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Dynamic changes of microbiome communities may play important roles in human health
and diseases. The recent rise in longitudinal microbiome studies calls for statistical
methods that can model the temporal dynamic patterns and simultaneously quantify
the microbial interactions and community stability. Here, we propose a novel
autoregressive zero-inflated mixed-effects model (ARZIMM) to capture the sparse
microbial interactions and estimate the community stability. ARZIMM employs a zero-
inflated Poisson autoregressive model to model the excessive zero abundances and the
non-zero abundances separately, a random effect to investigate the underlining dynamic
pattern shared within the group, and a Lasso-type penalty to capture and estimate the
sparse microbial interactions. Based on the estimated microbial interaction matrix, we
further derive the estimate of community stability, and identify the core dynamic patterns
through network inference. Through extensive simulation studies and real data analyses
we evaluate ARZIMM in comparison with the other methods.
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INTRODUCTION

The humanmicrobiota, a diverse array of microbial organisms living in and on human bodies, form a
dynamic ecosystem that plays a critical role in human health. While temporally stable microbial
communities are observed among healthy adults (Faith et al., 2013), the fluctuation of microbiome
has been linked to increasing frailty (Jackson et al., 2016) and declining immune function of hosts
(Claesson et al., 2012), and diseases such as inflammatory bowel disease (Martinez et al., 2008; Zuo
and Ng, 2018), colorectal cancer (Scanlan et al., 2008; Uronis et al., 2009), and irritable bowel
syndrome (Maukonen et al., 2006; Carroll et al., 2012). When a microbial community changes in
response to an external perturbation, it undergoes a dynamic process and tends to evolve toward
another stable state (Figure 1). This dynamic process is stochastic and varies according to the type
and strength of perturbation, the community stability prior to the perturbation, and other subject-
level relevant features. The recent rise in longitudinal studies, in which microbial samples are
collected repeatedly over time, offers unique insights into the responses of such communities to
perturbations and the associated dynamic patterns. For example, in our ongoing microbiome study
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evaluating the effects of antibiotic exposure as a short-term
perturbation on microbial, immune, and metabolic physiology
(MIME study), we are interested in determining how differently
the microbial community responds to the antibiotic treatment.

Human microbiota studies have been accelerated by the
advent of next-generation sequencing technologies which
enabled the quantification of the composition of microbiomes,
often by two common sequencing approaches—16S rRNA
marker gene sequencing and shotgun metagenomics
sequencing (Woo et al., 2008). There are pros and cons to
each of those techniques, which are discussed in recent
reviews (Shankar, 2017; Gilbert et al., 2018). But for both
methods, because of the varying sequencing read counts
obtained across samples, it is necessary to employ various
normalization tools to convert raw counts data into relative
abundances (Knight et al., 2018). However, the dependency of
the compositional components greatly hampers the
interpretation of microbiota changes in longitudinal studies.
There is reason to believe that the absolute abundances of
bacteria are biologically meaningful measures, especially in the
study of microbial interactions. Thus, in our MIME study, we use
an independent quantitative polymerase chain reaction (qPCR)
technology (Nadkarni et al., 2002; Ott et al., 2004; Kim et al.,
2013) to quantify total bacterial load per unit sample, and then
use these data to estimate absolute bacterial abundance by
combining them with the relative abundance values obtained
from 16S rRNA or shotgun sequencing methods. This MIME
study motivated us to develop analytical methods to investigate
microbial interaction and community stability after a strong
external perturbation, and identify core active microbial taxa
by modeling the absolute abundances of bacteria.

Althoughmany well-developed statistical tools are widely used
for assessing the diversity of microbial communities and its
composition, there are only a few methods available for
inferring the ecological networks of microbial communities.

Here we briefly review the well-developed statistical methods
for studying the dynamic microbial systems and their limitations.

A Bayesian network contains a set of multivariate joint
distributions that exhibit certain conditional independences
and a directed and acyclic graph that encodes conditional
independences among random variables. If the dependence
relationships repeat and the signals at a certain time point
only depend on the signals from previous time points, then
the whole network can be formulated as a dynamic Bayesian
network (DBN) (Russell and Norvig, 2002) representation.
McGeachie et al. (McGeachie, 2016) constructed a simplified
two-stage DBN which uses a Markov assumption that the
observed values at time t + 1 are independent of those at
earlier time points (t − 1 and earlier) given the variable values
at time t. Lugo-Martinez et al. presented a computational pipeline
which first aligns the data collected from all individuals, and then
learns a dynamic Bayesian network from the aligned profiles
(Lugo-Martinez et al., 2019). However, DBN has several
limitations in analyzing the longitudinal microbial data. 1) It
can only model the microbial community subject-by-subject. 2)
DBN cannot handle the excess zeros in microbiome data. Most
methods remove the taxa whose relative abundances exhibit zero
entry (i.e., not present in a measurable amount at one or more of
the measured time points) before the downstream analysis. 3)
The assumed distributions are unrealistic. E.g. all continue
variables are assumed to be normally distributed. 4) The
computational cost is relatively high, since parent nodes are
added sequentially for each bacterial node. Additionally, the
maximum number of possible parents is imposed, which is
not realistic. 5) Due to sampling and sequencing limitations,
the compositionality bias in microbiome data may also cause
inaccurate estimation of parameters. The existing methods ignore
this compositionality bias, making parameter estimates difficult
to interpret. 6) Irregular sampling time may also result in
inaccurate parameter estimation. Therefore, it is advised to
cautiously interpret the findings from DBN (Faust and Raes,
2012; Gerber, 2014).

The classical Lotka-Volterra equation has been used to model
simple system such as two species in a predator-prey relationship,
where the interactions are strictly assumed to be competitive. The
generalized Lotka-Volterra (gLV) equations extend the classical
predator-prey (Lotka-Volterra) equations, where the interacting
species might have a wide range of relationships including
competition, cooperation, or neutralism. Assuming that the
interaction (or the effect) of one species with another can be
modeled by the corresponding coefficient in the equation, gLV
equations provide a framework to analyze and simulate microbial
populations. Mounier et al. used the gLV equations to model the
interaction between bacteria and yeast in a cheese microbiome
(Mounier et al., 2009). Other microbiome studies further
extended and implemented the gLV equations (Marino et al.,
2014; Dam et al., 2016; de Vos et al., 2017; Venturelli et al., 2018).

Many software are available for applying gLV modeling on
microbial time series data, such as LIMITS (Fisher and Mehta,
2014), MetaMis (Shaw et al., 2016), and MDSINE (Bucci et al.,
2016a). LIMITS and MetaMis can be implemented to construct
microbial interactions using the longitudinal microbiome data

FIGURE 1 | Schematic of the evolution of microbial community states in
response to external perturbation. External perturbation (blue arrows) can
affect microbial community composition (shown in a pie chart), defined as a
community state. For each state, the ball-in-basin diagram portrays
stability measured by the variance in the stationary distribution of the location
of the ball. White arrows indicate the reaction of microbial community to the
perturbation.

Frontiers in Genetics | www.frontiersin.org February 2022 | Volume 13 | Article 7778772

He et al. Microbial Interactions and Community Stability

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


from one subject. MDSINE can jointly analyze multiple time
series, but requires Matlab programming. Web-gLV (http://web.
rniapps.net/webglv) can be used for modeling, visualization, and
analysis of microbial populations, but can only handle limited
number of samples. In summary, there are several limitations of
gLV in analyzing the longitudinal microbial data. 1) gLV based
models capture the interactions using a single averaged effect,
thus they are not well-suited for noisy data. 2) Some methods
estimate almost all possible edges without incorporating variable
selection techniques. 3) gLV estimates the growth rate of each
taxon marginally, therefore, ignores the intrinsic dynamic
correlations of the repeated measurements. 4) gLV does not
account for random processes which form essential part of
any biological system. 5) With the increased number of
species and time span of prediction, the simulation output is
prone to numerical errors. For example, Web-gLV can only
simulate a maximum of 10 species at a time for at most
100 time points. 6) As DBN, gLV is not suitable for sparse,
compositional, and irregular sampled microbiome data.

In Ives et al. (Ives et al., 2003), the stability of a microbial
community is determined by three key interrelated components
of microbial community structure: diversity, species composition,
and interaction pattern among species. They viewed the dynamics
of a microbial community as a stochastic process and proposed to
use a first-order multivariate autoregressive process [MAR (1)]
time-series model to disentangle the effects of these three
components on community stability and to estimate the
stability properties of a community by estimating the strengths
of interactions between species. This method is widely used to
estimate the stability of ecosystems (e.g., lake, ocean) based on
culture-dependent microbial data (Carpenter et al., 2011; Shade
et al., 2013). Usually a few (four or five) key microbes are detected
with high frequency in each ecosystem in time-series
measurements over a long period, and their abundances are
rarely zero. In contrast, our MIME study will yield
microbiome data from approximately nine time points over
half a year from 80 subjects in three groups in the complete
study—a relatively smaller number of repeated microbiome
samples but from a relatively larger number of microbial
communities (subjects) than what would be the case for an
ecosystem study. Moreover, the 16S rRNA sequencing and
qPCR methods used in this study provide absolute abundances
for a staggering number of taxa, which include a large number of
zero values. Because the MAR modeling methods require the
normality assumption, they are not appropriate for analyzing
data from sequence-based longitudinal microbiome studies.
Therefore, we propose an autoregressive zero-inflated mixed
effects model (ARZIMM) to address the special features of
data instead. Its novelties are threefold. First, we propose to
use a zero-inflated Poisson autoregressive model to model the
excessive zero abundances and the non-zero abundances
separately. Second, the random effects in the proposed model
can investigate the underlining dynamic pattern shared within
the group. Third, the employment of regularization techniques
and network inference in our model enables the identification of
the core dynamic patterns. The proposed ARZIMM estimates the
strength of interactions between taxa, which is required to

estimate the stability properties of a community, and identify
key active taxa efficiently by using all of the longitudinal
sequencing data. ARZIMM has been implemented in an open-
source software package (https://github.com/Hlch1992/
ARZIMM), and provides a useful tool for formulating,
understanding, and implementing longitudinal microbiome
data analysis.

In the following Material and Method section, we introduce
the ARZIMM framework, discuss the quantification of microbial
stability based on the estimated microbial interaction matrix, and
investigate the conditions under which there exist a strict-sense
stationary distribution. Then in the Result section, we evaluate
ARZIMM using extensive simulation studies to show that it
outperforms the conventional methods, and apply ARZIMM
to the MIME study to illustrate network visualization and
inference. In the end, we conclude with Discussion section.

MATERIALS AND METHODS

ARIZMM Model
As illustrated in Figure 2, ARZIMM can be considered as a two-
part model which comprises a logistic component and an
autoregressive component. To address zero inflation, we
consider the zero-inflated mixture model because it assumes
both sampling zeros (due to the low sequencing depth) and
structural zeros (being truly absent) exist in the data.
Specifically, the logistic component models the structure zeros
of taxa in the samples, and the autoregressive component models
the non-structure-zero abundances of the taxa under the
assumption that the changes in abundances from time t − 1 to
time t depend only on the observed abundances at time t − 1 and
other time-independent covariates, and the observed abundances
before time t − 1 have no direct effect. Since the goal of ARZIMM
is to characterize microbial interactions and community stability
during a short period after a strong external perturbation like the
antibiotic usage in ourMIME study, we assume there are no other
time-dependent factors exist to affect the microbial stability.

Notation and Model Specifications
Let Yimt denote the observed absolute abundance of bacterial
taxon m (m � 1, ...,M) for subject i at time
t (i � 1, 2, ..., n, t � 1, ..., Ti), and we model Yimt with a
conditional mixture distribution as follow:

Yimt

∣∣∣∣∣∣∣∣]i(t−1) ~ { 0 pim

F(yimt

∣∣∣∣]i(t−1); θitm, ϕm) 1 − pim
(1)

where ]i(t−1) represents all information that is known at time (t − 1)
for individual i, including the observed absolute abundance Yim(t−1)
and later defined coviariates W i and Zi. The parameter pim

represents the probability of the observation Yimt being structural
zero and is assumed time independent. Furthermore,F is assumed to
be an exponential dispersion family distribution with the canonical
parameter θimt and the dispersion parameter ϕm. Both Poisson and
negative binomial (NB) distributions can be used as to model
absolute abundance. Below we illustrate the detailed modelling
using Poisson model.
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The mixture probability parameters pi � (pi1 ,. . ., piM)′ are
modeled by the logistic regression:

log it(pi) � AW i + ai (2)
where W i � (1, wi1, . . . , wil)′ consists of intercept and l time
independent covariates for individual i, the parameter A �
(A1, . . . ,AM)′ is an M × (l + 1) matrix whose elements Amj is
the effect of covariate j on the zero proportion of taxon m. ai �
(ai1, . . . , aiM)′ is anM × 1 vector of random intercepts to model
the within-subject heterogeneity of being zero for individual i and
has the joint multivariate normal distribution N (0,Σa).

The canonical parameters for Poisson distribution is θimt �
logE(Yimt). We introduce the auto-regressive model by relating
θit � (θi1t, . . . , θiMt)′ to the ith individual’s observed log-
transformed absolute abundance vector at time t − 1: ~Y i(t−1) �
(log(Yi1(t−1) + 1), . . . , log(YiM(t−1) + 1))′ (where the pseudo
count 1 is added to avoid the undefined logarithm when the
absolute abudance is zero), and Zi � (1, Zi1, . . . , Ziq)′, the
intercept and q time-independent covariates of individual i by

θit
∣∣∣∣ ~Y i(t−1) � B ~Y i(t−1) + CZi + ηi (3)

where B is an M × M matrix whose element Bmj gives the effect
of the abundance of taxon j on the growth rate of taxonm, C is an
M × (q + 1) matrix whose element Cmj gives the effect of
covariate j on taxon m, and ηi � (ηi1, ..., ηiM)′ is time-
independent random intercepts. Note that, as an
autoregressive model, ηi is correlated with the fixed effect
~Y i(t−1) and this dependency can be tracked all the way back to
the initial observation ~Y i0. Because the standard random effects
model has assumption that the random effects are independent to
the other covariates in the model, in order to derive the random
effect type maximum likelihood (ML) estimators, we use the
Chamberlain type projections (Chamberlain, 1982) to get around

this correlation. Specifically, we project ηi onto the time 0
observations ~Y i0 by:

ηi � Π ~Y i0 + bi (4)
where Π is anM × Mmatrix with diag(Π) � (π1, . . . , πM)′ and
off-diagonal components being zero. The components of Π
represent how much variation in ηi is due to the dependence
on subject i’s initial value ~Y i0. bi � (bi1, ..., biM)′ is an M × 1
vector, representing the independent subject-specific random
effect and follows a joint multivariate normal distribution
N (0,Σb).

In the model, our primary interest is to estimate matrix B ,
which measures the strengths of interactions between taxa. For a
microbial community with a given number of species, its stability
or dynamics status depends on the changes in the species’
population growth rates due to perturbation, which
immediately cause the changes in the population growth rates
of other species via species-species interactions (Ives et al., 2000).
Interaction between species can be viewed as a filter that amplifies
the variability in species’ population growth rates caused by
perturbation.

Note that we choose Poisson distribution because of its nice
stationary distribution property in the autoregressive model
which is crucial for our following stability investigation. To
deal with the over-dispersion of microbiome data, we
implemented the quasi-Poisson model (Ver Hoef and Boveng,
2007) in the simulation and real data analysis.

Penalized ML Estimation and Variable
Selection
To define the joint likelihood of the longitudinal microbial
absolute abundance data Yit , we assume that the vector of

FIGURE 2 | Graphical representation of ARZIMM model and analytic techniques.
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time independent random effects ci � (a′i , b′i)′ underlies both the
zero and autoregressive generative processes and these random
effects account for the within-subject group heterogeneity in the
multivariate logistic component and the multivariate
autoregressive component. Denote D � (B,C) � (D1, ...,DM)′
, ϕ � (ϕ1, ..., ϕM)′ , and 1[·] as the indication function that
when [·] meets, 1[·] � 1, otherwise, 1[·] � 0. Formally, we
have the joint likelihood function as:

L(D,A,Π,ϕ, σ) � ∏n
i�1

∫⎧⎨⎩⎡⎣∏ti
t�1

∏M
m�1

fy(yitm

∣∣∣∣θitm(bim),ϕm, pim(aim))⎤⎦
g(ci|Σ(σ))

⎫⎬⎭dci

(5)
where fy is the conditional probability density function and
given as

fy(yitm

∣∣∣∣θitm(bim), ϕm, pim(aim)) � [pim + (1 − pim)f(yitm

� 0
∣∣∣∣θitm, ϕm)]1[yitm�0] × [(1 − pim)f(yitm

∣∣∣∣θitm, ϕm)]1[yitm ≠ 0] (6)
The function g(ci|Σ(σ)) is the joint distribution of ci, and

Σ(σ) � [ Σa Σab

Σab Σb
] represents the corresponding 2M × 2M

covariance matrix, where σ accounts for all unique non-zero
elements of Σ. For the model and computational simplicity, we
assume Cov(ai, bi) � Σab � 0, i.e. ai and bi are independent.

Assuming that the true underlying fixed effects A and D are
sparse, we advocate a Lasso-type approach, which adds an ℓ1

-penalty for the fixed-effects to the likelihood function. Thus, we
consider the following objective function:

Q � −2 logL +∑M

m�1[μ1m∣∣∣∣∣∣∣∣Dm

∣∣∣∣|1 + μ2m
∣∣∣∣∣∣∣∣Am

∣∣∣∣|1]. (7)
Maximization of the penalized log-likelihood function

corresponding to Eq. 7 with respect to (D,A,Π,ϕ, σ) is a
computationally challenging task. This is mainly because both
integrals with respect to the random effects and the zero-inflated
structure do not have analytical solutions. Following the
conventional methods, we propose to implement a Laplace
approximation on the integral of random effects in Eq. 7 and
use the Expectation-Maximization (EM) algorithm to calculate
the expectation and compute parameters iteratively, in which the
label of zero is treated as “missing data”. The tuning parameters
are selected using Bayesian information criterion (BIC).

Stability Properties
The existence of a stationary distribution has been investigated
for the log-linear Poisson auto-regression model based on the
perturbation technique (Fokianos and Tjøstheim, 2011). Here,
we prove the existence of a stationary distribution of a zero-
inflated Poisson mixed-effect auto-regression model in
Theorem 1 utilizing the theory of Markov chains which has
been proposed to prove the existence of a stationary distribution
of a general class of time series count models (Douc et al., 2013).
The detailed proof is provided in the Supplementary Material
Section S3.

Theorem 1. Assuming that time-independent parameters ηi and
pi are known, if all eigenvalues of matrix B lie inside the unit
circle, a strict-sense stationary ergodic process {Y it}t∈N will exist,
where N denotes the set of natural numbers.

With this Theorem, we can first show that for a microbial
community, its dynamic process {Y it}t∈N has a stationary
distribution by proving that all eigenvalues of matrix B lie
inside the unit circle. Then, following Ives et al. (Ives et al.,
2003), we consider the return rate and reactivity as two stability
measures based on the variability of the stationary distribution for
MAR (1) model. Specifically, return rate depends on the rate at
which the perturbed microbial community approaches the
stationary distribution and reactivity, and assesses how strongly
population-level microbiome abundances are pulled towards the
mean of the stationary distribution. Both are bounded by the
largest eigenvalue of B, denoted by max(λB). In general, a smaller
max(λB) indicates the perturbedmicrobial community approaches
its stationary distribution faster, or a system is less reactive, then the
microbial community is more stable. The detailed proof is deferred
in the Supplementary Material Section S3.2.

Based on the theory in Ives et al. (Ives et al., 2003), for a
community with multiple species, the covariance matrix of the
stationary distribution depends on the covariance matrix of the
process error and the interactions between species captured in the
matrix B. As illustrated in Figure 1, when the external
perturbation(blue arrow) acts on the community, the ball(microbial
community) sitting in a deep bowl in state 2 which represents a
relatively stable system, will return to its stationary state faster than the
ball sitting in a shallow bowl in state 1 which represents a less stable
system. In a stable system, the variance of stationary distribution is
only slightly greater than the variance of process error and the variance
of species interaction is small. In contrast, in a less stable system, the
species interaction will amplify the environmental variance and create
large variance in the stationary distribution, therefore the variance of
species interaction is large, assuming the process errors are similar in
the compared two states. Thus, the difference between the variances of
stationary distribution of different communities can be attributed to
species interactions. The smaller of the variance of matrix B, the more
stable of the study microbial community.

RESULTS

Simulation Study
We have conducted extensive simulation studies to evaluate the
performance of ARZIMM in both model fitting and variable
selection by comparing it with the competing methods: penalized
Poisson auto-regression (Poisson), penalized log-normal
multivariate auto-regression (MAR), and extended generalized
Lotka-Volterra (gLV) equations using Bayesian algorithm
(MDSINE) (Bucci et al., 2016b). The brief descriptions of
these methods are provided in the Supplementary Material
Section S2.

Simulation Design
We generated the longitudinal absolute abundances from zero-
inflated Poisson distribution with parameters pim and θimt for
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each taxon. Since our focus is on the estimation of the interaction
matrix B, which depends on the non-zero part, we adopted a
simple simulation design for the zero inflation proportions pi �
(pi1, ..., piM)′. We ignored the individual variations in pi by
dropping the random effect term ai in Eq. 2. With model
logit(pi) � AW i and by controlling the values of W and A
respectively, we set the zero inflation proportions pi for 20
taxa to mimic the observed sparsity in real data as

pi � (0.72, 1.00, 0.96, 0.34, 0.50, 0.56, 0.94, 0.84, 0.98, 1.00,
0.78, 0.68, 0.96, 1.00, 0.38, 0.56, 0.82, 1.00, 0.28, 1.00)′ (8)
The detailed values of W and A are provided in the

Supplementary Material Section S4. We generated the non-
zero absolute abundances from Poisson distribution with their
θit � (θi1t, ..., θiMt)’ defined as θit � B ~Y i(t−1) + b0 + bi, where the
intercept b0 was set to be the mean log-transformed non-zero
absolute abundances of taxa in MIME real data, and the random
effects bi ~ N (0, diag(Σb)) with diag(Σb) ~ 10N (−1.5,0.5). We
assumed that the interaction matrix B was sparse by randomly
selecting 5% of its elements to be non-zero. Three interaction
matrices were considered with varied informative absolute effect
strengths: high (BH

jm ~ 10N (−0.5.0.5)), medium (BM
jm � ���

0.1
√

βHjm),
and low (BL

jm � 0.1BH
jm), for the non-zero elements Bjm. In

addition, we designed four simulation scenarios: Scenario 1
with diag(Σb) � 0 and pi � 0, considered as the benchmark
situation where subjects are homogeneous and taxa are all
presented; Scenario 2 with diag(Σb) ~ 10N (−1.5.0.5) and pi � 0,
where subjects are heterogeneous and taxa are all presented;
Scenario 3 with diag(Σb) � 0 and pi as in (8), where subjects
are homogeneous and taxa have zero inflated structure; and
Scenario 4 with diag(Σb) ~ 10N (−1.5.0.5) and pi as in (8), where
subjects are heterogeneous and taxa have zero inflated structure.

In each scenario, we generated 500 independent repetitions for
n � 20 or 50 subjects, T � 10 or 20 time points, and M � 20 taxa
for each sample to evaluate the performance of ARZIMM.

Simulation Results
We first compared the model fittings of ARZIMM, Poisson, and
MAR methods using mean normalized squared error score
(MNSES), as suggested in the prior studies (Carroll and
Cressie, 1997; Liesenfeld et al., 2006; Czado et al., 2009;
Tkacz et al., 2018a). MNSES is defined as 1

n × T × M(yimt−ŷimt
σ̂yimt

)2
with ŷimt being the estimated yimt and σ̂yimt being the estimated
standard error of yimt. The closer the MNSES is to 1, the better
model fitting the method has. Since MDSINE only provides the
estimates of interactions among species without their variance
estimates, it was excluded from this comparison. Table 1 and
Supplementary Table S1 summarize the median and
interquartile range (IQR) of MNSES over 500 replications for
these three methods. Overall, the medians of MNSES for
ARZIMM are all around the expected value of 1 in various
settings across four scenarios, which indicates the good fitness
and robustness of ARZIMM in dealing with excess zeros and the
correlation among repeated measures at the same time, as well
as its satisfying estimation accuracy on the microbial interaction
parameters. However, the other two methods: Poisson and

MAR, both exhibit inferior performance. The Poisson model
is only competent in Scenario 1, when subjects are
homogeneous and no excess zeros are present. In Scenarios
2-4, when any factor, excess zero or subject heterogeneity,
presents, the predicted values based on the Poisson model
deviate greatly from the observed values. Comparing the
considered two factors, Poisson model is more sensitive to
the subject heterogeneity and presents larger deviations with
it. Due to the invalid normality assumption and lack of
consideration of the correlation among the longitudinal
measurements, the MAR model exhibits the worst
performance among three methods with enormous deviation
especially in Scenarios 3 and 4, which confirms the
inappropriateness of using conventional statistical methods
which require the normality assumption to analyze the
microbiome data.

Next, we evaluated the variable selection performance for
ARZIMM, Poisson, MAR, and MDSINE in terms of true
positive rate (TPR; mathematically equals to the power) and
false positive rate (FPR; mathematically equals to the type I error).
Specifically, TPR quantifies the probability of a significant
interaction identified by one method given that the interaction
effect is truly nonzero; and FPR quantifies the probability of a
significant interaction identified by one method given that the
interaction effect is truly zero. The simulation results for 50
subjects with 20 time points are summarized in Figure 3 and all
the other simulation results with different subject numbers and
time points are deferred to Supplementary Figure S1, because
they have a similar pattern as seen in Figure 3. Figure 3 shows
that the FPRs of ARZIMM are all at or below the nominal level
(5%) across different simulation regimes and effect sizes, and its
TPR estimates exhibit a sensible and consistent pattern as they
increase as the interaction effect gets stronger across four scenarios.
As expected, the FPR and TRP estimates of Poisson and ARZIMM
models are coincident under Scenario 1, because when subjects are
homogeneous and taxa don’t have excess zeros, ARZIMM model is
reduced to Poisson model. However, in Scenarios 2-4, because
simple Poisson model fails to take care of the excess zeros or
subject heterogeneity, it suffers from the inflated false positives,
while ARZIMM does not. For the other two methods, both MAR
and MDSINE perform poorly on controlling false positive rates for
all simulation scenarios, because MAR fails to fit the skewed and
highly sparse microbiome data, while MDSINE captures the
interactions based on the averaged effect over subjects in a group
but completely ignores the randomness at the subject level process
which is the essential characteristic of any biological system. In
summary, ARZIMMoutperforms the other competitors in handling
the excess zeros and subject heterogeneity well with controlled FPR
and satisfactory TPR.

To further investigate the performance of informative
interaction selection, we calculate Matthew correlation
coefficient (MCC), defined as TPpTN−FPpFN������������������������

(TP+FP)(TP+FN)(TN+FP)(TN+FN)
√ ,

and F-score, defined as TP
TP+(FP+FN)/2 , where TP gives the

number of selected interactions being true positive, FP gives
the number of selected interactions being false positive, TN
gives the number of unselected interactions being true
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TABLE 1 | Simulation results for all settings under scenario 1 and 4. Poisson refers to the penalized Poisson autoregression model and MAR refers to penalized log-normal
multivariate autoregressionmodel. The reported value is median (IQR) of mean normalized squared error score (MNSES) calculated over 500 simulations for each setting.
n refers to the number of subjects, and T refers to the number of time points. Scenarios 2 and 3 are deferred to Supplementary Material.

Methods ARZIMM Poisson MAR

Effect
size

High Median Low High Median Low High Median Low

Scenario 1

n T Median (IQR)

20 10 0.98 0.98 0.98 1.00 0.99 1.00 47 50 52
(0.97–0.99) (0.97–0.99) (0.97–0.99) (0.99–1.01) (0.984–1.00) (0.99–1.00) (33–77) (35–80) (37–80)

50 20 0.99 0.99 0.99 1.00 1.00 1.00 123 115 114
(0.99–1.00) (0.99–1.00) (0.99–1.00) (1.00–1.01) (1.00–1.00) (1.00–1.00) (86–192) (78–187) (80–177)

Scenario 4

n T Median (IQR)

20 10 0.95 0.92 0.91 30.59 18.87 18.46 30071.82 29390 22435
(0.87–2.30) (0.86–1.10) (0.86–1.02) (21.90–41.51) (15.26–21.95) (14.77–21.80) (8984–133153) (13929–77371) (10251–50171)

50 20 1.09 0.92 0.85 40.31 31.08 30.30 211141 110656 93579
(1.05–1.20) (0.90–0.93) (0.85–0.86) (36.80–43.63) (30.25–31.76) (29.65–30.95) (118860–473551) (80809–202068) (66942–167227)

FIGURE 3 | Simulation results of variable selection performance. Poisson refers to the penalized Poisson auto-regression model and MAR refers to penalized log-
normal multivariate auto-regression model. MDSINE refers to the method with extended generalized Lotka-Volterra (gLV) equations using a Bayesian algorithm. Mean
(and 95% confidence interval) of false positive and true positive rates are reported for 500 simulations with 50 subjects and 20 time points in four scenario: (A) no zero-
inflated structure and no heterogeneity, (B) heterogeneity but no zero-inflated structure, (C) zero-inflated structure but no heterogeneity, and (D) both zero-inflated
structure and heterogeneity.
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negative, and FN gives the number of selected interactions being
false negative. MCC ranges from −1 to 1, where value 1 indicates
perfect agreement between truth and selection, value −1 indicates
perfect disagreement, and value 0 indicates that the selection is
random with respect to the truth. F-score ranges from 0 to 1,
where value 1 indicates that there are neither false negatives nor
false positives and value 0 only indicates no true positives are
reported. As expected, MCC and F score are comparable to each
other and increase as effect size increases (Supplementary Figure
S2). This consistent pattern is observed across four scenarios for
ARZIMM but not for Poisson nor MAR models. Similar to TPR
and FPR estimates, the MCC and F score values of Poisson and
ARZIMM models are coincident under Scenario 1. However, in
other situations, both Poisson and MAR perform poorly with low
MCC and F score values.

As for the computational cost, ARIZMM took about 2.4 h to
complete the estimation and bootstrap inference for a simulated
dataset with 50 subjects, 20 timepoints, and 20 taxa.

Real Data Application
We applied ARZIMM methods to the MIME study. The MIME
study is an ongoing randomized trial on 80 healthy volunteers
with one control group (ctrl) and two antibiotic groups
(amoxicillin, amx, and azithromycin, azm); antibiotics are
provided for a 1-week period at the start of the trial. The
main microbiome research goal of the MIME study is to
evaluate the effects of antibiotics on microbial profiles at both
the community and taxonomical levels. With ARIZMM, we
propose a different perspective to evaluate the effect of
antibiotics through the investigation of microbial interaction
and community stability across groups. Because the clinical
trial is still ongoing and only partial data are available, the
following data analysis is done on a subset of MIME data
including only 11 subjects who were randomized to two groups:
4 ctrls and 7 azms. The main purpose of this analysis is to illustrate
how to use ARIZMM, not for the scientific conclusion. For each
subject, we collected two baseline microbiome samples, three
samples during the course of antibiotics, and five post-antibiotic
samples. The gut microbiota of these individuals were profiled
using 16S rRNA gene targeted sequencing on the Illumina MiSeq
platform. To obtain the microbial absolute abundances, we
multiplied the relative abundances of OTUs by the sample
density 1.1 g/cm3 and the number of universal 16S rRNA per
gram measured using qPCR (Stein et al., 2013a). In our
analysis, samples that collected before treatment in both
antibiotic groups were excluded. The abundances of taxa
were agglomerated at the genus level and taxa were further
filtered if 1) the average relative abundances over all samples
are less than 0.1%, and 2) the taxa are presented in less than 5
samples within each group.

First, Figure 4A shows a comparison of the relative abundance
(top panel) and the absolute abundances determined by
quantitative sequencing (bottom panel) of the dominant
bacterial genera in 99 fecal samples from 11 subjects (blocks)
across seven to nine time points (shown from left to right within
each block) of this preliminary dataset. It is evident that the

relative abundance and absolute abundance data present different
information about the microbial profiles, and that the total
bacterial load changes over time for each subject (i.e., within
each block). Thus it is essential to study the microbial interactions
using the absolute abundance data.

Then, we evaluate the model fitting of the log-normal
distribution [used in MAR(1)] and zero-inflated over-
dispersed Poisson distribution (used in ARZIMM) on the
available subset of MIME data using chi-square goodness of fit
test at 5% significance level taxon by taxon. Out of 45 taxa in the
control group, 1 and 44 of their absolute abundances were fitted
well (p > 0.05) by log-normal distribution and zero-inflated over-
dispersed Poisson distribution respectively. The log-normal
distribution fails to fit the data well when microbial taxa’s
absolute abundance data are left-skewed and sparse (two
examples are illustrated in Figure 4B).

Next we demonstrate how to conduct inference for microbial
interactions and community stability with ARZIMM on MIME
data. First, we fit ARZIMM to ctrl and azm groups separately,
adjusting for age, gender, and BMI, to get their estimated
interaction matrix B̂ s. Table 2 reports the characteristics of
microbial interaction matrix estimates B̂ s. Defining the interaction
effect as informative if its B̂mj ’s 95% bootstrap confidence interval
(based on 100 bootstrap samples) does not contain zero, we identified
125 and 105 informative interactions, respectively, in azm and ctrl
groups. Their interaction effects are illustrated using networks in
Figure 5. With more informative interactions, the azm groups have
bigger and more complex networks than the ctrl group (first row of
Figure 5), while the control group has more large estimated
interaction effects than those in azm group as showed in Table 2
and the last three rows of Figure 5. This observation indicates that the
antibiotic treatment reduce the strength of the interactions among the
taxa and create more variations with more weak interactions among
taxa, thus reduce its stability. In the last row of Table 2, based on our
stability theory we report the stability properties of the studied
microbial communities. The ctrl group has the lower estimates
of maximum eigenvalue squared 0.11 comparing to the azm
group’s maximum eigenvalue squared 0.32, which indicates that
the control microbial community is more stable than the
antibiotic communities.

Figure 6 provides additional information on the network
feature comparison between ctrl and azm groups. Figure 6A
displays the distribution of the positive and negative informative
interaction estimates separately. The ratios between the numbers
of positive and negative interactions are both around 1:1 in two
groups. Figure 6B presents the frequency distribution of vertex
degree of all the taxa in each group and they are all skew to the
right. In the figure, a vertex represents a taxon in a community
and its vertex degree is the number of informative interaction
effect it has with the other taxa. By defining average neighbor
degree as the average number of a given taxon’s neighbor vertices’
degrees, Figure 6C shows that the average neighbor degree is
negatively correlated with the vertex degree in azm antibiotic
treated group, but not in the control group. This indicates that
there may be a group of taxa interacting with each other actively
in the antibiotic group. It would be interesting to identify such
sub-community with additional effort.
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DISCUSSION

In this paper, we propose ARZIMM, an analytic platform which
estimates the microbial interactions and community stability
using longitudinal microbiome data. ARZIMM tackles the
zero-inflated absolute abundance with a mixture distribution
of zero and exponential dispersion distribution family, and

enhances statistical efficiency by utilizing a random-effects
term to account for the correlations among repeated
measurements.

It is well-known that microbial correlations calculated from
relative abundances are distorted by the compositional nature of
microbiome data, and are insufficient in tracking microbial
dynamics(Gloor et al., 2017). We advocate to investigate the
microbial correlations using longitudinal absolute abundances
which can be determined by combining gene amplicon
sequencing with auxiliary total DNA quantitation data. qPCR is
one of the most commonly used strategies to quantify total DNA
(Dannemiller et al., 2014) and has been implemented in various
statistical analyses (Stein et al., 2013b). Other alternative methods to
quantify the absolute abundances include the combination of the
sequencing approach (16S rRNA gene) with robust single-cell
enumeration technologies (flow cytometry) (Props et al., 2017)
and the usage of synthetic chimericDNA spikes (Tkacz et al., 2018b).

Plenty of zero-inflated mixed effects models have been
recently proposed to handle the excess zeros in microbiome
abundance data such as zero-inflated Poisson, negative

FIGURE 4 | MIME study microbiome data. (A) Difference between relative abundances (top panel) and absolute abundances based on qPCR (bottom panel) of
dominant genera in XX fecal samples obtained from 21 subjects (block) at 7–9 time points (x-axis) each. (B) Distribution of absolute abundances of two representative
genera from the MIME study, shown in the left and right panels, respectively. For each genus, the absolute abundance is fitted with a log-normal distribution (red line) or a
two-part distribution: a zero part (dark green line shown in right panel) and a non-zero part fitted with an over-dispersion Poisson distribution (blue line).

TABLE 2 | The characteristics of networks.

Group description Azithromycin Control

Sample size 7 4
Number of time points 9 9
Number of taxa 49 45
Number of informative interactions 125 105
Number of |B̂mj |<0.1 73 45
Number of 0.1≤ |B̂mj |< 0.25 30 29
Number of 0.25≤ |B̂mj |< 0.5 17 14
Number of |B̂mj |≥ 0.5 5 17
Informative interaction percentage (%) 5.21 5.19
Maximum eigenvalue squared 0.32 0.11
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binomial and quasi-Poisson models(Xia et al., 2018; Zhang et al.,
2018). However, none of the existing methods estimates the
microbial interactions and community stability. To fill this
gap, we extended a zero-inflated Poisson model with auto-
regression and random effects modeling, which plays crucial

role in efficiently handling the individual heterogeneity and
enable the investigation of microbial interactions.

We investigated two community stability measurements
derived from ARZIMM: the return rate and reactivity, to
further understand ecological dynamics. The estimated

FIGURE 5 | Interaction network. Estimated interaction network for: (A) azithromycin (azm), and (B) control groups, displaying (1) all selected interactions, (2)
interactions with |B̂mj |≥0.1, (3) interactions with |B̂mj |≥0.25, and (4) interactions with |B̂mj |≥0.5. Each node represents a taxon at the genus level, the size of which
shows the degree of that taxa and the color of which shows the phylogenetic Order level for each taxon. Each edge with arrow represents an interaction effect, the width
of which represents the absolute effect size on a log10 scale, with the color showing a positive (orange) or negative (blue) effect.
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interaction matrix B from the ARZIMMmodel serves the basis
to calculate the largest eigenvalue of B: max(λB), which
determines the return rate of the mean of the transition
distribution from the departure to the mean of the
stationary distribution. We proposed to measure the
reactivity of a microbial community by the expected change

of the stationary distribution’s mean in distance from one time
point to the next time point. In ARZIMM, higher reactivity
coincides with larger eigenvalues of B, thus governed again by
max(λB). Other measures of community stability, such as
variance of the stationary distribution (Ives et al., 2003),
warrant further investigations.

FIGURE 6 | Characteristics of estimated interactions. (A) The effect size of estimated informative interactions, wherein the x-axis represents the log10 scaled
absolute effect size, the y-axis represents the count of informative interactions, and the colors represent the positive or negative effects. (B) Histogram of vertex degree,
wherein given a vertex, vertex degree is defined as the counts of edges upon the vertex. (C) The average neighbor degree (y-axis) versus vertex degree on a log-log scale
(x-axis). The average neighbor degree is the average number of a given taxon’s neighbor vertices’ degrees. Dotted lines represent 95% confidence limits.
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It is worth noting that by utilizing the ARZIMM model
framework, the time-dependent perturbation (for instance,
diet) can also be assessed flexibly in both the autoregressive
part and the logistic part in the model. However, the stability
based on the microbial interactions has to be interpreted with
caution, since the mean of stationary distribution changes along
with the time-dependent covariates.

We have demonstrated that ARZIMMoutperforms the competing
methods and exhibits its feasibility for examiningmicrobial interactions
and stability based on longitudinal microbial data. We applied our
method to a real humanmicrobiome study of antibiotic treatment and
elucidated themicrobial interaction network of bacteria from antibiotic
and non-antibiotic groups separately. The application of ARZIMM to
temporal microbiome data shows great promise. Still, the development
of accurate predictive models will require further developments. For
example, the method used here to infer microbial interactions may be
expanded by adding functional information as well as phylogenetic
information. Although this method is primarily developed for the gut
microbiota, it may be potentially applied to longitudinal data from any
ecological systems. Since interactions between members of microbial
communities are primary driving forces for the long-term
stability(Ratzke et al., 2020), the corresponding stability properties
will provide useful principles for community dynamics.

Note that the proposed ARIZMM assumes the probability of
observing a zero count for a taxon is constant over time. The reason is
two-fold. 1) Onemajor goal of ARIZMM is to derive the inference on
the stability of the microbial community over a certain period. With
the constant probability of observing a zero count assumption, the
stability inference will solely depend on the estimation of the taxon-
by-taxon interaction matrix B. Otherwise, a stationary distribution
will not exit. 2) Using the MIME data, we estimated the proportions
of zeros (denoted as qmt) for all taxa by group at all time points, then
calculated the mean(q̂m) and standard deviation (SDq̂m) over all the
time points and the coefficient of variation ( CVm � SDq̂m/q̂m, m �
1, . . . ,M) to evaluate their temporal variations. The median of
CVm over all taxa in the control, Amoxicillin and Azithromycin
groups are 0.16, 0.12, and 0.34 respectively. This results reveal two
observations: 1) the temporal variations of qmt in most taxa are
relative weak; and 2) the temporal variation of the proportions of zero
is heterogeneous and theremay be no one perfectmodel fitting all the
taxa well. Thus, we believe our assumption that pm is constant over
time is valid and pragmatic. To further check the robustness of our
proposed model, we conducted additional simulation by introducing
extra randomness when we generate the probability of observing a
zero count across the time points, while analyze the data using our
proposed model. Our results show that the moderate temporal
variation in probability of zero count does not affect ARIZMM’s
performance much in capturing the informative interactions by
estimating B when the absolute effect strengths of interaction
matrices is high or medium. The detailed simulation design and

results are reported in the SupplementaryMaterial Section S4.2 and
Supplementary Figure S3.

The proposed method, ARZIMM has a few limitations and
future works are needed to improve it. ARZIMM adopts a
simple correlation structure that the random effects in the
multivariate logistic component and the multivariate
autoregressive component ai and bi are assumed
independent. We took this parsimonious model based on
our experience(Hu, 2021; Wang, 2021) in modeling the
longitudinal microbiome data to ease the computational
burden. The more general random effects structure with
cross-part correlations can provide more robust modeling,
however, can suffer from model convergence as well.
Further investigation is warranted.
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