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Abstract: Supplemental oxygen therapy with supraphysiological concentrations of oxygen (hyper-
oxia; >21% O2) is a life-saving intervention for patients experiencing respiratory distress. However,
prolonged exposure to hyperoxia can compromise bacterial clearance processes, due to oxidative
stress-mediated impairment of macrophages, contributing to the increased susceptibility to pul-
monary infections. This study reports that the activation of the α7 nicotinic acetylcholine receptor
(α7nAChR) with the delete allosteric agonistic-positive allosteric modulator, GAT107, decreases the
bacterial burden in mouse lungs by improving hyperoxia-induced lung redox imbalance. The incuba-
tion of RAW 264.7 cells with GAT107 (3.3 µM) rescues hyperoxia-compromised phagocytic functions
in cultured macrophages, RAW 264.7 cells, and primary bone marrow-derived macrophages. Simi-
larly, GAT107 (3.3 µM) also attenuated oxidative stress in hyperoxia-exposed macrophages, which
prevents oxidation and hyper-polymerization of phagosome filamentous actin (F-actin) from oxida-
tion. Furthermore, GAT107 (3.3 µM) increases the (1) activity of superoxide dismutase 1; (2) activation
of Nrf2 and (3) the expression of heme oxygenase-1 (HO-1) in macrophages exposed to hyperoxia.
Overall, these data suggest that the novel α7nAChR compound, GAT107, could be used to improve
host defense functions in patients, such as those with COVID-19, who are exposed to prolonged
periods of hyperoxia.

Keywords: hyperoxia; α7nAChR; GAT107; ago-PAM; macrophage; pulmonary infection; antioxidant;
oxygen therapy; phagocytosis; vagus nerve; oxidative stress

1. Introduction

Oxygen therapy, using concentrations of supplemental oxygen up to 100% (hyper-
oxia), is a routine treatment for intensive care units (ICU) patients, surgical patients,
preterm neonates, patients with acute lung injury (ALI)/acute respiratory distress syn-
drome (ARDS), requiring home oxygen therapy, and in patients receiving supportive care
for airway-associated infections, such as the novel COVID-19 coronavirus [1–5]. Although
oxygen therapy is a life-saving intervention, prolonged exposure to hyperoxia can com-
promise lung host defense and cause acute lung injury, due to excessive inflammation
(ALI) [6,7]. Consequently, patients with compromised host defenses that experience hyper-
oxia have a higher susceptibility to developing pulmonary bacterial infections that cause
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ventilator-associated pneumonia (VAP) and hospital-acquired pneumonia (HAP) [8,9].
Approximately one-third of all mechanically-ventilated (MV) ICU patients develop VAP,
which has a 4.6% mortality rate [10–12].

Alveolar macrophages are the first line of defense against invading pathogens that
enter the distal airways [13–15]. However, in mice and in ex vivo alveolar macrophage
cultures, prolonged exposure to hyperoxia impairs the phagocytosis of bacteria known
to produce VAP, such as Staphylococcus aureus and Pseudomonas aeruginosa (PA), as well as
certain bacteria from the Enterobacteriaceae family [8,16–18].

The prolonged exposure of macrophages to hyperoxia increases the levels of intracel-
lular reactive oxygen species (ROS) [19], which can overwhelm the endogenous antioxidant
defense system [19–21]. Consequently, high cytosolic levels of ROS can oxidize proteins
and lipids, resulting in post-translational modification (PTM) of actin fibers [22,23]. Actin
is a critical cytoskeletal component that is used by macrophages for chemotaxis and the for-
mation of phagosomes around opsonized pathogens, such as PA [24]. Hyperoxia-induced
actin oxidation contributes to the formation of stress fiber filaments, the dysregulation of
actin polymerization, and the impairment of the migratory and phagocytotic functions of
macrophages [22,23]. The impaired phagocytic functions of macrophages by hyperoxia-
induced oxidative stress can be attenuated by activators of antioxidant defense pathways,
such as sulforaphane or supplemental antioxidants, such as ascorbic acid, n-acetyl cysteine,
and exogenous superoxide dismutase (SOD) [22,25]. Importantly, antioxidant molecules
protect against the oxidation of actin monomer filaments, and restore the antibacterial
and phagocytic functions of macrophages [22,23,26]. Thus, treatment with supplemental
antioxidants or activators of antioxidant pathways could protect against the profound
deleterious effects on macrophage-mediated bacterial killing in response to prolonged
exposure to hyperoxia.

We and others have shown that the hyperoxia-compromised innate immune functions
of alveolar macrophages are significantly attenuated by pharmacological activators of
the α7 nicotinic acetylcholine receptors (α7nAChRs) [27,28]. The homomeric α7nAChR
is a pentameric, ligand-gated ion channel located in both neuronal and non-neuronal
cells [29–31]. Upon stimulation with endogenous acetylcholine, choline, or other cholinergic
agonists, there is a rapid influx of calcium ions into neurons followed by activation of
specific calcium-dependent pathways [29,32]. It has been reported that the cholinergic
activation of non-neuronal cells, such as macrophages, produces an influx of calcium ions
but does not significantly change whole-cell currents [33,34]. Moreover, several studies
have demonstrated that the activation of peripheral α7nAChR produces anti-inflammatory
effects [31,35,36]. It has been postulated that the anti-inflammatory efficacy produced by the
activation of α7nAChR on peripheral immune cells, such as macrophages, may be due to:
(1) inhibition of the phosphorylation of the transcription factor STAT3, which subsequently
decreases inflammatory cytokine production [29]; (2) activation of the PI3K/Akt/Nrf2
antioxidant pathway and induction of heme oxygenase-1 (HO-1) or (3) the inhibition of NF-
kB subunit phosphorylation and subsequent nuclear-translocation through STAT3-NF-kB
convergence [29,32].

Previously, our lab has shown that GTS-21, a partial agonist of the α7nAChR, signifi-
cantly increased bacterial clearance and decreased lung injury in hyperoxia-exposed mice
with PA pneumonia [37]. Importantly, GTS-21 activates the cholinergic anti-inflammatory
pathway, which has been shown to attenuate the phagocytic function of macrophages com-
promised by the prolonged exposure to hyperoxia [37]. However, other clinically relevant
endpoints, such as mortality rates, were not significantly affected by GTS-21 administration
(unpublished results). Nevertheless, it remains unclear if macrophage innate immune func-
tions can be increased by attenuating oxidative stress via α7nAChR-dependent pathways.

Therefore, in this study, we conducted experiments to determine 1) the efficacy of
the (+)—enantiomer of racemic 4-(4-bromophenyl)-3a,4,5,9b-tetrahydro-3H-cyclopenta[c]
quinoline-8-sulfonamide, GAT107, to attenuate hyperoxia-induced impairment of host
innate immune functions, and the mechanism of action of GAT107. GAT107 is a positive
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allosteric modulator (PAM) and direct allosteric activator (DAA) that (1) augments or
potentiates the response to orthosteric site ligands and (2) activates the α7nAChR ion
channel (in the absence of an orthosteric agonist) by binding to an allosteric site distinct
from that of the PAM site [30,31,38–40]. In vitro, the α7nAChR can be rapidly desensitized
by Ach. Interestingly, the combination of GAT107 with Ach produces a significant decrease
in the Ach-induced desensitization [38,39]. GAT107 likely facilitates the conversion of
desensitized states to conducting states, which surmounts receptor desensitization [38,39].
Therefore, these unique pharmacological properties of the novel α7nAChR ago-PAM,
GAT107, may have advantageous efficacy in bacterial clearance and attenuating hyperoxia-
compromised macrophage functions.

2. Materials and Methods
2.1. Cell Culture and Special Reagents

Murine macrophage-like RAW 264.7 cells (TIB-71; American Type Culture Collection
(ATCC), Manassas, VA) were cultured in Dulbecco’s Modified Eagle Medium (DMEM) and
supplemented with 10% FBS (Atlanta Biologicals, Lawrenceville, GA). Cells were main-
tained at 37 ◦C in normoxia (5% CO2/21% O2) for 24 h, allowed to grow to 70–80% con-
fluency, and subcultured every 2 days. Bone marrow was harvested from 6 to 8-week-old
male C57BL/6 mice (Jackson laboratories), isolated and cultured to allow for differentiation
into bone marrow-derived macrophages (BMDM), as previously described (Weischenfeldt
and Porse, 2008). Hyperoxic exposure was performed in sealed, humidified chambers
(Billups-Rothenberg Inc., Del Mar, CA, USA) flushed with 95% O2/5% CO2 at 37 ◦C. An
oxygen analyzer (MSA Medical Products, Pittsburgh, PA, USA) was used to monitor the
O2 levels.

2.2. Animal Studies

Male C57BL/6 mice (6 to 10 weeks old; The Jackson Laboratory, Bar Harbor, ME, USA)
were used in this study based on a protocol (protocol #1953) approved by the Institutional
Animal Care and Use Committees at St. John’s University. The mice were housed in a
specific pathogen-free environment, maintained at 22 ◦C (~50% relative humidity) with a
12 h light/dark cycle. All mice had ad libitum access to standard rodent food and water.
Mice were randomized to receive either 3.3 mg/kg of ((+)—(4-(4-bromophenyl)-3a,4,5,9b-
tetrahydro-3H-cyclopenta[c]quinoline-8-sulfonamide, GAT107 or saline, administered by
intraperitoneal injection 24, 36, and 48 h after the onset of hyperoxic exposure. The dose of
3.3 mg/kg GAT107 was selected based on previous studies that it was safe and efficacious in
ameliorating nociceptive-pain in mice [30]. After 48 h of exposure, the mice were inoculated
with 0.1 × 108 colony-forming units (CFUs) of PA by making a 1–2 cm incision on the
neck to expose the trachea after anesthetization with sodium pentobarbital (75 mg/kg).
PA was used as the selected pathogen as it is associated with 21% of all VAP cases [41].
Twenty-four hours after bacterial inoculation, mice were euthanized by exsanguination,
and bronchoalveolar lavage (BAL) fluid was collected. Lung tissues were immediately
collected into 1 mL cold PBS containing a protease and phosphatase inhibitors cocktail
(Pierce Thermo Scientific) followed by homogenization by a Dounce tissue homogenizer,
as described previously [42].

2.3. Exposure to Hyperoxia

Male C57BL/6 mice and cultured macrophages were exposed to hyperoxia, as pre-
viously described [42]. Briefly, animals were placed in microisolator cages (Allentown
Caging Equipment, Allen-town, NJ, USA) that were kept in a Plexiglas chamber (Bio-
Spherix, Lacona, NY, USA) and exposed to ≥95% O2 for up to 48 h. The exposure of
murine macrophage RAW 264.7 cells was conducted in humidified Plexiglas chambers
(Billups-Rothenberg, Del Mar, CA, USA), flushed with 95% O2/5% CO2 at 37 ◦C for 24 h.
An oxygen analyzer (MSA; Ohio Medical Corporation, Gurnee, IL, USA) was used to
monitor the O2 concentration in the chamber.
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2.4. Bronchoalveolar Lavage

Murine BAL fluid was obtained, as previously described [42]. Briefly, mice were
anesthetized by an intraperitoneal injection of sodium pentobarbital (75 mg/kg). Sub-
sequently, a 1–2 cm incision was made on the neck, the trachea was dissected, and a
20-gauge × 1.25-inch intravenous catheter was inserted caudally into the lumen of the
exposed trachea. The lungs were gently lavaged twice with 1 mL of a sterile, nonpyro-
genic phosphate-buffered saline (PBS) solution (Mediatech, Herndon, VA, USA) containing
a cocktail of protease and phosphatase inhibitors (Thermo Pierce Scientific). BAL sam-
ples were centrifuged at 200× g at 4 ◦C for 5 min, and the resultant supernatants were
immediately used for quantitative bacteriology.

2.5. Quantitative Bacteriology

Viable bacterial counts were determined in serially-diluted LB (Luria-Bertani) broth
lung homogenates and BAL fluid using a colony formation unit (CFU) assay by plating
onto Pseudomonas Isolation Agar (Difco, Sparks, MD, USA) at 37 ◦C for 18 h.

2.6. Assay for Oxidative Stress and Antioxidant Potential

Oxidative stress was determined by measuring the oxidation-reduction potential
(ORP) using the RedoxSYS Diagnostic System (Luoxis Diagnostics, Inc., Englewood, CO,
USA). Lung homogenate was evaluated for its oxidative-reduction potential (ORP), re-
ported in millivolts (mV), and the capacity of the ORP (cORP), also known as the antiox-
idant potential, was measured in microcoulombs (µC) at room temperature, using the
protocol provided by the manufacturer.

2.7. Phagocytosis Assay and Actin Stress Filament Formation

The phagocytosis assay was performed, as previously described, with minor modi-
fications [22,37]. Briefly, RAW 264.7 cells or BMDMs were seeded in 24-well plates and
allowed to adhere for 6 h, followed by exposure to 95% O2 in the absence or presence of
GAT107 (3.3 µM) for 24 h. The concentration of 3.3 µM of GAT107 was selected based on
preliminary data obtained from phagocytosis assay studies. After 24 h, RAW 264.7 cells
were incubated at 37 ◦C for 1 h with opsonized FITC-labeled latex beads (Polysciences,
Warrington, PA, USA) at a ratio of 100:1 (beads:cell). Macrophages were incubated with
0.04% Trypan blue in PBS for 10 min to quench the beads that were not internalized by
the macrophages. To visualize the uptake of FITC-labeled latex beads, macrophages were
fixed with 4% paraformaldehyde for 10 min, washed with PBS, and stained with 4′,6-
diamidino-2-phenylindole (DAPI, Molecular Probes, Eugene, OR, USA). To visualize the
cell cytoskeleton, cells were stained with rhodamine phalloidin (Molecular Probes, Eugene,
OR, USA). The phagocytosis or uptake of the beads was visually assessed using an Evos
Fluorescent Microscope (Thermo Fischer, Waltham, MA, USA). The fluorescent beads in at
least 200 individual macrophages per well, in duplicates, from three independent experi-
ments were counted by an individual, blind to the experimental groups. To determine the
hyperoxia-induced modification of actin polymerization, a modified experiment method
was used [23]. Using the fluorescent micrographs obtained from the above phagocytosis
assay, a Fiji ImageJ analysis (version 2.0) with a JACoP plugin, was used to determine
Mander’s Correlation Coefficient using thresholds for the amount of phalloidin signal
associated with the DAPI signal. This value was converted to a percentage to estimate the
amount of polymerized F-actin and stress filament formation.

2.8. Measurement of SOD1 Activity

RAW 264.7 cells were seeded in 6-well plates, exposed to 95% O2, and incubated with
3.3 µM of GAT107 for 24 h. Subsequently, the cells were washed three times in PBS and
lysed using a cell lysis buffer (Cell Signaling Technology, Danvers, MA, USA) supplemented
with Halt protease and phosphatase inhibitors (Thermo Fischer, Waltham, MA, USA). The
total protein content of cell lysate was determined using the Pierce Bicinchoninic acid (BCA)
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assay kit (Thermo Fisher, Waltham, MA, USA) as per the manufacturer’s instructions. Equal
amounts of total protein from non-denatured samples were loaded onto 12% native-PAGE
and separated at 100 V at 4 ◦C for 90 min. Native-PAGE gels were then washed three
times with distilled water and then incubated (protected from light) with 2.43 mM of
nitrotetrazolium blue (Acros Chemical), 2.85 µM of riboflavin (Sigma, St. Louis, MO,
USA), and 28 mM of TEMED (GE Healthcare) for 20 min, protected from light and at
room temperature, as previously described [43]. Next, the gels were placed on a lightbox
and allowed to develop. The presence of achromatic bands represented the inhibition
of nitrotetrazolium blue reduction by the SOD1 enzymatic activity, and the bands were
detected using the Bio-Rad ChemiDoc imaging system (Bio-Rad, Hercules, CA, USA).

2.9. The Detection of Reactive Oxygen Species (ROS) Using 2’,7’-Dichlorofluorescin Diacetate
(DCFH-DA)

RAW 264.7 cells were seeded in quadruplicate in 96-well black wall, clear bottom
plates exposed to 95% O2, and incubated with 3.3 µM of GAT107 for 24 h. After 24 h,
the level of ROS was determined using the 2’,7’-dichlorofluorescein diacetate (DCFH-DA)
assay (Cell Biolabs, San Diego, CA, USA), according to the manufacturer’s instructions. In
brief, the cells were incubated with 1 mM of DCFH-DA for 30 min at 37 ◦C and then were
washed three times with warm PBS. The presence of total intracellular DCF (an indicator
of ROS levels) was determined by lysing cells, as previously described [25], and the level
of fluorescence was determined at 480/530 nm, using a Biotek Synergy LX multimode
reader (Winooski, VT, USA). DCF relative fluorescent units were then reported as a percent
relative to the 21% O2 exposure group (i.e., normoxic or room air control group).

2.10. Total Protein Oxidation Assay

The amount of total protein oxidation and carbonyl formation was determined using
a commercially available Oxidized Protein Western Blot Kit (Abcam, Cambridge, UK),
based on the manufacturer’s instructions. Equal amounts of whole-cell lysate from three
to four independent experiments were exposed to protein carbonyl derivatization with
2,4-dinitrophenylhydrazone (DNP-hydrazone) in the presence of DNP-hydrazine, and
unreacted samples were used as a negative control. The samples were separated by 12%
SDS-PAGE and transferred to PVDF membranes. The membranes were washed and
blocked in 5% milk/TBST solution. Next, the membranes were washed and incubated with
secondary anti-DNP antibody, washed, and the immunoreactive DNP bands were devel-
oped enhanced chemiluminescence (ECL) reagents (Pierce Thermo Scientific, Waltham,
MA, USA) and detected by the Bio-Rad ChemiDoc XRS+ imaging system (Biorad, Hercules,
CA, USA).

2.11. Western Blot Analysis

For intracellular protein analysis, the cells were washed three times with PBS and lysed
using a cell lysis buffer (Cell Signaling Technology, Danvers, MA, USA) supplemented with
Halt and phosphatase inhibitor cocktail (Thermo Fischer, Waltham, MA, USA). The total
protein content of cell lysate was determined by using the Bicinchoninic acid (BCA) assay
kit (Thermo Fisher, Waltham, MA, USA), as per the manufacturer’s instructions. Samples
were loaded onto 12% or 15% SDS-polyacrylamide gels (Bio-Rad, Hercules, CA, USA)
and transferred to Immobilon-P membranes (Millipore, Bedford, MA, USA). Nonspecific
binding sites on the membrane were blocked by incubating the membrane with 5% nonfat
dry milk (Bio-Rad, Hercules, CA, USA) in Tris-buffered saline, containing 0.1% Tween
20 (TBST), for 1 h at room temperature. Next, the membranes were washed three times
with TBST, and incubated overnight at 4 ◦C with anti-HO-1 (1:1000, #ab13248, Abcam,
Cambridge, UK) and anti-pan-actin (1:1000, #8456, Cell Signaling) antibodies, diluted in
5% nonfat dry milk in TBST. After three washes with TBST, the membranes were incubated
with goat anti-rabbit horseradish peroxidase-coupled secondary antibody (1:5000; GE
Healthcare, Chicago, IL, USA) for 1 h at room temperature. Subsequently, membranes were
again washed three times with TBST, and the immunoreactive proteins were visualized us-
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ing the SuperSignal West Pico Plus Chemiluminescent Substrate (Thermo Fisher, Waltham,
MA), as per the manufacturer’s instructions. Images were obtained using the Bio-Rad
ChemiDoc XRS imaging system (Bio-Rad, Hercules, CA, USA). The immunoreactive bands
were quantified using ImageJ software (version 2.0.0).

2.12. Nrf2 Activation Assay

Nrf2 activation was determined by measuring the amount of immunofluorescent
Nrf2 nuclear co-localization. RAW 264.7 cells were seeded and prepared as described
above for DCFH-DA assay. After 24 h, the cells were permeabilized in 0.1% Triton X-
100/PBS (Millipore Sigma, St. Louis, MO, USA), blocked with 10% goat serum (Millipore
Sigma) in PBS, and incubated with anti-Nrf2-antibody (donated by Dr. Edward Schmidt
of Montana State University) diluted in 1% goat serum/PBS overnight. The cells were
washed and immunoreacted with AlexaFluor488-conjugated secondary antibody (Pierce
Thermo Scientific). Fluorescent micrographs were captured using an Evos fluorescent
microscope. The images were analyzed for the amount of Nrf2 localized in the nucleus
using a Mander’s Correlation Coefficient with thresholds as described above for the actin
stress filament formation experiments. The amount of Nrf2 signal located within the same
signal as the nucleus was used as a marker of Nrf2 activation. The Mander’s correlation
coefficient was then reported as a percentage of the total Nrf2 signal within the nucleus.

2.13. Statistical Analysis

The statistical analyses were carried out using GraphPad Prism statistical software
(version 7.0a). The results are presented as the mean ± SEM. All data sets were analyzed
for statistical significance using analysis of variance (ANOVA) with Dunnett’s post-hoc
analysis. A 95% confidence interval was used for all data sets and the a priori significance
level was p < 0.05 (* p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001).

3. Results
3.1. The Systemic Administration of GAT107 Increases Bacterial Clearance and Attenuates the
Hyperoxia-Induced Redox Imbalance in Mice Challenged with Pseudomonas Aeruginosa (PA)

Prolonged exposure to hyperoxia can compromise the clearance of pathogenic bacteria
in the lungs. [37,42,44]. To determine if GAT107 can restore the hyperoxia-compromised
clearance of bacteria in the lungs, mice were continuously exposed for 48 h to 95% O2 (i.e.,
hyperoxia), administered intraperitoneal (i.p.) injections of 3.3 mg/kg GAT107 at 24, 36,
and 48 h of hyperoxia exposure, and inoculated with intra-tracheal (i.t.) injection of PA
at the end of 48 h of hyperoxia exposure. Twenty-four hours post-i.t. inoculation of PA,
bronchoalveolar lavage fluids, and lung tissue homogenate were collected and analyzed
for their bacterial counts using a colony formation unit assay. As shown in Figure 1A,B,
mice that received prolonged exposure to hyperoxia and were challenged with PA-induced
lung infection (vehicle control group), had significantly higher levels of bacterial colonies
in their airways (7.81 ± 0.24 log CFUs/mL, Figure 1A p < 0.0001) when compared to
mice that remained at 21% O2 (3.24 ± 0.15 log CFUs/mL). Additionally, mice exposed
to hyperoxic conditions also had a significantly higher number of bacterial counts in the
lung tissue homogenate (7.68 ± 0.07 log CFUs/mL, Figure 1B, p < 0.0001) compared to
mice that remained at 21% O2 (3.62 ± 0.35 log CFUs/mL in lung tissue homogenate).
The mice that received 3.3 mg/kg i.p. of GAT107 had significantly decreased levels of
bacteria in their airways (3.93 ± 0.52 CFUs/mL in airways, Figure 1A) compared to vehicle
control group. The administration of 3.3 mg/kg i.p GAT107 also significantly attenuated
the level of bacteria in the lung tissue homogenate (4.49 ± 0.54 log CFUs/mL in lung
tissue homogenate, Figure 1B), compared to the vehicle control group (**** p < 0.0001).
No statistical differences in the levels of bacterial colonies in BAL fluid or lung tissue
homogenate were observed between GAT107-treated animals and those exposed to room
air (Figure 1A,B).
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Bronchoalveolar lavage (BAL) and lung tissue were harvested 24 h after inoculation. Viable bacteria in the airways and
lungs were quantified by plating serials dilutions of (A) BAL and (B) lung homogenate and were expressed as the log
of colony-forming units (CFUs) per mL. Data represent the mean ± SEM based on n = 6–7 mice per group. Statistical
differences were determined between all groups and indicated as **** p < 0.0001 compared to the hyperoxia-exposed
group treated with vehicle (i.e., the control group). Lung homogenate was analyzed for (C) oxidative-reduction potential
(ORP), expressed as millivolts (mV) and (D) the capacity of the ORP or total antioxidant potential (cORP), expressed as
µCoulombs (µC), by the RedoxSys System. Data represent the mean ± SEM of two-independent experiments based on
n = 4 mice per group. Statistical differences were determined between all groups and indicated as * p < 0.05 compared to the
hyperoxia-exposed group treated with vehicle.

Previous studies have shown that hyperoxia-induced oxidative stress mediates the
decreased bacterial clearance functions in mice, which can be attenuated by certain antioxi-
dants, such as ascorbic acid [44]. To determine if GAT107 decreases excessive lung oxidative
stress in mice exposed to 95% O2 (hyperoxia) and challenged with PA lung infection, the
oxidative redox potential (ORP), and the lung antioxidant potentials (cORP) were deter-
mined. As shown in Figure 1C and D, mice exposed to 95% O2 had significantly higher
oxidative-reduction potentials (298 ± 44.3 mV, p < 0.05) and lower antioxidant potentials
(0.16 ± 0.05 µC, p < 0.05), compared to mice that remained at 21% O2 (204.26 ± 7.5 mV
and 0.27 ± 0.03 µC, respectively). The administration of 3.3 mg/kg i.p. of GAT107 sig-
nificantly attenuated the hyperoxia-induced increased lung oxidative-reduction potential
(162.36 ± 22.1 mV, p < 0.05) and increased the total antioxidant potential (0.47 ± 0.09 µC,
p < 0.05), compared to the hyperoxic vehicle control group (Figure 1C,D). Lung homogenate
ORP and cORP levels were not statistically different from animals that remained in room
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air conditions. These data indicate that GAT107 significantly decreases the bacterial lung
burden by decreasing lung oxidative stress and increasing the total antioxidant potential in
a mouse model of VAP.

3.2. GAT107 Restores Hyperoxia-Compromised Macrophage Phagocytic Function in a Macrophage
Cell Line and Primary Macrophages

The decreased in the clearance of bacterial lung infections due to hyperoxia, is, in part,
mediated by the impairment of macrophage immune function [22,26,42]. To determine
whether GAT107 can restore hyperoxia-compromised macrophage function, RAW 264.7
and primary bone marrow-derived macrophages (BMDMs) were exposed to 95% O2 (hy-
peroxia) for 24 h and incubated with either 3.3 µM of GAT107 or vehicle control (DMSO).
The phagocytotic function of RAW 264.7 cells exposed to hyperoxia was significantly de-
creased (66.1 ± 2.5%, p < 0.0001) compared to cells that remained at 21% O2 (100 ± 0%)
(Figure 2A). Hyperoxia-compromised phagocytosis was significantly attenuated by 3.3 µM
of GAT107 (86.3 ± 4.7%, p < 0.0001), compared to the vehicle control group (65.08 ± 2.53%)
(Figure 2A). Furthermore, these effects were also replicated in primary BMDMs, where
after exposure to 24 h of hyperoxia, their phagocytic activity was significantly decreased
(33.2 ± 5.3%, p < 0.0001), compared to macrophages that remained at 21% O2 (100 ± 0%).
GAT107 significantly increased the phagocytotic activity of BMDMs exposed to hyperoxia
(105 ± 13.9%, p < 0.001), compared to the vehicle control group (35.39 ± 3.9%) (Figure 2B).
The incubation of hyperoxia-compromised macrophages with 3.3 µM of GAT107 signif-
icantly increased their phagocytotic activity to a level that was not statistically different
compared to macrophages exposed to room air. These in vitro results suggest that in vitro,
GAT107 can rescue the hyperoxic-induced decrease in macrophage phagocytic activity.
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Figure 2. GAT107 restores hyperoxia-compromised macrophage phagocytic function in RAW 264.7 cells and primary
macrophages. RAW 264.7 cells were either exposed to 21% O2 (white bar) or 95% O2 (hyperoxia) (black bar) in the presence
or absence of 3.3 µM GAT107 (grey bars). Cells were incubated with FITC-labeled minibeads for 1 h and stained to visualize
the cytoskeleton and nucleus. Immunofluorescent micrographs show the phagocytosed beads (green), cytoskeleton (red),
and nucleus (blue) of (A) RAW 264.7 cells and (B) BMDMs. The bar graphs represent the percentage of beads phagocytosed
(A) RAW 264.7 and (B) BMDMs cells, quantified from at least 200 cells per group. Each value represents the mean ± SEM of
three independent experiments for each group. Statistical differences were determined between all groups and indicated as
**** p < 0.0001, *** p < 0.001 compared to the hyperoxia-exposed vehicle control group.
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3.3. GAT107 Decreases Hyperoxia-Induced Actin Oxidation and Alterations in Polymerization

To determine if hyperoxia-induced oxidative stress in macrophages is affected by
GAT107, RAW 264.7 cells were exposed >95% O2 (hyperoxia) and incubated with 3.3 µM
of GAT107, the vehicle control (DMSO), or untreated macrophages. Intracellular ROS
levels, a determinant of oxidative stress, were measured and compared to room air control
cells. The prolonged exposure to hyperoxia significantly increased the total intracellular
ROS levels (305.79 ± 20.21%, **** p < 0.0001), compared to macrophages that remained
at 21% O2 (100 ± 0%) (Figure 3A). Incubation with GAT107 significantly decreased the
total intracellular ROS levels (231.05 ± 5.75%, **** p < 0.0001), compared to vehicle control
(353.28 ± 27.81%) (Figure 3A).
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Figure 3. GAT107 attenuates hyperoxia-induced oxidative stress and decreases hyperoxia-induced actin oxidation and
hyper-polymerization of actin in macrophages. RAW 264.7 were either exposed to 21% O2 or 95% O2 (hyperoxia) in the
presence or absence of 3.3 µM GAT107. After 24 h of hyperoxic exposure (A), the fluorescent DCF signal of the macrophages
was determined using the DCFH-DA assay and was quantitated spectrophotometrically and reported as a percent relative
to the room air control to evaluate oxidative stress. (B) The total protein carbonylation, due to oxidation, was determined
using the western blot assay. The 43kD immunoreactive band was used to evaluate the level of actin oxidation (as indicated
by the arrow) based on 3–4 independent experiments per group. (C) The amount of actin polymerization was determined
using the fluorescent micrographs obtained as described in Section 2.7, and the ratio of the occupied area of actin relative to
the area of the nuclei, was reported as a percent of non-overlapping signals—obtained from ImageJ’s co-localization analysis
plugin and computation of Manders’ Correlation Coefficient. Each value represents the mean ± SEM of three independent
experiments for each group. Statistical differences were determined between all groups and indicated as **** p < 0.0001,
** p < 0.01 compared to the hyperoxia-exposed vehicle control group.

Macrophages exposed to hyperoxia can produce oxidative post-translational modi-
fications of the actin filaments that are critical for the innate immune functions of macro-
phages [22,23]. To determine if GAT107 attenuates hyperoxia-induced actin oxidation and
alters actin polymerization, RAW 264.7 macrophages were exposed to 24 h of 95% O2 (hy-
peroxia) and incubated with 3.3 µM of GAT107. The fluorescent microscopic analysis and
quantification of F-actin stress fiber formation, similar to previous studies [22,23], indicated
that untreated macrophages exposed to hyperoxia had significantly higher amounts of
stress actin filament formation, as indicated by an increase in the phalloidin/DAPI ratio
(91.25± 1.09%, **** p < 0.0001), compared to cells that remained at room air (81.05 ± 1.07%)
(Figure 3B). Furthermore, 3.3 µM of GAT107 significantly decreased stress actin formation
produced by hyperoxia (83.45 ± 1.53%, p < 0.01), compared to the vehicle control group
(89.53 ± 1.34%) (Figure 3B). Stress fiber formation in GAT107-treated, hyperoxia compro-
mised macrophages was not statistically different from cells that remained in room air
control conditions (Figure 3B). Total protein oxidation was also assessed in macrophages ex-
posed to hyperoxia for 24 h. Hyperoxia increased the total protein oxidation in macrophages
compared to the macrophages that were exposed to room air (Figure 3C). This augmenta-
tion was decreased by incubation with 3.3 µM of GAT107 (Figure 3C).

The protein samples that migrated to a band, which was approximately 43 kD, were
used as an indicator of actin oxidation. The 43 kD band was chosen due to the elec-
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trophoretic migration of monomeric actin by SDS-PAGE, as previously demonstrated by
O’Reilly et al. 2003. The incubation of cells with 3.3 µM of GAT107 decreased the observable
response to hyperoxia at the level of the 43 kD marker, suggesting that GAT107 decreased
the amount of hyperoxia-induced actin oxidation. These results indicate that GAT107
decreases oxidative stress and hyperoxia-induced alterations in actin polymerization by
decreasing the oxidation of total protein and actin.

3.4. GAT107 Restores Hyperoxia-Compromised SOD1 Function

The prolonged exposure to hyperoxia induces oxidative stress, which compromises
the innate immune functions of macrophages, which is attenuated by antioxidants, such as
ascorbic acid and superoxide dismutase (SOD) [22,25,26]. After 24 h exposure to 95% O2,
(hyperoxia), the levels of SOD1 activity were assessed in RAW 264.7 cells. Prolonged hy-
peroxia significantly decreased SOD1 activity in the cultured macrophages (45.59 ± 8.71%,
*** p < 0.001), compared to RAW 264.7 macrophages that remained at 21% O2 (100 ± 0%)
(Figure 4). The incubation of macrophages exposed to hyperoxia with 3.3 µM of GAT107
significantly increased SOD1 activity (84.63 ± 10.75%, ** p < 0.01), compared to the vehicle
control (41.56 ± 7.31) (Figure 4). These results suggest that hyperoxia-induced oxidative
stress is decreased by GAT107, in part, by increasing the antioxidant activity of SOD1 in
macrophages exposed to hyperoxia.
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Figure 4. GAT107 restores superoxide dismutase 1 activity in hyperoxia-compromised macrophages.
RAW 264.7 cells were either exposed to 21% O2 (room air) (white bar) or 95% O2 (hyperoxia) (black
bar) in the presence or absence of 3.3 µM GAT107 (grey bars). After 24 h of exposure to hyperoxia,
SOD1 activity was determined using the gel-based nitro tetrazolium blue gel assay, as described
in Section 2, and was reported as a fold-change compared to the room air control group. Each
value represents the mean ± SEM of three independent experiments for each group. Statistical
differences were determined between all groups and indicated as *** p < 0.001 or ** p < 0.01 compared
hyperoxia-exposed group treated with vehicle.
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3.5. GAT107 Activates the Nrf2/HO-1 Antioxidant Pathway

Previous studies indicate that the activation of Nrf2 can protect mice from hyperoxia-
induced acute lung injury and macrophage dysfunction by upregulating enzymes in-
volved in the antioxidant pathways, such as heme oxygenase-1 (HO-1) [45–47]. To de-
termine if GAT107 can induce the activation of Nrf2 and nuclear localization of Nrf2,
macrophages were exposed to 24 h of 95% O2 (hyperoxia) and incubated with 3.3 µM of
GAT107 or DMSO vehicle. Under hyperoxic conditions, there was no significant increase
in Nrf2 localization to the nucleus (25.83 ± 7.19%), compared to macrophages exposed
to room air (25.83 ± 7.19% of cells versus 21.2 ± 4.8% of cells with nuclear Nrf2, respec-
tively) (Figure 5A). However, GAT107 significantly increased Nrf2 nuclear localization
(51.45 ± 4.08% versus 31.03 ± 5.01% of cells, respectively, * p < 0.05), compared to vehicle
control (31.03 ± 5.01%) (Figure 5A). Next, the levels of HO-1 protein in macrophages were
determined using western blot analysis. Under hyperoxic conditions, there was also a
significant increase (p < 0.05) in HO-1 (0.643 ± 0.075 AU HO-1/actin) levels, compared
to macrophages exposed to 21% O2 room air (0.107 ± 0.01 AU HO-1/actin) (Figure 5B).
However, the incubation of macrophages with 3.3 µM of GAT107 (2.38 ± 1.91 AU HO-
1/actin, **** p < 0.0001) induced a significant increase in HO-1 levels, compared to the
vehicle control (0.745 ± 0.05 AU HO-1/actin) (Figure 5B). These in vitro results suggest
thatGAT107 induces antioxidant pathways in macrophages through Nrf2 activation and
upregulation of HO-1 protein levels.

Antioxidants 2021, 10, x FOR PEER REVIEW 12 of 20 
 

macrophages exposed to 21% O2 room air (0.107 ± 0.01 AU HO-1/actin) (Figure 5B). 
However, the incubation of macrophages with 3.3 µM of GAT107 (2.38 ± 1.91 AU HO-
1/actin, **** p < 0.0001) induced a significant increase in HO-1 levels, compared to the 
vehicle control (0.745 ± 0.05 AU HO-1/actin) (Figure 5B). These in vitro results suggest 
thatGAT107 induces antioxidant pathways in macrophages through Nrf2 activation and 
upregulation of HO-1 protein levels. 

 
Figure 5. GAT107 Activates the Nrf2/HO-1 antioxidant pathway. RAW 264.7 cells were either exposed to 21% O2 (white 
bar) or 95% O2 (hyperoxia) (black bar) with or without GAT107 (grey bars). After 24 h of exposure to hyperoxia, 
macrophages were fixed, permeabilized, blocked, incubated with a polyclonal anti-Nrf2-antibody overnight, and then 
conjugated to AlexaFluor 488. Finally, the slides were counterstained with DAPI to visualize the nucleus. (A) 
Immunofluorescent micrographs were subjected to ImageJ co-localization analysis and re-pseudo colored to determine 
the amount of Nrf2 signal (red) localized to the nucleus (green) using Manders’ Correlation Coefficient. (A) The bar graphs 
represent the percent amount of total Nrf2 signal localized to the nuclear region. Under the same experimental conditions, 
the levels of heme oxygenase-1 (HO-1) were determined in macrophages, and the levels of actin in whole-cell lysate were 
determined using the western blot assay. (B) Representative immunoreactive bands for HO-1 and actin and (B) the 
quantification of immunoreactive bands normalized to actin. Each value represents the mean ± SEM of two to three 
independent experiments for each group. Statistical differences were determined between all groups and indicated as **** 
p < 0.0001, * p < 0.05, n.s. = non-significant compared to the hyperoxia-exposed group treated with vehicle. 

4. Discussion 
This study demonstrates that GAT107 activates α7nAChR-dependent pathways 

within the neuromodulated cholinergic anti-inflammatory system and GAT107 
attenuated oxidative stress by increasing the antioxidant response. The administration of 
3.3 mg/kg i.p. of GAT107 to mice significantly increased bacterial clearance by decreasing 
the level of clinically relevant oxidative stress markers in the lung. Moreover, the 
protective effects of GAT107, due to the increase in the clearance of P. aeruginosa, coincided 
with the restoration of hyperoxia-compromised macrophage functions. The impairment 
of macrophage function was attenuated by the GAT107-mediated decrease in the total 
protein oxidation, including the oxidation of actin, a critical cytoskeletal component 
involved in macrophage phagocytosis. Furthermore, GAT107 increased the activity of the 
antioxidant enzyme, SOD1, and activated the protein transcription factor, Nrf2, and 
upregulated the levels of the downstream mediator, HO-1. Taken together, these results 
suggest that GAT107 increases bacterial clearance by increasing the phagocytic function 
of macrophages exposed to hyperoxia by increasing macrophage redox.   

-
-

21

-
-

95

-
+
95

+
+
95

0

1

2

3

HO
-1

/A
ct

in

GAT107 
DMSO Vehicle

O2 (%)

HO-1

Actin

95% O 2 +
 GAT107

****

95% O 2 +
 Vehicle

95% O 2 

21%
 O 2 

*
n.s.

-
-

21

-
-

95

-
+
95

+
+
95

0

20

40

60

80

Nu
cl

ea
r N

rf2
 (%

)

GAT107 
DMSO Vehicle

O2 (%)

*

A B
21% O2 95% O2 95% O2

0µM  GAT107 3.3µM  GAT10720 µm 20 µm 20 µm

Figure 5. GAT107 Activates the Nrf2/HO-1 antioxidant pathway. RAW 264.7 cells were either exposed to 21% O2 (white bar)
or 95% O2 (hyperoxia) (black bar) with or without GAT107 (grey bars). After 24 h of exposure to hyperoxia, macrophages
were fixed, permeabilized, blocked, incubated with a polyclonal anti-Nrf2-antibody overnight, and then conjugated to
AlexaFluor 488. Finally, the slides were counterstained with DAPI to visualize the nucleus. (A) Immunofluorescent
micrographs were subjected to ImageJ co-localization analysis and re-pseudo colored to determine the amount of Nrf2
signal (red) localized to the nucleus (green) using Manders’ Correlation Coefficient. (A) The bar graphs represent the
percent amount of total Nrf2 signal localized to the nuclear region. Under the same experimental conditions, the levels of
heme oxygenase-1 (HO-1) were determined in macrophages, and the levels of actin in whole-cell lysate were determined
using the western blot assay. (B) Representative immunoreactive bands for HO-1 and actin and (B) the quantification of
immunoreactive bands normalized to actin. Each value represents the mean± SEM of two to three independent experiments
for each group. Statistical differences were determined between all groups and indicated as **** p < 0.0001, * p < 0.05,
n.s. = non-significant compared to the hyperoxia-exposed group treated with vehicle.
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4. Discussion

This study demonstrates that GAT107 activates α7nAChR-dependent pathways within
the neuromodulated cholinergic anti-inflammatory system and GAT107 attenuated oxida-
tive stress by increasing the antioxidant response. The administration of 3.3 mg/kg i.p.
of GAT107 to mice significantly increased bacterial clearance by decreasing the level of
clinically relevant oxidative stress markers in the lung. Moreover, the protective effects of
GAT107, due to the increase in the clearance of P. aeruginosa, coincided with the restora-
tion of hyperoxia-compromised macrophage functions. The impairment of macrophage
function was attenuated by the GAT107-mediated decrease in the total protein oxidation,
including the oxidation of actin, a critical cytoskeletal component involved in macrophage
phagocytosis. Furthermore, GAT107 increased the activity of the antioxidant enzyme,
SOD1, and activated the protein transcription factor, Nrf2, and upregulated the levels
of the downstream mediator, HO-1. Taken together, these results suggest that GAT107
increases bacterial clearance by increasing the phagocytic function of macrophages exposed
to hyperoxia by increasing macrophage redox.

4.1. GAT107-Mediated Attenuation of Oxidative Stress Contributes to the Attenuation of
Hyperoxia-Compromised Bacterial Clearance Functions of Mice with PA Lung Infection

It is known that high levels of PA in the lungs can damage pulmonary tissue, resulting
in increased mortality rates in ventilated patients [48–50]. As shown in Figure 1, mice
exposed to hyperoxia and challenged with intra-tracheal PA, have an impaired capacity
to clear PA in both the airways and in lung tissue. The administration of GAT107 signif-
icantly attenuated the host defense response compromised by hyperoxia. Compared to
our previous findings, where the administration of 4 mg/kg i.p. of GTS-21 three times
a day under the same experimental paradigm utilized in this study [37], also attenuated
hyperoxia-compromised bacterial clearance in mice. In contrast, the twice-daily admin-
istration of 3.3 mg/kg i.p. of GAT107 to mice exposed to hyperoxia produced a ten-fold
increase in the clearance of bacteria. Since α7nAChRs are susceptible to receptor desen-
sitization [31], we hypothesized that the unique ago-PAM properties of GAT107 might
allow for lower and less frequent dosing, thereby producing a similar magnitude of bacte-
rial clearance, although a more detailed pharmacological evaluation will be required to
verify this hypothesis. Nevertheless, these results, provided that they can be translated
to humans, suggest that GAT107 could improve clinically relevant outcomes in patients
receiving oxygen therapy for extended periods by increasing the innate immune function
of macrophages, thereby decreasing the incidence of hospital-acquired infections [51–54].
It is important to note that direct vagus nerve stimulation, which activates α7nAChRs,
increases the survival rates of subjects with sepsis [55–58]. Interestingly, other studies
have indicated that the inhibition of α7nAChR with antagonists (methyllycaconitine and
α-bungarotoxin), only partially reduces GTS-21’s efficacy to inhibit LPS-induced secre-
tion of IL-6 and TNFα [59]. GTS-21 also partially ameliorates LPS-induced secretion of
both IL6 and TNFα from cultured macrophages where the α7nAChR gene was knocked
out [59]. In our study, we did not determine whether the efficacy of GAT107 was due to its
selective activation of the α7nAChR. Thus, it is possible that GAT107 may interact with
non-α7nAChR targets, and future studies will be required to identify these targets. Our
results indicated that the activation of α7nAChR-dependent pathways with GAT107 in
mice produced its efficacy by modulated clinically relevant parameters of oxidative stress.
As shown in Figure 1C and D, the i.p. administration of 3.3 mg/kg GAT107 significantly
decreased the hyperoxia-induced increases in ORP elevation in mice by increasing the
total antioxidant potential in the lung tissue homogenate. This is important as an increase
in oxidative stress can produce severe illness and death. For example, in a clinical trial
involving 645 people with traumatic brain injury, a 20 mV increase in plasma ORP levels
was positively correlated with a 4-fold increase in mortality [60]. Conversely, a 1 unit
increase in 1/cORP (antioxidant potential) was positively correlated with a 5-fold increase
in mortality [60]. Recently, we have reported that in mice exposed to 72 h of hyperoxia,
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there was a significant increase in lung lavage fluid ORP levels [25]. Furthermore, 24 h
of hyperoxia exposure induced a significant increase in cultured macrophage lysate ORP
levels [44]. Furthermore, in both of the aforementioned studies, ascorbic acid (50 mg/kg
i.p. or 1000 µM in cell culture) significantly decreased the hyperoxia-induced increase in
lysate ORP levels in mouse lung lavage fluid and cultured macrophages levels, and the
mortality rate was significantly diminished following the intra-tracheal administration of
P. aeruginosa [25,44].

Recently, it has been reported that the major cause of death in people with COVID-19
is due to pneumonia, which is in part mediated by a hyper-inflammatory response [61].
It has been posited that the use of non-invasive vagus nerve stimulation, which activates
the anti-inflammatory α7nAChR-mediated response, may be a potential treatment strat-
egy to decrease the hyper-inflammatory syndrome observed in COVID-19 [62,63]. Thus,
the identification of novel therapeutic strategies that provide protection against hyper-
inflammation and oxidative stress (caused by COVID-19 or clinical supplemental oxygen
therapy), such as activators of the cholinergic anti-inflammatory pathway (e.g., GAT107,
GTS-21 and vagus nerve stimulation), could restore critical host innate immune function
and decrease the severity and incidence of pneumonia.

4.2. GAT107 Significantly Attenuates Impaired Macrophage Innate Immune Functions Produced
by Hyperoxia by Decreasing the Oxidation of Actin

Our results demonstrated that 3.3 µM of GAT107 significantly attenuated the hyperoxia-
induced impairment of macrophage phagocytic function in cultured macrophages and
primary BMDMs (Figure 2). Previously, we and others have reported that prolonged
exposure to hyperoxia decreases macrophage phagocytic function [22,37,42,64]. The partial-
α7nAChR agonist, GTS-21 (5–50 µM), decreases impaired phagocytic function produced by
hyperoxia, which was due, in part, to a decrease in HMGB1 release from macrophages [37].
The GTS-21-mediated decrease in airway HMGB1 also increased bacterial clearance in the
airways of mice challenged with intra-tracheal PA infection [37]. Similar to our bacterial
clearance results (Figure 1), GTS-21, at 25–50 µM [37], and GAT107, at 3.3 µM, had similar
efficacy in significantly attenuating hyperoxia-induced phagocytic dysfunction of cultured
macrophages. Thus, the ago-PAM properties of GAT107, may produce greater efficacy
than the partial-agonism of α7nAChR by GTS-21. In addition, the direct stimulation of
the vagus nerve has been previously shown to increase the basal and sepsis-challenged
phagocytic activity of resident liver macrophages [65], suggesting that the activation of
α7nAChR in macrophages may play a critical role in modulating intracellular pathways
that mediate phagocytic activity.

In this study, the exposure of macrophages to hyperoxia produced oxidation of pro-
teins that caused the disorganization of actin fibers. These results are consistent with
previous studies reporting that the prolonged exposure to hyperoxia and intra-tracheal PA
oxidizes actin filaments, resulting in dysfunctional actin polymerization [22,23]. This is
important as macrophage phagocytic function is dependent upon the rapid polymerization
of actin filaments for migration and phagocytosis of bacteria [66]. Protein oxidation of
actin filaments may be due to macrophage activation, which increases superoxide pro-
duction during the oxidative or respiratory burst response [67]. The respiratory burst
response involves the assembly of NADPH oxidase enzymes that generate large amounts
of superoxide, which kill the ingested pathogens [67]. However, macrophages exposed
to hyperoxia for prolonged periods have significantly increased intracellular levels of su-
peroxide [19–21]. Consequently, hyperoxia exposure, in addition to activating respiratory
bursts, may produce excessive oxidative stress, where high levels of ROS can induce the
post-translational oxidation modifications of proteins, such as actin [68–70].

In this study, 3.3 µM of GAT107 significantly decreased the hyperoxia-induced actin
fiber disorganization in macrophages by decreasing the magnitude of protein oxidation.
This result is consistent with a study reporting that the activation of neutrophil α7nAChRs
with the direct agonist, nicotine, decreases the polymerization of actin [71]. In addition,
antioxidants, such as procysteine and exogenous superoxide dismutase (SOD), protect
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against hyperoxia-induced disorganization of the actin cytoskeleton, and restore phago-
cytic dysfunction [22]. Furthermore, hyperoxia-compromised macrophages have a lower
bactericidal capacity, which may be partly due to actin disorganization and subsequent dys-
function of the assemble of bactericidal enzymes or phagolysosomes [72]. Overall, our re-
sults suggest that the efficacy of GAT107 to attenuate hyperoxia-compromised macrophage
function may be due, in part, to it decreasing the oxidation of actin filaments.

4.3. GAT107 Decreases Oxidative Stress and Restores Antioxidant Functions

As shown in Figure 3, the prolonged exposure to hyperoxia increased total ROS lev-
els in macrophages and significantly decreased the antioxidant activity of SOD1. Our
results indicated that GAT107 significantly decreased the hyperoxia-induced increase in
macrophage ROS levels, as well as increasing SOD1 activity to the level of that in cells
incubated with vehicle (Figure 4). We hypothesize that the activation of the α7nAChR
by GAT107 could restore hyperoxia-compromised SOD1 activity by transcriptional up-
regulation and expression of SOD1 or by altering inhibitory post-translational regulatory
modifications of SOD1 [73]. Decreased SOD1 activity during hyperoxic conditions could
further increase the levels of cytoplasmic superoxide. Thus, high cytoplasmic ROS levels,
in addition to a compromised antioxidant defense system, may produce further oxidation
of macromolecules, such as F-actin. Indeed, biochemical analysis and computational mod-
eling suggest that NADPH oxidase (NOX)-mediated superoxide production causes the
oxidation of actin filaments at Cys10, 217, 257, 285, and 374 [74].

4.4. GAT107 Activates Nrf2 and Upregulates HO-1

The GAT107-mediated restoration of the hyperoxia-induced redox imbalance may be
due to its activation of the master antioxidant pathway component, Nrf2 (Figure 5A). Re-
cently, we and others have shown that the activation of the Nrf2 pathway in macrophages
in vitro and ex vivo in mice significantly increases innate immune function and decreases
lung injury [25,46,75]. The activation of α7nAChR by Ach or GTS-21 results in down-
stream Nrf2 activation and the transcriptional upregulation of the genes code for an-
tioxidant molecules, such as glutathione [21,32,76–78]. Heme oxygenase-1 (HO-1) is an
Nrf2-regulated and the rate-limiting enzyme in heme metabolism, which has been shown to
decrease oxidative-induced lung injury in mice [46,75,79,80]. Under hyperoxic conditions,
HO-1 null cardiomyocytes had mitochondrial damage and decreased density, which may
be due to heme toxicity [81]. Furthermore, hyperoxia exposure increases the number of
hemoproteins and free reactive iron in the lung tissues of mice [82]. It is likely that the free
iron and the heme groups in hyperoxia are derived from cytochromes, cyclooxygenases,
and other heme-containing proteins present in the mitochondria [83].

In HO-1-deficient mice with sepsis, there was a decrease in bacterial clearance by
macrophages, and this was attenuated by pretreating animals with carbon monoxide-
releasing molecules [84]. Conversely, in mice exposed to hyperoxia with disruption or
inhibition of HO-1 expression, the levels of total reactive iron in the lung were decreased
and the magnitude of inflammatory lung injury was decreased [85]. Although the exact
role that HO-1 plays in the lungs of mice and macrophages exposed to hyperoxia is not
fully understood, the early induction of HO-1 by GAT107 could produce an antioxidant
effect that attenuates hyperoxia-induced lung injury and increases bacterial clearance
by macrophages.

5. Conclusions

As shown in Figure 6, the α7nAChR type 2 ago-PAM, GAT107, attenuates hyperoxia-
induced dysfunction of bacterial clearance in mice inoculated with P. aeruginosa via intra-
tracheal administration. GAT107 restored the clearance of P. aeruginosa in mice, in part,
by inducing an antioxidant response in the lungs, thereby decreasing oxidative stress.
Furthermore, GAT107 was efficacious in attenuating macrophage phagocytic dysfunction
induced by hyperoxia. GAT107 also attenuated the increase in ROS levels caused in
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macrophages caused by hyperoxia. GAT107’s attenuation of macrophage oxidative stress
played a role in decreasing hyperoxia-induced oxidization of total protein and F-actin
filaments in macrophages. Indeed, in macrophages, GAT107 decreased the significant
increase in intracellular ROS levels and loss of SOD1 antioxidant function produced by
hyperoxia. GAT107 also activated Nrf2 and upregulated HO-1 expression, which would
decrease hyperoxia-induced oxidative stress. GAT107 attenuates hyperoxia-compromised
bacterial clearance in mice by attenuating the redox imbalance in macrophages. Thus, the
rapid development of a7nAChR agonists, such as GTS-21 and GAT107, which has already
been evaluated for the treatment of certain neurodegenerative diseases, could be beneficial
for patients with pulmonary infections, such as VAP and COVID-19 [86].
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Figure 6. The proposed mechanism by which GAT107 restores bacterial clearance in the lungs by reducing oxidative stress,
due to hyperoxia. Under room air conditions, Pseudomonas aeruginosa (PA) infection facilitates the re-organization of the F-
actin cytoskeleton, thereby facilitating bacterial clearance by macrophage phagocytosis. The exposure of macrophages to hy-
peroxia increases ROS levels, which overwhelms the antioxidant response, resulting in oxidative stress (Morrow et al., 2007;
Patel et al., 2016). Oxidative stress oxidizes actin, altering the formation of F-actin and impairing the phagocytic activity in-
volved in bacterial clearance in the lungs. The α7nAChR ago-PAM, GAT107, significantly restores hyperoxia-compromised
phagocytic activity by inhibiting the oxidation of actin by attenuating the hyperoxia-induced decrease in SOD1 activ-
ity and the upregulating HO-1 via the Keap1/Nrf2 antioxidative pathway. These GAT107-mediated effects reverse the
hyperoxia-induced impairment of macrophage phagocytosis.

In conclusion, our results, provided they can be extrapolated to humans, suggest
that GAT107 may be a potential therapeutic candidate that may prevent or treat patients
exposed to high levels of oxygen for a prolonged period of time.
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