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A B S T R A C T   

Recently, coronavirus disease (COVID-19) has caused a serious effect on the healthcare system and the overall 
global economy. Doctors, researchers, and experts are focusing on alternative ways for the rapid detection of 
COVID-19, such as the development of automatic COVID-19 detection systems. In this paper, an automated 
detection scheme named EMCNet was proposed to identify COVID-19 patients by evaluating chest X-ray images. 
A convolutional neural network was developed focusing on the simplicity of the model to extract deep and high- 
level features from X-ray images of patients infected with COVID-19. With the extracted features, binary machine 
learning classifiers (random forest, support vector machine, decision tree, and AdaBoost) were developed for the 
detection of COVID-19. Finally, these classifiers’ outputs were combined to develop an ensemble of classifiers, 
which ensures better results for the dataset of various sizes and resolutions. In comparison with other recent deep 
learning-based systems, EMCNet showed better performance with 98.91% accuracy, 100% precision, 97.82% 
recall, and 98.89% F1-score. The system could maintain its great importance on the automatic detection of 
COVID-19 through instant detection and low false negative rate.   

1. Introduction 

The recent coronavirus, caused by Severe Acute Respiratory Syn-
drome Coronavirus 2 (SARS-CoV-2) [1], was first identified in Wuhan, 
China, in January 2020 [2]. The World Health Organization (WHO) 
named it COVID-19 in February 2020 [3]. Initially, though it was not 
considered a severe case, the infection and rapid death rate of people 
have now collapsed the world’s healthcare system. The WHO declared 
this pandemic as a Public Health Emergency of International Concern on 
January 30, 2020 [4]. A total of 25, 297, 383 coronavirus cases, 6,825, 
774 active cases, and 848,561 deaths have been reported since August 
30, 2020 around the world [5]. From developed countries (China, USA, 
Italy etc.) to underdeveloped countries, all are fighting against this se-
vere pandemic in spite of a shortage of facilities, insufficient healthcare 
systems, and improper diagnostic approaches. The signs of being 
infected by COVID-19 are fever, cough, and severe respiratory problems 
[6]. 

One of the most commonly used tests for COVID-19 detection is real- 
time reverse transcription polymerase chain reaction (rRT-PCR) [7]. 
This test obtains DNA by reverse transcription and then uses PCR to 
amplify DNA for analysis. Thus, it can detect COVID-19 as this virus only 

carries RNA [8]. However, this test has several limitations. It takes from 
a few hours to 2 days to detect COVID-19. Moreover, the test kit is not 
widely available. It is also not very reliable [9] because it can provide 
false negative results, which means it can misclassify COVID-19 patients 
as uninfected. Thus, the healthcare system and doctors are facing major 
problems in fighting against this pandemic. Given the contagious nature 
of the virus, it is spreading rapidly. Many countries have asked people to 
stay home and declared whole areas on “lockdown” to reduce the 
spreading rate and prevent this outbreak with a shortage of ventilators, 
ICUs, and vaccines [10]. 

However, RT-PCR and quarantine are not enough to prevent this 
outbreak, so researchers are trying to develop alternative solutions. 
They have focused on radiological image analysis for the diagnosis of 
COVID-19 [11]. CT scans or chest radiology image analysis can play an 
important role in this case. Researchers have discovered that 
COVID-19-infected chest X-ray or CT images have some distinct features 
such as ground glass opacity or vague darkened points, which can help 
in detecting COVID-19 [12]. Radiologists can analyze these images and 
help doctors in the early detection of COVID-19. However, in a 
pandemic, we need a more updated, available, and quick system. 
Manual analysis of the image may be a time-consuming process; in light 
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of COVID-19’s rapid spreading situation, the “time” parameter is crit-
ical. More developed, more advanced (i.e., automatic) COVID-19 
detection systems are needed for diagnosis with the reduction of 
excessive pressure on radiologists’ services. 

In the healthcare system, deep learning has opened a new door [13]. 
With the contribution of deep neural network, the healthcare system has 
shown great advancement for automatic disease detection such as chest 
disease detection [14], cancer cell detection [15], tumor detection [16], 
and genomic sequence analysis [17]. Kieu et al. [18] proposed a deep 
learning-based model to detect the abnormal density of chest X-ray 
images. The system used three CNN models (CNN–128F, CNN-64L, and 
CNN-64R) to detect normal or abnormal density of chest X-ray images. 
The dataset included 400 chest X-ray images with 300 training images 
and 100 test images. The images were labeled 0 for normal and 1 for 
abnormal. Extensive experiments presented 96% accuracy for this sys-
tem. Many researchers are currently working to build a deep neural 
network-based automated COVID-19 detection system [19]. They have 
developed several deep neural network models for feature extraction 
from COVID-19-infected chest X-ray images, thereby ensuring good 
accuracy, sensitivity, and specificity. Most of them have trained their 
model on a small dataset due to a lack of COVID-19 image sources. 
Therefore, these studies need further enhancement with proper training 
and testing models for real-time use. 

In this study, a new system named EMCNet was proposed, which 
aims to detect COVID-19 by using chest X-ray images. The system has 
built a convolutional neural network (CNN) consisting of 20 layers. The 
model has a simple structure compared with pre-trained models. CNN 
extracts unique and distinct features from X-ray images. Subsequently, 
machine learning (ML) models are trained to develop a binary classifier 
(COVID-19 vs. Normal) with these feature vectors. Finally, all these 
models are combined to develop a voting ensemble of classifiers for 
better decision-making than any individual classifier. 

The major contributions of the paper are as follows:  

i) The paper has proposed a simple CNN model that extracts deep 
features from chest X-ray images to detect patients with COVID- 
19.  

ii) For classification, an ensemble of classifiers is developed. Any 
one ML model can be selected for classification. However, the 
individual model showing excellent performance for one test set 
does not guarantee that it always provides better results for all 
other test sets. Different models can show varied results for 
varying datasets. Hence, four ML classifiers were combined to 
develop an ensemble of classifiers, which ensures better results 
for the dataset of various sizes and resolutions.  

iii) The models were trained and tested with a dataset of 1320 images 
where recent developing systems have conducted their research 
with comparatively small COVID-19 datasets.  

iv) The model showed excellent performance with 98.91% accuracy, 
100% precision, 97.82% recall, and 98.89% F1-score. 

The remaining paper is summarized as follows. Section 2 represents 
recent research for the detection of COVID-19 from CT scans or chest X- 
ray radiology images by using a deep learning network. Section 3 pro-
vides a full description of dataset, data preprocessing, proposed models 
of EMCNet, and their structures. Section 4 provides performance anal-
ysis of EMCNet with respect to evaluation metrics and comparative 
evaluation of EMCNet with existing systems as well. Finally, Section 5 
concludes the paper. 

2. Related work 

Since the beginning of the COVID-19 outbreak, researchers have 
been trying their best to find automated COVID-19 detection systems 
using ML or deep neural networks. In this section, recent studies related 
to deep neural network-based COVID-19 detection and ensemble of ML 

classifiers are described. Table 1 represents a comparative study of 
recent research. 

Abbas et al. [20] proposed a new deep CNN model DeTraC based on 
chest X-ray images. The system simplified the local structure of the 
dataset by applying the class-decomposition layer. Subsequently, 
training of the system was performed using the pre-trained ResNet 
model. Finally, the class-composition layer was used to fine-tune the 
final classification. The dataset included 105 chest X-ray images of 
COVID-19, 11 images of SARS virus disease, and 80 normal chest X-ray 
images. Extensive experiments achieved 95.12% accuracy, 97.91% 
sensitivity, and 91.87% specificity for this system. Loey et al. [21] 
proposed a generative adversarial network with a deep neural network. 
The dataset consisted of 69 COVID-19 chest X-ray images, 79 pneumonia 
bacteria-infected X-ray images, 79 pneumonia virus-infected X-ray im-
ages, and 79 normal chest X-ray images. The research was conducted 
using pre-trained models. Among these models, Googlenet achieved 
80.6% accuracy for the classification of four classes. Alexnet obtained 
85.2% accuracy in three class scenarios, and Googlenet achieved 100% 
accuracy in two class scenarios. Rahimzadeh et al. [22] developed 
several deep neural networks for the automatic classification of 
COVID-19. The pre-trained models used for the system were Xception 
and ResNet50V2. The dataset consisted of 180 X-ray images of 
COVID-19 patients, 6054 images of pneumonia-affected patients and 
8851 images of normal patients. Extensive experiments showed 91.4% 
average accuracy for all classes. 

Oh et al. [23] proposed a patch-based CNN with a relatively small 
amount of trainable parameters. The system selected the final classifi-
cation decision by majority voting from results at various path locations. 
The dataset consisted of 15,043 images including 180 images of 
COVID-19 cases, 6012 pneumonia images, and 8851 images of normal 
patients. The extensive experiment showed 88.9% accuracy, 83.4% 
precision, 85.9% recall, and 84.4% F1-score. Zhang et al. [24] proposed 
a new deep learning-based model (anomaly detection model) based on 
chest X-ray images. The system consisted of three modules: a backbone 
network to extract high-level features of chest X-ray images, a classifi-
cation head to generate a classification score, and an anomaly detection 
head to generate a scalar anomaly score. The dataset included 100 chest 
X-ray images for COVID-19 and 1431 images for pneumonia cases. 
Extensive experiments presented 96% sensitivity and 70.65% specificity 
for this system. Apostolopoulos et al. [25] introduced several pre-trained 
CNN models for COVID-19 detection. The system used transfer learning 
for diagnosis with a relatively small COVID-19 dataset. The experiment 
was conducted with two datasets. The first dataset contained 1427 X-ray 
images including 224 COVID-19 infected cases, 700 images of bacterial 
pneumonia cases, and 504 normal cases. The second dataset contained 
224 COVID-19 X-ray images, 700 bacterial and viral pneumonia images, 
and 504 normal cases. Among the pre-trained models, MobileNetV2 
achieved 96.78% accuracy, 98.66% sensitivity, and 96.46% specificity 
for the second dataset. 

Mahmud et al. [26] proposed a new deep learning model named 
CovXNet using chest X-ray images for automatic detection of COVID-19 
and other pneumonia cases. The system introduced depthwise convo-
lution to extract high-level features from chest X-ray images. First, they 
trained their model with normal and (viral/bacterial) pneumonia chest 
X-ray images. Learning of this step was transferred with additional 
layers, and training was performed with COVID-19 chest X-ray images 
and pneumonia cases. The system used a stacking algorithm and 
gradient-based discriminative localization. The dataset consisted of 305 
images of COVID-19 cases, 1493 viral pneumonia images, 2780 bacterial 
pneumonia images, and 1583 images of normal patients. Extensive ex-
periments presented 97.4% accuracy for COVID-19 versus normal cases 
and 90.2% accuracy for classification among COVID-19, normal, and 
viral and bacterial pneumonia cases. Tsiknakis et al. [27] developed a 
deep learning-based model to diagnose COVID-19 from chest X-ray 
images. The pre-trained model Inception-V3 was introduced, and 
transfer learning was combined due to the limitation of the COVID-19 
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dataset. The dataset included 122 images for COVID-19, 150 for bacte-
rial pneumonia, 150 for viral pneumonia, and 150 for normal cases. The 
system demonstrated 100% accuracy, 99% sensitivity, and 100% spec-
ificity for COVID-19 versus common pneumonia binary classification 
and 76% accuracy, 93% sensitivity, and 87% specificity for four classes’ 
classification. Sethy et al. [28] proposed a system where nine different 
pre-trained models extracted features from chest X-ray images. The 
system used SVM to classify COVID-19 using extracted features. A total 
of 381 chest X-ray images were used as a dataset for the experiment. 
Among all the models, ResNet50 was considered best for feature 
extraction. The system obtained an accuracy of 95.33% and F1-score of 
95.34% using ResNet50 and SVM. Horry et al. [29] introduced a scheme 
where four different pre-trained models were used. The dataset con-
tained 115 samples of COVID-19, 322 pneumonia cases, and 60,361 
healthy case samples. Among the models, VGG16 and VGG19 performed 
best. VGG19 achieved 81% accuracy for COVID-19 versus pneumonia 
classification. Hasan et al. [30] developed a new ensemble model based 
on ML classifiers for diabetic prediction. The system proposed six ML 
models: k-nearest neighbor, decision trees, random forest, AdaBoost, 
Naive Bayes, and XGBoost. The system used weighted ensembling. 
Weights were calculated from the area under ROC curve of the ML 
models. The system conducted this experiment with 268 diabetic pa-
tients and 500 non-diabetic patients. Extensive experiment achieved 
78.9% sensitivity and 93.4% specificity for this system. 

3. Methodology 

To develop an automatic COVID-19 detection system named EMC-
Net, data were collected from multiple resources. The collected images 
were then resized. Data normalization was performed on the dataset to 
prevent overfitting and facilitate generalization. The dataset was parti-
tioned into three different sets: training set, validation set, and testing 
set. With the training and validation sets, the proposed CNN model was 
trained. The experiment was run up to different epochs such as 50, 60, 
and 100. After running the network for 50 epochs, the network accuracy 
started saturating. With 50 epochs, the model achieved the expected 
training accuracy and validation accuracy. The first fully connected 
layer (FCL) of the model was selected to extract features. The feature 
vector was extracted from each training image with this layer. The 
feature vectors of all these images were fed into four ML classifiers. To 
tune the best hyperparameters of ML classifiers, the grid search tech-
nique was applied on each ML classifier. Finally, all ML classifiers were 

combined to develop an ensemble of classifier, which predicts class la-
bels based on the majority vote of ML classifiers. The performance of the 
proposed system was evaluated in terms of confusion matrix, precision, 
recall accuracy, and F1-score. The overall system architecture of EMC-
Net is highlighted in Fig. 1. 

3.1. Description of datasets 

In the proposed EMCNet, datasets were collected from multiple 
sources. First, 660 positive COVID-19 chest X-ray images were collected 
from Github repository developed by Cohen et al. [31]. This repository 
contains X-ray images of positive COVID-19, negative COVID-19, and 
pneumonia cases. The images of this repository have been gathered from 
open sources and hospitals. Though the complete metadata of all pa-
tients are not described in the source, the average age of the infected 
patients was around 55 years. At the time of carrying out the experi-
ment, the Cohen database contained 500 chest X-ray images of positive 
COVID-19-infected patients. Negative COVID-19 images included other 
viral and bacterial pneumonia (MERS, SARS, and ARDS). The proposed 
system considered only COVID-19 disease and healthy cases. The pro-
posed system did not consider other viral and bacterial pneumonia 
diseases. Thus, negative images were not used from this repository. Only 
500 positive images were selected from here for COVID-19 cases. A total 
of 1800 COVID-19 chest X-ray images were collected from another 
Github source [41], SIRM database [42], TCIA [43], radiopaedia.org 
[44], and Mendeley [45]. A total of 2300 COVID-19 X-ray images 
were collected from these sources. Normal chest X-ray images were 
obtained from the Kaggle repository [46] and NIH chest X-ray images 
[47]. From this source, 2300 images of normal chest X-ray images were 
collected. The samples are shown in Fig. 2. Thus, the dataset of the 
proposed EMCNet contained a total of 4600 images. The dataset was 
partitioned into 70%:20%:10% for three different sets: training set with 
3220 images, validation set with 920 images, and test set with 460 
images. The partition of the dataset into training, validation, and testing 
sets is described in Table 2. 

3.2. Data preprocessing 

All sample images were of various sizes. Therefore, the images were 
resized to 224 × 224 pixels. Data normalization was performed for 
better learning of the system. Thus, the dataset became ready to be fed 
into the CNN network and to train the model. 

Table 1 
Comparative study of recent researches related to COVID-19 detection and ensemble of ML classifiers.  

Author Sources of Dataset Dataset Details Model Ensemble Accuracy 
(%) 

Abbas et al. [20] COVID-19 and SARS images: [31]; Normal 
images [32,33]: 

196 (COVID-19 = 105, Normal = 80, SARS = 11) ResNet No 95.12% 

Loey et al. [21] COVID-19 images: [31]; Normal and 
Pneumonia images [34]: 

306 (COVID-19 = 69, Normal = 79, Bacteria 
pneumonia = 79, Virus pneumonia = 79) 

Googlenet No 80.56 

Rahimzadeh et al. 
[22] 

COVID-19 images: [31]; Normal and 
Pneumonia images [35]: 

15,085 (COVID-19 = 180, Normal = 8851, 
Pneumonia = 6054) 

Xception + ResNet50V2 No 91.4 

Oh et al. [23] COVID-19 images: [31]; Normal and 
Pneumonia images [36]: 

15,043 (COVID-19 = 180, Normal = 8851, 
pneumonia = 6012) 

Patch based CNN No 88.9 

Zhang et al. [24] COVID-19 and images: [31]; Normal images 
[37]: 

1531 (COVID-19 = 100, Normal = 1431) 18 layer residual CNN No 72.31% 

Apostolopoulos 
et al. [25] 

COVID-19 images: [31,38]; Normal and 
Pneumonia images [34]: 

1442 (COVID-19 = 224, Normal = 504, 
Pneumonia = 714) 

MobileNet V2 No 96.78 

Mahmud et al. [26] COVID-19 images: Sylhet Medical College, 
BD; Normal and Pneumonia images [39]: 

6161 (COVID-19 = 305, Normal = 1583, Bacteria 
pneumonia = 2780, Virus pneumonia = 1493) 

CNN with Depthwise 
dilated convolution 

No 90.2 

Tsiknakis et al. [27] COVID-19 images: [31]; Normal and 
Pneumonia images [34,35]: 

572 (COVID-19 = 122, Normal = 150, Bacteria 
pneumonia = 150, Virus pneumonia = 150) 

Inception V3 No 76 

Sethy et al. [28] COVID-19 images: [31,38]; Normal and 
Pneumonia images [34]: 

381 (COVID-19 = 127, Normal = 127, Bacteria 
pneumonia = 63, Virus pneumonia = 64) 

Resnet50 + SVM No 95.33 

Horry et al. [29] COVID-19 images: [31]; Normal and 
Pneumonia images [37]: 

60,838 (COVID-19 = 115, Normal = 60,361, 
pneumonia = 322) 

VGG 19 No 81 

Hasan et al. [30] [40] 768 (Diabetic = 268, non-Diabetic = 500) KNN, DT, RF, Naïve 
Bayes, AB, XB 

Yes 72.26  
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3.3. Development of the proposed EMCNet 

There are several deep transfer learning-based architectures for 
feature extraction from images such as AlexNet, VGG 16, Inception, and 
ResNet-50. ResNet-50 is a 50 layer residual network with the identity 
connection between the layers. ResNet-50’s architecture has four stages. 

The first layer is convolutional layer with filter of size 7 × 7 and stride of 
2. The second layer is max-pooling layer with filter of size 3 × 3 and 
stride of 2. Stage 1 of the network then begins. It consists of three re-
sidual blocks each containing three layers. In all three layers of block 1, 
64, 64 and 256 kernels are used. In the residual block, convolution is 
performed with stride 2. Thus, the height and width of an image are 

Fig. 1. Architecture of EMCNet.  

Fig. 2. First three images of the first row are samples of COVID-19 X-ray images. The rest of the images are of normal chest X-ray images.  
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reduced to half from one stage to another, but the channel width is 
doubled. Another pre-trained model VGG-16 has six stages. In the first 
two stages, there are two convolutional layers with one max-pooling 
layer of stride 2. In the next three stages, there are three convolutional 
layers with one max-pooling layer of stride 2. The last stage has three 
FCLs. The convolutional layers use a filter of size 3 × 3 and stride of 1. 
The number of filters, starting from 64, doubles in each stage except for 
stage 5. 

Transfer learning is the method of taking the weights of a pre-trained 
model and using the previously learned features to make a decision of a 
new class label. A network is used in transfer learning that is pre-trained 
in the imagenet dataset, and this network learnt to identify high-level 
features of images in the initial layers. For transfer learning, a few 
dense layers were added at the end of the pre-trained network. The 
network then learns what combinations of features will help identify the 
features in new data collection. In EMCNet, the CNN model was inspired 
from the pre-trained model VGG-16 by giving priority to the simplicity 
of the model. In the proposed CNN, a maximum of two convolutional 
layers were considered in each stage, and the dropout layer was added to 
prevent overfitting of the model. 

To develop EMCNet, the CNN model was used to extract the features 
for each training image. The feature set was then passed to ML classifiers 
to train them. Finally, all these models were combined to develop an 
ensemble of classifiers. A detailed explanation is shown as follows. 

3.3.1. Proposed CNN architecture 
The proposed EMCNet has developed a simple CNN network to 

extract features. In general, CNN has three different layers: convolu-
tional layer, pooling layer, and FCL. The layer types of the proposed 
model and their explanation are shown in Table 3. To train the model, 
RGB images (size 224 × 224 × 3) are fed into the CNN model. Here, the 
number of channels (nc) in input image is 3. The first layer is the con-
volutional layer. This layer takes filters, which are also called “kernel” of 
size (fh × fw), where fh (= 3) is the filter height, and fw (= 3) is the filter 
width. Normally, the filter height (fh) and width (fw) remain the same. 

This filter can be called “feature identifier.” With these filters, the layer 
obtains low-level features such as edge and curve. The more convolu-
tional layers are added, the better the model is able to extract deep 
features from images; thus, the model can determine the complete 
characteristics of images. More convolutional layers have been added in 
the model step by step. The filter performs convolution operation with a 
sub area of the image. Convolution operation means element-wise 
multiplication and summation with the filter and pixel values of the 
image. The values of filter are called weights or parameters. These 
weights have to be learnt by training the model. The sub-area of the 
image is named “receptive field.” The filter starts convolution from the 
beginning of the image. It then is continuously shifted across the whole 
image by a certain amount of unit and performs convolution until the 
whole image is covered. One operation outputs one single value. 
Convolution throughout the image outputs an array or metric of values. 
The operation is expressed as shown in (1). 

C= I*F =
∑∑

I(i+m, j+ n)F(fh, fw) (1)  

where I is the input, and F is the filter of size (fh ×fw) The operation is 
represented by the operator (*). 

The amount by which the filter is shifted is determined by another 
parameter called stride. For the model, stride is set to 1 for all con-
volutional layers. The more stride increases, the more spatial dimension 
(height and width) of input volume decreases. High stride value for the 
minimum overlap of the receptive field can create some problems such 
as the receptive field can go beyond the input volume and the dimension 
can be reduced. To overcome these problems, padding is used. “Zero 
padding” (also called “same” padding) pads the input with zero around 
the border and keeps the output volume dimension the same as the input 
dimension. If stride size is 1, then the size of zero padding is determined 
by (2). 

ZeroPadding=
f − 1

2
(2)  

where f is the filter height or width; here, both height and width are 
equal in size. For the proposed EMCNet, “valid padding” was used 
instead of zero padding, so the output dimension was not the same as the 
input dimension, and it shrank after convolution. 

Multiple filters in the convolutional layer have been used for 
extracting multiple features. In the first layer, 32 filters were used. The 
number of filters increased gradually in the next layers, from 32 to 128, 
128 to 512, and so on. The output volume is called “activation map” or 
“feature map.” The output shape of all layers is shown in Table 4. The 

Table 2 
Partition of the dataset into training, validation and testing set.  

Dataset COVID-19 Normal Total 

Training 1610 1610 3220 
Validation 460 460 920 
Testing 230 230 460 
Total 2300 2300 4600  

Table 3 
CNN layers and their detail explanation.  

Layer Filter Size Pool Size Stride Padding Number of Filters Dropout Threshold Activation 

Conv2D 3 × 3 – 1 Valid 32 – Relu 
Conv2D 3 × 3 – 1 Valid 128 – Relu 
MaxPooling2D – 2 × 2 2 – – – – 
Dropout – – – – – .25 – 
Conv2D 3 × 3 – 1 Valid 64 – Relu 
MaxPooling2D – 2 × 2 2 – – – – 
Dropout – – – – – .25 – 
Conv2D 3 × 3 – 1 Valid 128 – Relu 
MaxPooling2D – 2 × 2 2 – – – – 
Dropout – – – – – .25 – 
Conv2D 3 × 3 – 1 Valid 512 – Relu 
MaxPooling2D – 2 × 2 2 – – – – 
Dropout – – – – – .25 – 
Conv2D 3 × 3 – 1 Valid 512 – Relu 
MaxPooling2D – 2 × 2 2 – – – – 
Dropout – – – – – .25 – 
Flatten – – – – – – – 
FCL – – – – 64 – Relu 
Dropout – – – – – .25 – 
FCL – – – – 2 – Sigmoid  
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size of output volume is determined by (3), (4), and (5). 

Oh =
Ih − fh + 2P

S
+ 1 (3)  

Ow =
Iw − fw + 2P

S
+ 1 (4)  

On =Nf (5)  

where Ih is the input height, Iw is the input width, fh is the filter height, fw 
is the filter width, S is the stride size, P is the padding and Nf is the 
number of filters. For our 1st convolutional layer. 

Ih = 224, Iw = 224, fh = 3, fw = 3, S = 1, P = 0 and Nf = 32. 
From (3), (4), and (5), the following values can be obtained. 

Oh =
224 − 3 + 0

1
+ 1 = 222  

Ow =
224 − 3 + 0

1
+ 1 = 222  

On = 32 

Non-linear activation is applied on convolution output. Convolu-
tional layer has performed linear computation (element-wise multipli-
cation and summation). Thus, nonlinearity is introduced on the linear 
operation with this activation. Activation ReLU (rectified linear unit) is 
applied on convolution output. The function for ReLU operation is 
shown in (6). 

ReLU(X)=max(0,X) (6) 

Here, X is the convolution operation output. ReLU mitigates all 
negative output by zero. In the proposed model, the motive to use ReLU 
is that it enhances the nonlinearity of the model and helps make the 
computational time faster without affecting model accuracy. It also re-
duces the vanishing gradient problem where lower layers are trained 
very slowly. 

After two convolution layers, the maxpooling layer is used. This layer 
reduces spatial dimension (height and width) of input. In the proposed 

model, the layer takes a filter of size 2 × 2, and its stride is equal to 2. 
The filter convolves around the input volume and outputs the maximum 
value of the receptive field. The observation that works for using this 
layer is that a specific feature’s relative location with respect to other 
features is more important than its exact location. It prevents overfitting 
and reduces the number of weights, which result in reduction of 
computational cost. The dropout layer is then used. This layer drops out 
some activation randomly by setting them to zero. This layer ensures 
that the model can predict actual class label of an image, despite some 
activations being dropped out. Thus, the model should not be too fitted 
to train the dataset. The dropout layer helps prevent overfitting. Dropout 
layers have been applied with a threshold of 0.25. The flatten layer 
converts a 2D feature map into a 1D feature vector, which is fed to an 
FCL. To date, deep features of images have been extracted. With FCL, he 
classification task of COVID-19 is performed from a 1D long feature 
vector. In the proposed CNN, FCL consists of 64 neurons. The first FCL 
passes output activation to the second FCL. Finally, in the output layer, 
the model predicts the class label between COVID-19 versus normal 
cases through “softmax” activation. The proposed CNN architecture is 
illustrated in Fig. 3. 

3.3.2. ML and ensembling techniques 
Features were picked up from first FCL of CNN. Form Table 4, the 

first FCL was “dense_2” with 64 neurons. Thus, the feature vector was of 
dimension (1 × 64). Deep features were extracted from each training 
image, so there were 64 features for each image. The training set con-
tained 3220 images, and new input set dimension to train our ML 
classifiers was (3220× 64). The input data were passed to the ML 
models to train them. The grid search algorithm was used to tune 
hyperparameters of ML classifiers. Fivefold cross-validation was applied 
on the models to learn best classifiers. The ML classifiers were combined 
to develop an ensemble of classifiers. The ensemble of classifiers com-
bined the results from four different ML classifier models and used the 
final decision of the class label based on majority voting. It helped 
improve performance and showed ideally better performance than any 
single classifier. For ensembling, “hard voting” technique was applied 
where the classifier used decisions based on the largest sum of votes 
from other models. The training phase of the ML classifiers is shown in 
Fig. 4. 

3.4. Metrics for performance evaluation 

For the performance evaluation of EMCNet, the metrics used in this 
paper were accuracy, precision, recall, and F1-score. The formulas for 
deriving the values of these metrics are shown in (7), (8), (9), and (10). 

Accuracy=
TP + TN

TP + FP + TN + FN
(7)  

Precision=
TP

TP + FP
(8)  

Recall=
TP

TP + FN
(9)  

F1 − score = 2 ×
Precision × Recall
Precision + Recall

(10) 

In the above equations, TP means “true positive,” which represents 
the successful prediction of actual class label of COVID-19 cases by the 
system. TN means “true negative,” which describes the successful pre-
diction of the actual class label of normal cases by the system. FP means 
“false positive,” which indicates that the model misclassifies normal 
cases as COVID-19, but they are actually not COVID-19-infected pa-
tients. FN represents “false negative,” which highlights that model 
misclassifies COVID-19 cases as normal. 

Table 4 
Model summary of the proposed CNN model.  

Number of 
Layers 

Layer (Type) Output Shape Parameter 

1 conv2d_6 (Conv2D) [222, 222, 32] 896 
2 conv2d_7 Conv2D) [220, 220, 

128] 
36,992 

3 max_pooling2d_5 
(MaxPooling2D) 

[110, 110, 
128] 

0 

4 dropout_6 (Dropout) [110, 110, 
128] 

0 

5 conv2d_8 (Conv2D) [108, 108, 64] 73,792 
6 max_pooling2d_6 

(MaxPooling2D) 
[54, 54, 64] 0 

7 dropout_7 (Dropout) [54, 54, 64] 0 
8 conv2d_9 (Conv2D) [52, 52, 128] 73,856 
9 max_pooling2d_7 

(MaxPooling2D) 
[26, 26, 128] 0 

10 dropout_8 (Dropout) [26, 26, 128] 0 
11 conv2d_10 (Conv2D) [24, 24, 512] 590,336 
12 max_pooling2d_8 

(MaxPooling2D) 
[12, 12, 512] 0 

13 dropout_9 (Dropout) [12, 12, 512] 0 
14 conv2d_11 (Conv2D) [10, 10, 512] 2,359,808 
15 max_pooling2d_9 

(MaxPooling2D) 
[5, 5, 512] 0 

16 dropout_10 (Dropout) [5, 5, 512] 0 
17 flatten_1 (Flatten) [12,800] 0 
18 dense_2 (Dense) [64] 819,264 
19 dropout_11 (Dropout) [64] 0 
20 dense_3 (Dense) [2] 65  
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4. Experimental analysis 

EMCNet extracts features from images with CNN and classifies 
COVID-19 with an ensemble of four different ML classifiers. The CNN 
model was trained up to 50 epochs. Hyperparameters of the ML classi-
fiers were tuned with the grid search technique. Performance of the 
proposed CNN, ML classifiers and ensemble of classifiers for each class 
label was analyzed in terms of confusion matrix, ROC curve, precision, 
recall, accuracy, and F1-score. 

4.1. Experimental setup 

The experiment was run on Google Collaboratory. Google Collabo-
ratory is a Jupyter notebook-based cloud service for disseminating 
knowledge and work on machine learning. It offers a completely opti-
mized runtime for deep learning and free-of-charge access to a stable 
GPU. 

4.2. Results analysis 

Fig. 5 shows the training accuracy and validation accuracy with 
respect to epochs. The CNN model was run up to 50 epochs. The 

Fig. 3. Proposed CNN architecture.  

Fig. 4. Training process of ML classifiers and ensemble of classifiers.  
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maximum obtained accuracy for training was 99.97%, and that for 
validation was 98.33%. These values indicated that our model learnt 
well and could correctly classify COVID-19 versus normal cases. The 
training loss was 0.0021, and the validation loss was 0.0958. 

With extracted features, four ML classifiers were trained. The grid 
search technique was applied to tune hyperparameters. The tuned 
hyperparameters’ values of the models are shown in Table 5. To eval-
uate the model, several performance metrics were considered for the 
efficient diagnosis of COVID-19. Fig. 6 describes the confusion matrices 
for EMCNet with six classifiers from CNN to an ensemble of classifiers. In 
the test set, there were 230 COVID-19 images and 230 normal X-ray 
images. In the confusion matrices, actual cases were placed along rows, 
and predicted cases were placed along columns. For CNN, among 230 
COVID-19 cases, the model detected 222 cases and misclassified 8 cases 
as normal. The model predicted the exact class label of all normal cases 
For RF (where extracted features were used to learn the model), the 
model detected 221 cases and misclassified 9 cases as normal among 230 
COVID-19 cases. DT predicted the exact class label of 220 COVID-19 
cases and misclassified 10 cases as normal. AB predicted the exact 
class label of 222 COVID-19 cases and misclassified 8 cases as normal. 
All these three models predicted the exact class label of all normal cases. 
For SVM, among 230 COVID-19 cases, the model detected 223 cases and 
misclassified 7 cases as normal. Among normal cases, the model detec-
ted 221 cases and misclassified 9 cases as COVID-19 positive. Finally, 
our ensemble of classifiers, which used the decision based on majority 
voting of four ML classifiers, classified 225 COVID-19 cases and 230 
normal cases. 

The evaluation matrices precision, recall, accuracy, and F1-score of 

classifiers for each class (COVID-19 vs. Normal) are shown in Table 6, 
and their graphical view is presented in Fig. 7. The CNN model achieved 
100% precision, 96.52% recall, 96.52% accuracy, and 98.23% F1-score 
for COVID-19 classes and 96.64% precision, 100% recall, 100% accu-
racy, and 98.29% F1-score for normal classes. The DT model achieved 
100% precision, 95.65% recall, 95.65% accuracy, and 97.78% F1-score 
with COVID-19 cases and 95.83% precision, 100% recall, 100% accu-
racy, and 97.87% F1-score with normal cases. The RF model achieved 
100% precision, 96.09% recall, 96.09% accuracy, and 98% F1-score 
with COVID-19 cases and 96.23% precision, 100% recall, 100% accu-
racy, and 98.08% F1-score with normal cases. The SVM model achieved 
96.12% precision, 96.96% recall, 96.96% accuracy, and 96.54% F1- 
score with COVID-19 cases and 96.93% precision, 96.09% recall, 
96.09% accuracy, and 96.51% F1-score with normal cases. The AB 
model achieved 100% precision, 96.52% recall, 96.52% accuracy, and 
98.23% F1-score with COVID-19 cases and 96.64% precision, 100% 
recall, 100% accuracy, and 98.29% F1-score with normal cases. Finally, 
the proposed ensemble of classifiers returned 100% precision, 97.83% 
recall, 97.83% accuracy, and 98.90% F1-score with COVID-19 cases and 
97.87% precision, 100% recall, 100% accuracy, and 98.92% F1-score 
with normal cases. 

An ROC curve is plotted with true positive rate (TPR) along the x- 
axis, and false positive rate (FPR) is plotted along the y-axis. The for-
mulas for obtaining TPR and FPR are shown in (11) and (12). 

TPR=
TP

TP + FN
(11)  

FPR=
FP

TN + FP
(12) 

The higher the area under the curve (AUC) of ROC is, the greater the 
model is considered to be efficient for medical diagnosis. The ROC 
curves of our classifiers are plotted in Fig. 8. For CNN, the AUC was 
0.9832. For RF, the AUC was 0.9812. For DT, the AUC was 0.9792. For 
SVM, the AUC was 0.9653. For AB, the AUC was 0.9832. Finally, the 
ensemble of classifiers achieved an AUC of 0.9894. Thus, the model 
could contribute efficiently in detecting COVID-19 cases from chest X- 
ray images. 

The overall system’s precision, recall, accuracy, and F1-score of 
classifiers are shown in Table 7. As shown in this table, CNN achieved 
100% precision, 96.52% recall, 98.26% accuracy, and 98.22% F1-score 
for automatic diagnosis of COVID-19. For the RF model, precision was 
100%, recall was 96.09%, accuracy was 98.04%, and F1-score was 98%. 
For the DT model, precision was 100%, recall was 95.65%, accuracy was 
97.82%, and F1-score was 97.77%. For the SVM model, precision was 
96.12%, recall was 96.96%, accuracy was 96.52%, and F1-score was 
96.54%. For the AB model, precision was 100%, recall was 96.52%, 

Fig. 5. Performance analysis of the CNN used in EMCNet. (a) Training and Validation Accuracy (b) Training and Validation Loss.  

Table 5 
Tuned hyperparameters of ML classifiers.  

ML classifiers Hyperparameters 

Random Forest Bootstrap: True (method for sampling - with or without 
replacement) 
max depth: 100 (max number of levels in decision tree) 
max features: 2 (maximum features for splitting) 
min samples leaf: 4 (minimum data allowed in a leaf node) 
min samples split: 10 (minimum data allowed for split) 
n estimators: 100 (number of trees) 

Support Vector 
Machine 

C: 1 (Regularization parameter) 
Kernel: rbf (Specifies the kernel type- ‘linear’, ‘poly’, ‘rbf’, 
‘sigmoid’) 
Gamma: 0.1 (Kernel coefficient for ‘rbf’, ‘poly’ and 
‘sigmoid’.) 

Decision Tree max leaf nodes: 10 
min samples split: 4 
Criterion: entropy 
max depth: 6 

AdaBoost n_estimators: 250  
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Fig. 6. Confusion matrix representation for the classifiers used in EMCNet (a) CNN (b) RF (c) DT (d) AB (e) SVM (f) Ensemble of Classifiers.  
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accuracy was 98.26%, and F1-score was 98.22%. Finally, our ensemble 
of classifiers achieved 100% precision, 97.82% recall, 98.91% accuracy, 
and 98.89% F1-score. Among the four ML models, recall was greater for 
SVM and AB. These two models played a key role in decision making of 
COVID-19 cases for ensembling. However, the rest of the ML models 
(except SVM) correctly predicted all normal cases. Thus, these three 
models contributed to correctly classify all normal cases of COVID-19. 

4.3. Comparison of the EMCNet with the state of the art 

The comparative performance evaluation of EMCNet with other 
recent research for automatic detection of COVID-19 is shown in 
Table 8. The systems proposed in Ref. [21,24,27], and [23] obtained 
accuracy of 72.31%, 76%, 80.56%, and 88.9%, respectively. The sys-
tems shown in Ref. [20,22], and [28] have improved the accuracy level 
to 91.4%, 95.12%, and 95.33%, respectively. The system proposed in 
Ref. [25] shows that their system can detect COVID-19 with 96.78% 
accuracy. The accuracy achieved by EMCNet outperformed all these 
models. EMCNet achieved 98.91% accuracy, which demonstrated that it 
might be an effective tool for the automatic detection of COVID-19 from 
chest X-ray images. 

5. Conclusions 

The world is currently suffering tremendously because of the COVID- 
19 pandemic. Many people have already died due to the lack of proper 
treatment, insufficient facilities, or absence of early detection. EMCNet 
can contribute to the infected patients with automatic detection of 

COVID-19 from chest X-ray images. With CNN, EMCNet extracts high- 
level features from X-ray images. The ensemble model classifies 
COVID-19 versus normal cases with high accuracy. The dataset contains 
a large amount of COVID-19 images compared with other recent 
research. An extensive experiment shows greater performance with 
98.91% accuracy, 100% precision, 97.82% recall, and 98.89% F1-score. 
Considering all these experimental results, EMCNet can play an impor-
tant role as a helping hand of doctors and may be used as an alternate of 
manual radiology analysis for the automatic detection of COVID-19 in 
this recent pandemic. Although EMCNet has some limitations (e.g., it 
can misclassify some COVID-19-positive cases as negative), it can 
function as an alternate of manual radiology analysis and aid doctors in 
the automatic detection of COVID-19 from chest X-ray images. EMCNet 
is highly capable of relieving pressure on frontline doctors and nurses; 

Table 6 
Performance evaluation of the classifiers of EMCNet based on each class label.  

Models Class Accuracy 
(%) 

Precision 
(%) 

Recall 
(%) 

F1-score 
(%) 

CNN COVID 96.52 100 96.52 98.23 
Normal 100 96.64 100 98.29 

DT COVID 95.65 100 95.65 97.78 
Normal 100 95.83 100 97.87 

RF COVID 96.09 100 96.09 98.00 
Normal 100 96.23 100 98.08 

SVM COVID 96.96 96.12 96.96 96.54 
Normal 96.09 96.93 96.09 96.51 

AB COVID 96.52 100 96.52 98.23 
Normal 100 96.64 100 98.29 

Ensembling COVID 97.83 100 97.83 98.90 
Normal 100 97.87 100 98.92  

Fig. 7. Graphical representation of the performance of the models used in EMCNet for each class label.  

Fig. 8. ROC curve for the classifiers of EMCNet.  

Table 7 
Performance evaluation of the classifiers used in EMCNet.  

Classifiers Accuracy (%) Precision (%) Recall (%) F1-score (%) 

CNN 98.26 100 96.52 98.22 
RF 98.04 100 96.09 98.00 
DT 97.82 100 95.65 97.77 
SVM 96.52 96.12 96.96 96.54 
AB 98.26 100 96.52 98.22 
Ensemble 98.91 100 97.82 98.89  
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improving early diagnostics and treatment; and helping control the 
epidemic. 
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Table 8 
Performance analysis of EMCNet in comparison with recent works.  

Author Sources of 
Dataset 

Dataset Details Model Accuracy 
(%) 

Zhang et al. [24] COVID-19 
and images: 
[31]; Normal 
images [37]: 

1531 (COVID- 
19 = 100, 
Normal =
1431) 

18 layer 
residual CNN 

72.31 

Tsiknakis et al. 
[27] 

COVID-19 
images: [31]; 
Normal and 
Pneumonia 
images [34, 
35]: 

572 (COVID- 
19 = 122, 
Normal = 150, 
Bacteria 
pneumonia =
150, Virus 
pneumonia =
150) 

Inception V3 76 

Loey et al. [21] COVID-19 
images: [31]; 
Normal and 
Pneumonia 
images [34]: 

306 (COVID- 
19 = 69, 
Normal = 79, 
Bacteria 
pneumonia =
79, Virus 
pneumonia =
79) 

Googlenet 80.56 

Oh et al. [23] COVID-19 
images: [31]; 
Normal and 
Pneumonia 
images [36]: 

15,043 
(COVID-19 =
180, Normal 
= 8851, 
pneumonia =
6012) 

Patch based 
CNN 

88.9 

Rahimzadeh 
et al. [22] 

COVID-19 
images: [31]; 
Normal and 
Pneumonia 
images [35]: 

15,085 
(COVID-19 =
180, Normal 
= 8851, 
Pneumonia =
6054) 

Xception +
ResNet50V2 

91.4 

Abbas et al. [20] COVID-19 
and SARS 
images: [31]; 
Normal 
images [32, 
33]: 

196 (COVID- 
19 = 105, 
Normal = 80, 
SARS = 11) 

ResNet 95.12 

Sethy et al. [28] COVID-19 
images: [31, 
38]; Normal 
and 
Pneumonia 
images [34]: 

381 (COVID- 
19 = 127, 
Normal = 127, 
Bacteria 
pneumonia =
63, Virus 
pneumonia =
64) 

Resnet50 +
SVM 

95.33 

Apostolopoulos 
et al. [25] 

COVID-19 
images: [31, 
38]; Normal 
and 
Pneumonia 
images [34]: 

1442 (COVID- 
19 = 224, 
Normal = 504, 
Pneumonia =
714) 

MobileNet 
V2 

96.78 

EMCNet COVID-19 
images: [31, 
41–45]; 
Normal 
images [46, 
47]: 

4600 (COVID- 
19 = 2300, 
Normal =
2300) 

CNN +
Ensemble of 
ML 
Classifiers 

98.91  
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