient s232, s292, s2275 and s3432 as “FLT3-
ITD” patients. Patient characteristics are summarized 
in Supplemental Table  1. CD33/CD34 + cells were 
sorted into 384-well plates and stored at -80℃.

Single cell SORT‑seq
SORT-seq [10] is based on the integration of single cell 
FACS sorting (Fluorescence-Activated Cell Sorter) with 
the CEL-Seq2 protocol [11]. Single cell libraries were 
paired-end sequenced on an Illumina NextSeq500 at an 
average depth of ~ 30  M reads per library. After filter-
ing out low quality cells (genes detected < 500 or UMI 
count > 12,000 or mitochondrial UMIs > 30% or ERCC 
reads > 20%), 5,612 high-quality cells were acquired and 
used for the following analyses (Supplementary Fig. 2A 
and Supplemental Table 1).

Fusion genes detection
To quantify the reads per gene and detect fusion genes 
from bulk RNA-Seq, sequencing libraries were aligned 
to Gencode v37 reference genome version hg38 using 
STAR-Fusion v1.10.0 [12] in 2-pass mode, with param-
eters –CPU 12 –FusionInspector validate –examine_
coding_effect –denovo_reconstruct.

Whole‑exome sequencing
WES libraries were generated as previously described 
[13]. Diagnosis and relapse samples were compared 
with samples collected at CR (Complete Remission). 
Somatic variant calling and CNV detection were per-
formed with the Genome Analysis Toolkit (GATK).

Pseudo‑time trajectory analysis
We used Monocle3 [14] for pseudo-time analysis with 
default parameters, to assess the trajectories within the 
pairs. We used the DEGs obtained from Seurat 3.0 [15] 
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to plot the dynamic changes of gene expression along 
the trajectories.

Definition of leukemic stem cells and cycling genes
The 17-gene leukemic stem cell (LSC17) score was calcu-
lated based on the equation by Ng et al. [16]. Cell cycle 
phase scores were calculated using Seurat 3.0 function 
CellCycleScoring with default parameters.

Results
Whole exome‑ and gene fusion analyses reveal clonal 
aberrations
Clonal expansion and evolution is a major determinant 
of AML relapse [17]. To identify the genomic landscape 
at Dx and Re, we performed whole exome sequencing 
(WES) and gene fusion detection based on bulk RNA-
sequencing. We detected between 4 and 26 somatic 

mutations per sample (Fig.  1A, Supplemental Table  2). 
This analysis confirmed the presence of an inframe 
insertion in the juxtamembrane domain (JMD) between 
amino acid 583 and 611 in all four FLT3-ITD patients 
as well as AML1-ETO fusion transcripts in the AML1-
ETO patients (Fig.  1A, B, Supplemental Table  2). Other 
AML-associated somatic variants, such as NPM1, WT1, 
CEBPA, IDH1, NRAS and DNMT3A were detected for 
the FLT3-ITD patients, often in a patient-specific man-
ner. For both AML1-ETO patients, the WES analysis 
revealed a KIT mutation that is associated with poorer 
prognosis and increased risk of relapse [18, 19].

Next, to identify clonal rearrangements that may 
have led to disease relapse, we screened for somatic 
mutations with a significantly altered variant allele 
frequency (VAF) between Dx and Re (VAF ≥ 0.2 and 
p < 0.05, Fisher’s exact test; methods; Fig.  1C). In the 

Fig. 1 Whole exome- and gene fusion analysis between Dx and Re. (A) Oncoplot from WES showing 14 selected somatic mutations across 6 
patients (red: n = 2 AML1-ETO; blue: n = 4 FLT3-ITD). We termed patient s232, s292, s2275 and s3432 as “FLT3-ITD”, although it is not an AML initiating 
lesion, nor an acknowledged WHO2016 AML category, but treatment with the FLT3 inhibitor Midostaurin is distinct from the AML1-ETO patients. 
Mutations with at least 5 reads on the ALT allele and VAF ≥ 0.05 are depicted as squares and the ones below this threshold are indicated as triangle. 
Vertical bars depict the number of mutations detected per sample; horizontal bars depict the (relative) frequency of a particular mutation. (B) Gene 
fusions detected from bulk RNA-seq. (C) Mutations with a VAF ≥ 0.2 at Dx or Re for which the VAF changed significantly. For all bars, p < 0.05, Fisher’s 
exact test with Benjamini–Hochberg correction. Red: mutations more abundant at Dx. Blue: mutations more abundant at Re
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FLT3-ITD group, patient s232, WES and PCR analysis 
revealed two distinct FLT3-ITD mutations in the Dx 
sample, one of which one was lost at Re (p = 1.0 ×  10–3; 
Fisher’s exact test based on WES reads; Fig.  1C, Sup-
plemental Table  2). WES also  revealed a NPM1 muta-
tion (type  A19) at Dx, whose AF was decreased at Re 
(p = 8.2 ×  10–3) and a low-abundant NRAS mutation at 
Dx (VAF = 0.087) that was undetected at Re (VAF = 0; 
p = 2.0 ×  10–4; Fig. 1C). For patient s2275, WES showed 
considerably shorter ITDs at Re compared to Dx 
(p = 4.6 ×  10–41), which were confirmed by PCR (Sup-
plemental Table 3). This patient (s2275) had a NUP98-
NSD1 fusion at Dx and Re, consistent with the absence 
of DNMT3A and NPM1 mutations [20, 21]. Finally, this 
patient displayed copy neutral loss of  heterozygosity 
at the q-arm of chr13 (13q-LOH), which increases the 
allelic burden of the FLT3-ITD [22]. This aberration 
existed in a small fraction of Dx cells, but its abundance 
and that of the FLT3-ITD allele increased drastically 
at Re (Supplemental Fig. 1, Supplemental Tables 2 and 
3). Patient s292 displayed NPM1 and DNMT3A muta-
tions that remained unaltered between DX and Re. 
Patient s3432 showed a retention of the FLT3-ITD, 
both in the insertion location and allelic ratio (WES 
and PCR). Somatic mutations in FAT3 (VAF = 0.238, 
p = 4.3 ×  10–8), ITGB7 (VAF = 0.165, p = 1.32 ×  10–6), 
UBA2 (VAF = 0.117, p = 6.32 ×  10–3) and SLC4A3 
(VAF = 0.135, p = 6.6 ×  10–3) were significantly gained 
in the Re sample (Fig.  1C and Supplemental Table  2), 
whereas the last 53  Mb of chr7 was lost on one allele 
(Supplemental Fig. 1).

One of the AML1-ETO samples (s914) showed two 
distinct KIT mutations (VAF = 0.325; VAF = 0.138) 
at Dx, both of which were significantly reduced at Re 
(p < 4.7 ×  10–7). Patient s220 gained a mutation in the 
FAT3 gene as well as copy number aberrations at chr2 
and chr15 at Re (Supplemental Fig. 1).

To summarize, we confirmed the presence of FLT3-
ITDs and AML1-ETO in four and two patients respec-
tively. Additional somatic aberrations in AML-associated 
genes were patient-specific. FLT3-ITDs were altered 
in two patients. In one patient, one of the two FLT3-
ITDs was lost at Re. For patient s232, a NPM1 muta-
tion was detected at Dx (VAF = 0.6), but was decreased 
at Re (VAF = 0.1, p = 0.008, Fisher’s exact test). We also 
observed a significant reduction in two distinct KIT 

mutations in patient s914 between Dx and Re as well as 
patient-specific copy number changes at Re.

Single cell transcriptomics reveals distinct 
AML‑phenotypes at Dx and Re
Next, to better understand the transcriptional pheno-
types, their differences and possible mechanisms that 
led to disease progression, we profiled bone marrow cells 
obtained at Dx and after Re using single cell transcrip-
tomics. In brief, single  CD33+ or  CD34+ bone marrow 
cells were FACS-sorted into 384-well plates following 
the SORT-seq method [10], we acquired 5,612 single cell 
profiles, in which 4,129 unique transcripts from 1,678 
genes were detected on average (Supplemental Fig.  2A, 
methods).

After normalization, cells were clustered and visual-
ized using the uniform manifold approximation and 
projection [23] (UMAP). AML1-ETO vs FLT3-ITD sam-
ples are separated by UMAP1 and Dx-Re pairs cluster 
relatively close together (Fig. 2A, B). Nevertheless, con-
siderable heterogeneity between and within pairs exists 
(Fig.  2B). Strikingly, Dx-Re cells of FLT3-ITD patient 
s232 cluster in close proximity suggesting minor pheno-
typic and molecular alterations, even though this patient 
lost NPM1 and NRAS mutation at Re. Similarly, the 
expression changes between Dx and Re cells of patient 
s914 were minor, despite the significant loss of two KIT 
mutations. In contrast, Dx cells of patient s3432 are 
completely separated from Re cells, although one muta-
tion in the FAT3 gene was detected in Re (VAF = 0.238) 
(Supplemental Table 2). Likewise, the Dx and Re cells of 
AML1-ETO patient s220 constitute distinct clusters, but 
only gained mutations in genes that are not associated 
with AML (Fig. 1C). Both patients did however display 
large copy number changes between Dx and Re (Sup-
plemental Figs.  1 and 6A). Inferred CNV analysis con-
firmed that these aberrations were undetected for cells 
at Dx, but present for almost all cells at Re (Fig. 2C). As 
expected, these CNVs caused differential gene expres-
sion at these loci (Fig. 2D), such as LOXL1 and FAM81A 
implicated in cancer progression [24].

Next, we looked for gene signatures that discriminated 
AML1-ETO or FLT3-ITD patients. These signatures 
include well-established AML1-ETO markers, like upreg-
ulation of the transcriptional co-repressor RUNX1T1 
(aka ETO), the transcription factor POU4F1 [25] and the 

(See figure on next page.)
Fig. 2 Single cell transcriptomics reveals distinct AML-phenotypes. (A) UMAP of the six AML pairs, colored by primary mutation (red: AML1-ETO; 
blue: FLT3-ITD); (B) UMAP colored by sample; (C) Copy number variation data derived from WES (left) and scRNA-seq (right) data for patient s220. 
Left: Relapse-specific copy number gain and loss at chr2 and chr15, respectively. Right: cell normalized gene expression signals (iCNV signal) in tiles 
of 3 Mb show the copy loss and gain at chr2 and chr15, respectively. The plot indicates that virtually all Re cells are affected, compared to none of 
the Dx cells. Bottom: tumor allele frequency at heterozygous SNPs confirms copy loss at chr2 and gain at chr15. (D) Boxplot of DEGs at the lost and 
gained segments of chr2 (n = 17 DEGs) and chr15 (n = 24 DEGs), respectively. (E) Heatmap showing the top 20 marker genes per primary mutation
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Fig. 2 (See legend on previous page.)
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Fig. 3 Single cell transcriptomics reveals heterogeneity amongst patients. (A) UMAP of the four sample pairs with a FLT3-ITD, colored by sample 
(red: Dx; blue: Re); (B) UMAP of the two AML1-ETO sample pairs, colored by sample; (C) Heatmap displaying the top 5 marker genes per sample 
(FLT3-ITD); (D) Heatmap displaying the top 10 marker genes per sample
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myeloid differentiation protein MPO  [26] (Fig.  2E, top). 
FLT3-ITD samples on the other hand are characterized by 
induced expression of VIM, ANXA1, MSI2 and LAPTM5. 
Other genes tend to be overexpressed only in a subset 
of the samples: HLA genes are overexpressed in AML1-
ETO patient s220, but not in s914. In the FLT3-ITD sam-
ples, HOXA5 and HOXB3 genes that are overexpressed 
in NPM1-mutated AML [27], appear overexpressed in a 
patient-specific manner (Fig. 2E, bottom). Closer inspec-
tion of these and other NPM1-marker genes showed that 
these genes are indeed significantly higher expressed in 
the FLT3-ITD samples with an additional NPM1 muta-
tion (NPM1mut) compared to NPM1WT samples (FC > 1.5 
and p < 6.0 ×  10–15; Supplemental Fig. 2D). Notably, HOX-
genes are also highly expressed in FLT3-ITD patient 
s2275. In these samples, we detected a NUP98-NSD1 
fusion gene that is characterized by upregulation of 
HOXA and HOXB genes [28] (Supplemental Fig. 2D).

In summary, single cell transcriptomics showed distinct 
clustering of AML1-ETO vs FLT3-ITD patients. Differen-
tial analysis confirmed upregulation of well-established 
marker genes as well as elevated expression of HOX genes 
in NPM1mut and the NUP98-NSD1 positive FLT3-ITD 
samples. On a global level, the transcriptional changes 
between Dx and Re are poorly explained by SNPs and 
INDELs in AML-associated genes, but rather seem to be 
associated with large-scale CNVs. To gain a deeper under-
standing of the mechanisms underlying these changes, we 
subsequently performed an in-depth analysis of Dx-Re 
pairs per AML-subtype and in a patient-specific setting.

Dx‑Re transcriptomic changes are patient specific
Given this high intra- and inter-patient heterogene-
ity, we focused on the Dx-Re differences per patient 
in the remainder of this study. For this, we separated 
the UMAPs of the FLT3-ITD and AML1-ETO patients 
(Fig.  3A, B) and computed the differentially expressed 
genes between the Dx-Re pairs per patient. This analysis 
reinforced the notion that the differences in transcription 
between Dx and Re are highly patient-specific (Supple-
mental Figs. 2B, C, 3C, D).

The FLT3-ITD patients show a modest separation 
between the Dx and Re samples of patient s232 (Fig. 3A). 
Cluster analysis revealed two clusters at diagnosis (clus-
ter 1–2) and one at relapse (cluster 3, Supplemental 
Fig. 3A). Re cells lost expression of members of the AP-1 

transcription factor, like FOS, FOSB and ATF3 that were 
highly expressed in Dx cluster 1 (Supplemental Fig. 3B). 
Gene ontology (GO) analysis confirmed significant 
loss of expression for these and other genes involved in 
AP-1/ATF-2 related transcription at Re (Supplemental 
Fig. 3C). Furthermore, we evaluated the expression level 
of genes involved in PI3K/AKT/mTORC pathway, in 
which mTORC1 controls ribosomal biogenesis and pro-
tein translation. We found the targets of mTORC1, like 
RPS6KB1 and EIF4E, were differentially expressed at Re 
(Supplemental Fig. 3D), suggesting a pathway shift from 
AP-1 to mTORC1. Besides, we observed the upregula-
tion of the upstream K/NRAS genes in Re, which may be 
markers for diagnosis/prognosis and treatment targets.

The UMAP for patient s292 showed 3 distinct clusters 
(Supplemental Fig. 4A). DEG between Dx clusters 1 and 2 
revealed IDH1, an enzyme in the TCA cycle, and RAB31 
involved in membrane fusion and exocytosis in clusters 
1, whereas MPO and PROM1, markers for GMP cells, 
are differentially expressed in cluster2 (Supplemental 
Fig. 4B, C). Cells in cluster 3 originate from the Re sample 
and overexpressed genes like DDIT4 [29], PIM3 [30] and 
CD74 [31] were previously associated with poor progno-
sis (Supplemental Fig. 4B). GO analysis indicated regula-
tion of cell death and apoptotic process terms in cluster 3 
(Supplemental Fig. 4C).

The copy-neutral LOH at chr13q could be detected from 
the alternate allele frequency in the WES and scRNA-seq 
data of patient s2275 (Supplemental Fig.  5A). However, 
no genes located on chr13q were differentially expressed 
at Re compared to Dx, with the exception of ELF1 (two-
fold downregulated at Re). Single cell expression analysis 
revealed 5 clusters. Cluster 1 mainly originated from Dx 
cells, whereas cluster 5 almost entirely consisted of Re cells. 
Clusters 2–4 however were a mixture between Dx and Re 
cells (Supplemental Fig.  5B, C). DEGs revealed few differ-
ences between cluster 1 and 5, such as RNU4ATAC  and 
RYBP involved in RNA biosynthesis and metabolism that 
are differential expressed in cluster 1 (Dx) (Supplemental 
Fig.  5C, D), whereas ITM2A and CLEC12A for leukocyte 
activation and LDHA for ribonucleotide metabolism are dif-
ferentially expressed in cluster 5 (Re) (Supplemental Fig. 5C, 
D). The minor differences between Dx and Re is consistent 
with the fact that AML-associated mutations, such as FLT3-
ITD, WT1, CEBPA and NUP98-NSD1 were present at Dx 
and retained at Re (Fig. 1A, B, Supplemental Table 2).  

(See figure on next page.)
Fig. 4 Pathway switch between AP-1 and RAS signaling in high risk FLT3-ITD (s3432). (A) UMAP of Dx and Re cells for FLT3-ITD patient s3432 colored 
by timepoint (top) or cell cluster (bottom). (B) Heatmap displaying the top 10 cluster marker genes. Color represents row normalized expression 
values. (C) Overrepresented GO terms (category: biological pathway) in cluster 1 (Dx) and 3 (Re). P-values: hypergeometric test (BH-corrected). 
(D) The expression of genes related to AP-1 transcription factor network and RAS signaling pathway in each timepoint. (E) Calculation of LSC17 
score for each cluster, and p-value was calculated using Student’s t-test. * p < 0.05, ** p < 0.01, *** p < 0.001
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Fig. 4 (See legend on previous page.)
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The Dx and Re cells of patient s3432 formed distinct 
clusters that are highly separated from each other and 
the other FLT3-ITD patients (Fig.  3A). Cluster analysis 
detected four groups of cells that largely separated Dx 
(cluster 1) from Re cells (cluster 2–4; Fig. 4A). Cluster 1 
had a characteristic gene signature of transcription fac-
tors involved in proliferation and cell growth (e.g., JUN, 
FOS, FOSB, EGR1, SOX4 and KLF6) that were signifi-
cantly downregulated in the Re clusters (Fig. 4B, C). The 
Re-specific clusters 3–4 upregulated genes involved in the 
RAS/mTORC pathway, such as ANKRD28 and PIK3R1, 
whereas cluster 2 is hallmarked by cell cycle related 
genes, such as TOP2A and MKI67. Pathway enrichment 
analysis confirmed the overrepresentation of AP-1/ATF2 
transcription factors in cluster 1 (Dx) and additionally 
revealed upregulation of genes involved in mTOR sign-
aling, like RICTOR, PIK3R1 and HIF1A in cluster 3 (Re; 
Fig. 4C, D). This suggests a pathway switch from AP-1 in 
the diagnosis cells towards mTOR in the relapse cells. We 
further observed that KRAS and NRAS, genes upstream 
of mTORC, were also overexpressed in the Re sample 
(Supplemental Fig. 6C). Interestingly, cluster 4 in relapse 
is characterized by elevated exocytosis (Supplemental 
Fig. 6D) and increased expression of genes related to Tim-
3-galectin-9 Secretory Pathway (e.g. ADGRL1, HAVCR2 
and LGALS9) that protect AML cells against from the 
host immune system in an mTOR dependent manner 
[32] (Supplemental Fig.  6E), in particular from NK- and 
T-cell action. Finally, the leukemia stem cell (LSC) score, 
a 17-gene signature (LSC17) that correlates with aggres-
siveness of the leukemia and a poor outcome [16] was 
significantly higher in the Re clusters 3 and 4 compared 
to the Dx cluster 1 (Fig.  4E). For the other FLT3-ITD 
patients, none of the clusters had an elevated LSC17 score 
(data not shown).

Leukemic stem cell‑like cells in AML1‑ETO
Higher MPO, a marker for granulocyte/monocyte pro-
genitors (GMPs) expression [26] within both the AML1-
ETO patients (Fig. 2E) implies that most cells are arrested 
at a “GMP-like” stage. The Dx and Re cells of AML1-ETO 
patient s220 were more separated compared to those of 
patient s914 (Fig.  3B, Supplemental Fig.  2C). 41 of the 
DEGs are transcribed at the amplified or lost loci and their 
altered transcription may in turn deregulate other genes.

Analysis on Dx-Re showed that the number of DEGs 
shared between these two AML1-ETO patients is minimal 
as for the FLT3-ITDs (Supplemental Fig.  2C). Therefore, 
we performed an in-depth analysis on the transcriptional 
dynamics between Dx and Re separately for these two 
patients. Focusing on patient s914 first, the synergic onco-
genes (PIM1 and MYC  [33]) responsible for tumorigen-
esis were co-differentially expressed at Re compared to 
Dx. Cluster analysis revealed five groups of cells (Fig. 5A, 
B) and a small cluster of scattered cells that expressed sig-
natures of progenitors (CD34), erythrocytes (HBB), mono-
cytes (LYZ), B-cells (MSA41) and cell cycle related genes 
(TOP2A, MKI67) (Supplemental Fig.  7) likely resulting 
from ambient RNA or cell doublets and hence were dis-
carded in subsequent analyses.

Cluster 1 mainly consist of Dx cells and differentially 
expressed genes for differentiation and resistance to 
apoptosis, like AREG  [34]. Interestingly, cells in cluster 2 
express CD34 as well as genes involved in cell migration 
(ANXA1 [35], ANXA2 [36], VIM [37] and EMP1 [38]) but 
lacked the expression of MPO (Fig. 5B, D). To investigate 
whether and from which Dx cluster these potential Re 
LSCs originate, we aligned cells in pseudo-time based on 
the gradient of transcriptional differences using Monocle3. 
This trajectory analysis suggested a continuous transition 
between the Dx and Re sample (Fig. 5C). Cells in cluster 
2 and 3 differentially expressed genes for hematopoietic 
stem cell maintenance (GDF11 [39], GATA2 [40]) and dif-
ferentiation (GAS7 [41], CAMK1D [42]) markers as well as 
CD34 (Fig. 5B, D), indicating cluster 2 and 3 are the puta-
tive starting points of this trajectory. Besides, cluster 2 and 
3 overexpressed genes CXCR4  [43] and CXCL8  [44] for 
tumor microenvironment (Fig. 5B, D). In line with those 
findings, we calculated the LSC17- and cell cycle scores 
for all clusters. We observed that cells in Dx cluster 3 have 
the highest LSC17 score followed by Re cluster 2 (Fig. 5E). 
Moreover, cells from cluster 2 and 3 mainly reside in the 
G1 phase of the cell cycle (Fig. 5F). Interestingly, the trajec-
tory suggest that these cells differentiate into a population 
of cells that display DUSP6 and AP-1 related genes like 
JUN and FOS in the Re-specific clusters 3 and 4 (Fig. 5D).

UMAP shows that s220 cells separate according to Dx 
and Re which partitioned into 9 clusters (Fig.  6A). Clus-
ters 1–4 contained Dx cells that were enriched for CXCL8 
and CXCR4, genes associated with the interaction between 

Fig. 5 Putative LSCs detected in AML1-ETO pair (s914). (A) UMAP of Dx and Re cells for AML1-ETO patient s914, colored by timepoint (top) and cell 
cluster (bottom). Cells in cluster 6 express ambiguous marker genes, and may be doublets or contaminated by ambient RNA and were discarded 
(see also Supplemental Fig. 6). (B) Heatmap depicting the top 7 cluster markers. Color represents row normalized expression values. (C) Pseudo-time 
trajectory colored by timepoint (top) or cell cluster (bottom). (D) Heatmap showing representative genes per cluster. (E) LSC17 score per cluster. * 
p < 0.05, ** p < 0.01, *** p < 0.001, Student’s t-test. (F) Barplots depicting the relative cell abundance per cell cycle phase (inferred from marker gene 
expression) for each cell cluster. Arrow: cells in cluster 2 and 3 predominantly reside in the G1 phase

(See figure on next page.)
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leukemia blasts and stromal cells [43, 44]. Clusters 5–9 
exclusively contained Re cells and were marked by expres-
sion of LOXL1 and FAM81A (Fig.  6B). Cell cycle-related 
genes (MCM6, TOP2A, MKI67) were highly expressed 
in cluster 1 and 9. Cluster 4 (Dx) and 5 (Re) are in close 
proximity to each other and share marker genes, such as 
CAMK1D, GAS7, ANXA1/2, VIM and CD34 (Fig. 6B, Sup-
plemental Fig. 8A) suggesting that they are LSCs.

Alternative “branching” from Re and Dx LSC‑like cells 
in AML1‑ETO
Given the high similarities between clusters 4 and 5 and 
their elevated CD34 expression, we hypothesized that these 
clusters might be enriched in LSCs. Analysis showed that 
these clusters indeed have the highest LSC17-score and 
contain cells that reside predominantly in the G1 cell cycle 
phase (Fig. 6C, D). To better understand the transcriptional 
dynamics of cell populations originating from these LSCs, 
we applied pseudo-time gene expression analysis (Fig. 6E). 
This analysis reveals a trajectory starting from the pre-
sumed LSCs cluster 4 and 5 towards more differentiated 
cells that predominantly reside in the S-phase of the cell 
cycle and exhibit elevated expression of genes like TOP2A 
and MKI67 (Fig. 6D-F). For the Dx branch, genes involved 
in self-renewal that impede differentiation (GAS7 and 
CAMK1D) or are associated with cell migration (TPPP3, 
VIM, ANXA1/2) had elevated expression in cluster 4. We 
hypothesized that all other clusters of cells originate from 
this presumed Dx LSC population. Indeed, we observed 
a downregulation of these markers when cells are traced 
along the trajectory from cluster 4 to cluster 1 which is 
consistent with their differentiation into more mature mye-
loid cells. Furthermore, DUSP1 and DUSP6, genes required 
for cell differentiation and proliferation were upregulated 
as cells ‘moving away’ from cluster 4 along the Dx branch 
(Fig. 6F). In the Re branch, TPPP3, VIM, ANXA1/2, GAS7 
and CAMK1D were upregulated in cluster 5 to a similar 
extent as in cluster 4. Compared to the more gradual down-
regulation in the Dx branch, these markers were largely lost 
when cells “branched” from cluster 5 to cluster 6 (Fig. 6F). 
The Re trajectory (cluster 5 towards cluster 9) is hallmarked 
by upregulation of numerous genes required for differenti-
ation, leukemia progression and chemo-resistance, includ-
ing RACK1  [45], EREG  [46] and LOXL1  [24] (Fig.  6F). 
Another striking difference between the Dx and Re is 
that genes associated with the tumor microenvironment, 

the interaction between stroma cells and leukemic blasts 
(CXCR4 and CXCL8) were lower expressed in cluster 5 (Re) 
compared to cluster 4 (Dx, Fig. 6B). Gene Ontology analy-
sis further revealed up-regulated genes in Dx enriched 
with terms associated with immune- and inflammatory 
response, whereas translation and biosynthesis related pro-
cesses were highly enriched in Re (Supplemental Fig. 8B).

In summary, our data reveals a heterogeneous mixture of 
cells in the AML1-ETO patients. Dx vs Re cells were more 
heterogeneous in patient s220 compared to s914. Part of 
this heterogeneity is caused by large-scale CNVs that affect 
transcription at the affected loci. Deregulation of these 
genes may affect other genes and thus increase the tran-
scriptional differences between Dx and Re. Interestingly in 
both patients, we found cells with a significantly elevated 
LSC17-score that are predominantly in the G1-phase. These 
cells appear to be at the origin of other cell populations that 
develop/branch in a way that is sample and stage specific. 
The signature genes for LSCs might be potentially therapeu-
tic targets to improve the efficiency of AML treatment.

Discussion
To gain insight into the heterogeneity between AML 
subtypes and within Dx-Re pairs, we profiled the exome, 
gene fusions and single cell transcriptome of four FLT3-
ITD and two AML1-ETO Dx-Re sample pairs. Here, we 
focussed on CD33/CD34 + stem- and progenitor cells 
using plate-based single cell technology. Clustering and 
differential expression analysis of single cell transcrip-
tomes showed extensive intra- and inter-blasts hetero-
geneity. The strongest transcriptional differences were 
associated with patient-specific large scale copy number 
variation. Another source of heterogeneity were somatic 
variants (SNPs and INDELs) that point to highly patient-
specific abundance and dynamics of AML clones.

We were unable to identify a common molecular mecha-
nism that caused AML relapse across all patients. Instead, 
our data showed highly heterogeneous genomes and tran-
scriptomes that were patient- and even disease stage specific. 
The question to what extend relapse-inducing molecular 
mechanisms are truly patient-specfic, or can be grouped into 
certain classes, calls for a much larger AML patient cohort 
than we currently profiled. Despite this limitation, we found 
differences in underlying resistance mechanisms that are not 
exclusively caused by clonal rearrangements. One patient 

(See figure on next page.)
Fig. 6 Putative LSCs detected in AML1-ETO pair (s220). (A) UMAP of Dx and Re cells for AML1-ETO patient s220, colored by timepoint (top) and cell 
cluster (bottom). (B) Heatmap depicting the top 5 marker genes per cluster. Color represents row normalized expression values. (C) LSC17 scores 
per cluster. * p < 0.05, ** p < 0.01, *** p < 0.001, Student’s t-test. (D) top: Barplots depicting the relative cell abundance per cell cycle phase (inferred 
from marker gene expression) for each cell cluster. Arrow: cells in cluster 4 and 5 predominantly reside in the G1 phase. Bottom: UMAP colored by 
cell cycle phase. (E) Pseudo-time trajectory colored by cell cluster (F) Heatmap depicting representative marker genes per cluster/inferred timepoint
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showed a pathway switch from AP-1 dependency at Dx to 
mTOR signaling at Re that appeared to be independent 
of altered somatic mutations, suggesting that clonal rear-
rangements are not causing the relapse in this patient [47]. 
In contrast, significantly altered mutations (e.g., decrease/
loss of NPM1 and KIT) in other patients were accompanied 
by minor transcriptional differences. Furthermore, the pres-
ence of quiescent LSCs that escape conventional therapeu-
tic interventions could explain recurrence in the absence of 
clonal rearrangements [8, 48, 49]. In agreement with this 
hypothesis, we detected transcriptionally similar LSC-like 
cells in the Dx and Re samples of the two otherwise distinct 
AML1-ETO samples. While the expression of these LSC 
populations is similar at Dx and Re, their differentiation tra-
jectories are remarkably different.

Our results share and extend findings from other 
recent single cell AML studies. One of them used a 
more stringent sorting approach to profile the transcrip-
tome of leukemia initiating cells and reported increased 
BCL2 and CXCR4 signaling in relapse [8]. These genes 
were also highly expressed in some, but not all, of our 
diagnosis and relapse samples and also not consistentlty 
induced at relapse. Other studies based on larger num-
bers of unsorted cells [26] or deconvolution of bulk RNA-
sequencing [50] detected a hierarchy from primitive to 
differentiated AML tumor cells. They showed that the 
composition of tumor cells is patient-specific and asso-
ciated with chemotherapy and drug sensitivity. Although 
our sorting strategy removed the more mature blasts, we 
still found strong sample-to-sample heterogeneity within 
the CD33/CD34 + stem- and progenitor cells. Further-
more, we found sample-specifc activation of pathways 
such as mTOR and RAS signaling.

Taken together, our study and others have provided a 
first step to unravel the highly complex nature of the AML 
bone marrow using single cell technology. It is evident 
that a much better understanding is needed to ultimately 
reduce relapse rates and improve long-term survival. Rapid 
advances in single cell technology now allow profiling of 
the genome, transcriptome and epigenome for thousands 
of cells in parallel. This multi-layered information is needed 
to identify and trace distinct clones, their phenotypes and 
their (in)sensitivity to therapeutic interventions.

Conclusions
In conclusion, this study indicates that samples with exten-
sive copy number variations showed larger transcriptional 
differences between Dx and Re, compared with those with 
SNPs and INDELs only. Importantly, we found pathway 
switches (e.g., AP-1 to mTOR) with few differential somatic 
mutations and vice versa. In two pairs of AML1-ETO sam-
ples, we found leukemic stem cell-like cells that shared the 
expression of common characteristic genes.
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