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Abstract
Background: Autosomal dominant polycystic kidney disease (ADPKD) is an 
inherited cystic kidney disease associated with a spectrum of various renal and 
extrarenal manifestations, including increased risk of kidney cancers. Here, we 
present the initial molecular description of sarcomatoid renal cell carcinoma 
(sRCC) arising in the setting of ADPKD.
Methods: Multiregion whole- exome sequencing and whole transcriptomic se-
quencing were used to examine intratumoral molecular heterogeneity among 
histologically- distinct spindle (sarcomatoid), epithelioid, or biphasic com-
partments within the tumor and compared with the non- malignant ADPKD 
component.
Results: Spindle and biphasic components harbored several overlapping driver 
gene mutations, but do not share any with the epithelioid component. Mutations 
in ATM, CTNNB1, and NF2 were present only in the biphasic and spindle compo-
nents, while mutations in BID, FLT3, ARID1B, and SMARCA2 were present only 
in the epithelioid component. We observed dichotomous evolutionary pathways 
in the development of epithelioid and spindle compartments, involving early 
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1  |  INTRODUCTION

Sarcomatoid renal cell carcinoma (sRCC) is an uncom-
mon but important clinical entity, given its aggressive 
nature and poor response to contemporary therapeutic 
options. Approximately 5% of kidney cancers involve sar-
comatoid change, and sRCC is now thought to be a termi-
nally dedifferentiated form of RCC which may arise from 
any histological subtype, rather than a distinct subtype of 
RCC (Shuch et al., 2012). This current thinking follows 
the observation that sarcomatoid tumors always contain 
some proportion of carcinomatous element, and can be 
found associated with any histological subtype (Peralta- 
Venturina et al., 2001). Sarcomatoid change had been 
demonstrated to be an independent poor prognostic factor 
for RCC, which confers a median survival of 4– 9 months. 
A higher proportion of sarcomatoid cells in a tumor has 
also been linked to poorer prognosis (Cheville et al., 2004; 
Shuch et al., 2009).

Despite its clinical significance, the pathogenesis and 
genomic alterations underlying sRCC remain poorly char-
acterized. A previous study on sarcomatoid change in the 
setting of clear cell RCC showed that biallelic mutations 
in TP53 were associated with sarcomatoid change. Other 
cancer driver genes ARID1A and BAP1 were significantly 
mutated in the sarcomatoid components and were mutu-
ally exclusive with TP53 (Bi et al., 2016). Another study 
showed that cell- cycle pathways were enriched in sarco-
matoid versus adjacent clear cell components, suggesting 
greater cell proliferation. This was accompanied by in-
creased mTOR pathway activation driven by overexpres-
sion of AUKRA in the sarcomatoid elements as compared 
to the clear cell components (Pal et al., 2015). Apart from 
these limited studies, the molecular pathobiology of sar-
comatoid change in non- clear cell RCC has been less fre-
quently documented until recently (Malouf et al., 2016; 
Wang & Zhang, 2020).

Interestingly, there has been a suggestion that sarco-
matoid change occurs in a disproportionately large num-
ber of patients with RCC on a background of autosomal 
dominant polycystic kidney disease (ADPKD; Keith et al., 

1994; Yu et al., 2016). ADPKD is the commonest mono-
genic renal disorder that is correlated with mutations in 
genes including PKD1 and PKD2. It causes the gradual de-
velopment of innumerable cysts in the kidneys, as well as 
cysts in the liver, pancreas, and spleen in adulthood, and 
often results in end- stage renal failure in late adulthood. 
There are many known complications of ADPKD, such as 
renal failure, cyst hemorrhage, infection, and malignan-
cy— a rare (1%) but arguably the most serious complica-
tion (Cordido et al., 2017). We came across a patient who 
developed sRCC on a background of ADPKD, providing 
the opportunity to study its molecular pathogenesis in this 
rare setting.

In this study, we investigated a case of sRCC in a pa-
tient with known ADPKD and end- stage renal failure. 
Specifically, we examined the evolutionary pathway of 
distinct components present in the tumor sample. The 
possible mechanisms by which ADPKD predisposes to 
sRCC, in this case, are discussed.

2  |  METHODS

2.1 | Patient data and biospecimen 
collection

All clinical information was retrieved from electronic 
medical records. Demographic data including sex, 
age, and ethnicity of the affected patient and his family 
members were verified against their National Registry 
Identification Cards. All histological parameters were re-
viewed by an expert pathologist.

2.2 | Genomic DNA extraction

Genomic material from formalin- fixed paraffin- embedded 
tumor tissue was available from the index patient only. No 
material was available from the other family members. 
Following the manufacturer's instructions, genomic DNA 
was extracted from tumor specimens and matched normal 
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tissue using the FFPE RNA/DNA Purification Plus Kit 
(Norgen Biotek). The yield and quality were determined 
using the 2100 Bioanalyzer (Agilent Technologies).

2.3 | Library construction, whole exome 
sequencing, and bioinformatic analysis

Whole exome sequencing was performed as described 
previously (Chan et al., 2020; Chang et al., 2021). Briefly, 
hybrid selection was done using the Human All Exon 
kit SureSelect Target Enrichment System (Agilent 
Technologies) version 6 and sequenced on the Illumina 
HiSeq X platform (Illumina) as paired- end 150- base pair 
reads. Read pairs were aligned to the human reference ge-
nome NCBI GRC Build 37 (hg19) using Burrows- Wheeler 
Aligner (BWA MEM; Wellcome Genome Campus, 
Hinxton; Li & Durbin, 2009). Optical duplicates were 
marked with Picard followed by base score recalibration 
using GATK version 4.1.4 (Broad Institute) for post align-
ment data processing (McKenna et al., 2010). Potential 
germline variants were screened for by filtering for the 
following conditions: missense or splice site variants with 
mapping quality >Q20, sequencing depth >50, alternate 
allele depth >15, min alt fraction of 0.1. Somatic variants 
from the resulting normal and tumor BAM files were 
identified using Mutect2, and subsequently annotated 
and prioritized using VEP (Wellcome Genome Campus; 
McLaren et al., 2016). Mutational signature identifica-
tion was performed using SigProfiler Bioinformatics Tools 
(Wellcome Genome Campus; Alexandrov et al.,). Copy- 
number segmentations were processed with TitanCNA 
v1.17.1 (University of British Columbia; Ha et al., 2014).

2.4 | RNA isolation and gene 
expression analysis

Total RNA was extracted using the FFPE RNA/DNA 
Purification Plus Kit (Norgen Biotek). Transcriptomic 
analysis was performed using the Illumina Ampliseq 
Transcriptome Human Gene Expression Panel (Illumina). 
Principal component analysis and Poisson distribution 
(Witten, 2011) were used to describe the data. For path-
way analysis, gene expression was first normalized using 
an in- house pipeline and filtered against those in the 
KEGG cancer pathway.

2.5 | Phylogenetic analysis

We constructed a phylogenetic tree based on shared mu-
tations across the various samples examined. In addition, 

clonal status was estimated from allele frequencies of mu-
tated genes using the SciClone package. SciClone is an R 
package developed to infer subclonal populations of cells 
in a tumor sample. The software implements a variational 
Bayesian mixture model to classify variants into different 
populations based on their copy number states and al-
lele frequencies, with clusters in the diploid copy number 
state being potential subclones. A probability is calculated 
for the presence of each variant in each of the inferred 
subclones (Miller et al., 2014).

3  |  RESULTS

3.1 | Clinical case report

The patient was a 56- year- old Chinese man from 
Singapore who presented with a 2- month history of wors-
ening painless gross hematuria and low- grade fever. His 
medical history was significant for ADPKD, complicated 
by end- stage renal failure requiring renal replacement 
therapy for the past 6 years, recurrent cyst hemorrhage, 
urinary tract infections, and hypertension. The patient's 
mother and a younger brother were also diagnosed with 
ADPKD (Figure 1a). Computed tomography revealed a 
solid exophytic mass at the posterior aspect of the right 
kidney without metastasis (Figure 1b). The patient under-
went bilateral radical nephrectomy with clear histological 
margins. Gross pathological examination of the specimen 
revealed a solid whitish tumor 5  cm in largest dimen-
sion, surrounded by ill- defined, variegated, solid- cystic- 
hemorrhagic areas, in total measuring 10.7 by 8 by 5 cm. 
These lesions were on a background of innumerable thin- 
walled cysts (Figure 1c). Microscopic examination of the 
lesion demonstrated sarcomatoid carcinoma with tubulo-
papillary epithelial elements. Perinephric fat invasion was 
seen but renal vein invasion was absent. Sections from the 
whitish tumor showed distinct regions of heterogeneity 
(Figure 1d), consisting of sarcomatoid components with 
spindle cells (30%), epithelial components with tubulo-
papillary architecture and a variable/mixed component 
consisting of cells with elongated, high- grade pleomorphic 
nuclei. Non- tumor areas showed cysts and atrophic paren-
chyma in keeping with ADPKD. Immunohistochemical 
staining for epithelial markers MNF116 and AE 1/3 were 
positive in both spindle and epithelial areas. In epithelial 
areas, AMACR, vimentin, CAIX, EMA, and CD10 stains 
were at least patchily weak positive, while CK7, CK20, 
and P63 stains were negative. Following the diagnosis 
of stage 2 RCC, the patient did not receive any adjuvant 
treatment and remained disease- free until 8 months later, 
when he relapsed with retrocaval nodal, adrenal, and lung 
metastases. The patient received sunitinib (37.5 mg daily 
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2 weeks on, 1 week off) for 17 months, followed by three 
cycles of nivolumab (3 mg/kg given monthly), as well as 
1 month of everolimus (5 mg daily), before succumbing to 
disease 15 months from the time of relapse.

3.2 | Genomic analysis by whole- 
exome sequencing

The top 10 cancer driver gene mutations in the three 
tumor components: spindle, epithelioid, and mixed are 
represented in an oncoplot (Figure 2a). We observed that 
the mixed and spindle components contain several over-
lapping driver gene mutations, but do not share any with 
the epithelioid component. The top three recurrently- 
mutated genes were ATM (67%), CTNNB1 (67%), and NF2 

(67%) which were only present in the mixed and spindle 
components. Missense mutations in BID (33%), FLT3 
(33%), ARID1B (33%), and SMARCA2 (33%) were only 
present in the epithelioid component but not in the mixed 
and spindle elements. Mutation count in the epithelioid 
component was the highest (894), followed by mixed (535) 
then spindle (385), with intronic mutations being the 
most common across all elements. The most common sin-
gle nucleotide variation that occurred was C > T (1184), 
while the dominant COSMIC mutational signatures were 
SBS 1 and SBS 5 (both clock- like signatures). We identi-
fied a putative pathogenic germline splice site muta-
tion in the PKD1 gene (c.7490- 2A>G; ClinVar accession 
number VCV000562314.1; Figure S1a). The copy number 
landscapes of the three tumor components are shown in 
Figure S1b.

F I G U R E  1  Clinical characterization of the patient with sRCC arising from ADPKD. (a) Pedigree chart describing the patient's family 
history with ADPKD. (b) Images of the RCC tumor on the CT scans showing a mass on the right kidney. (c) Photograph of the affected 
kidney after radical nephrectomy. (d) Immunohistochemistry (IHC) profiles of the three tumor sections and normal (ADPKD) tissue from 
the patient samples
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F I G U R E  2  Mutational and phylogenetic analysis. (a) Oncoplot showing the mutations found in the samples. Graphs showing the 
mutation count; mutations sorted by mutation type; base changes; and mutational signatures. (b) Venn diagram describing the overlap of all 
mutations between the three components. (c) Phylogenetic tree describing the evolution of the mutations in the samples from the normal. 
(d) Principal component analysis of gene expression profiles in tumor and normal components. (e) Poisson distribution of gene expression 
profiles in the individual components
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3.3 | Phylogenetic analysis

As shown in a Venn diagram, we observed that the largest 
number of overlapping mutations (70) occurred between 
the spindle and mixed components, as compared to only 
2 between mixed and epithelioid and 3 between spindle 
and epithelioid. There were no shared mutations among 
all three components. A similar pattern was observed by 
examining only the non- synonymous mutations (Figure 
S1c), supporting distinct evolutionary pathways driving 
the epithelioid component as compared to the spindle 
and mixed elements. A phylogenetic tree of the epithe-
lioid, spindle, and mixed components is shown in Figure 
2c. The spindle and mixed components share common 
truncal mutations which included ATM (c.9156G>C), 
CTNNB1 (c.1187A>T), and NF2 (c.1021C>T). Mutations 
in NF1 (c.5C>T), CHEK2 (c.180_181ins), SMARCA4 
(c.2851G>A, c.3539C>T), TP53 (c.375G>A) were unique 
to the mixed component. Mutations unique to the epithe-
lioid component included TP53 (c.277del), and further 
branch mutations that include ARID1B (c.2249G>A), BID 
(c.301G>A), FLT3 (c.2899C>T), SMARCA2 (c.1201C>T), 
and TP63 (c.1528A>T).

3.4 | Gene expression profiling

Gene expression profiles of each tumor component and 
the matched normal tissue were obtained. Via Principal 
Component Analysis (PCA) on the data generated from 
gene expression, we observed that the epithelioid cluster 
was most different from the rest (Figure 2d). The spindle 
component was also closest to the normal component. 
The same pattern was also observed by Poisson cluster-
ing (Figure 2e). This relationship was further emphasized 
using SciClone, which plots the variant allele frequency 
against density and read depth for copy numbers, iden-
tifying six unique clusters of mutations. From this, we 
observed an overlap of clusters (one and three) found 
in spindle versus mixed, while there was none found 
for spindle versus epithelioid and the epithelioid versus 
mixed (Figure S2).

We explored the differential expression of cancer 
pathway- associated genes (KEGG cancer pathway) in the 
different tumor components compared against the normal 
tissue. Ten clusters were identified following unsupervised 
hierarchical clustering, including Clusters 1 and 8 which 
were upregulated and downregulated, respectively, in all 
tumor components relative to normal. Interestingly, one of 
the upregulated genes within Cluster 1 was interleukin- 6 
(IL- 6), a pleiotropic proinflammatory cytokine known to 
promote multidrug resistance by activating oncogenic 
pathways, contributing to poor prognosis in patients with 

RCC (Wang & Zhang, 2020). On the other hand, down-
regulation of CDKN2A was observed within Cluster 8, 
consistent with previous reports in both sRCC and non- 
sRCC (Malouf et al., 2016, 2020). Among genes upregu-
lated specifically in the spindle component (Clusters 3, 4, 
10) include several members of the Wnt, PI3K- mTOR, and 
MAPK signaling pathways (Figure S3).

4  |  DISCUSSION

ADPKD is a well- characterized inherited cystic kidney 
disease and a leading cause of end- stage renal disease 
worldwide. In addition, patients with ADPKD experience 
various renal and extrarenal manifestations, including 
increased risk of cancers arising from the kidney, colon, 
and liver (Yu et al., 2016). A previous study reported that 
the occurrence of sRCC was disproportionally higher in 
the setting of ADPKD compared to the general popula-
tion (33% vs. 1%– 5%), although most kidney cancers that 
developed were still non- sarcomatoid RCCs (Keith et al., 
1994). At the molecular level, the upregulation of MYC 
oncogene expression and abrogation of TP53 expression 
within renal cells of ADPKD patients have been previ-
ously observed (Harris & Torres, 2014), while deregula-
tion of the mTOR signaling pathway has been implicated 
in cyst formation (Shillingford et al., 2006). In our patient 
with a rare occurrence of sRCC arising from ADPKD, 
we examined the molecular landscape of histologically- 
distinct elements present in the tumor sample, revealing 
the possible mechanisms by which ADPKD predisposes 
to sRCC.

The mutational landscape of sRCC, particularly in the 
setting of non- clear cell RCC, has not been well examined 
until recently. Interestingly, a high frequency of TP53 mu-
tation has been previously described in sRCC, suggest-
ing that the p53 signaling pathway may be important in 
the process of sarcomatoid change (Bi et al.,; Oda et al., 
1995). More recently, Wang et al. conducted a multiplat-
form and genome- wide analysis using sRCC (n = 55) and 
non- sRCC of various subtypes (n = 598) and showed that 
sRCC exhibits subtype- specific differences in their molec-
ular profiles. Specifically, they described that TP53 and 
NF2 mutations were associated with sRCC within papil-
lary RCCs, which is in keeping with the mutational profile 
of our case presented. However, in contrast to our case, 
they had observed a higher overall mutational burden in 
the spindle as compared to the epithelioid components 
within the same tumor (Wang et al., 2017). In an earlier 
study, Malouf et al., (2016) had found a high frequency of 
TP53 (42.3%) and NF2 (20%) mutations in sRCC as com-
pared to non- sRCC. NF2 mutations were mutually exclu-
sive with TP53 mutations. In our case, NF2 mutation was 
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exclusively found in the spindle component while TP53 
mutations were only found in the epithelioid component. 
Taken together, this suggests that TP53 and NF2 muta-
tions might characterize unique pathways related to sRCC 
development.

Another mechanism that might encourage sarcoma-
toid change in ADPKD relates to mTOR signaling. A study 
of tissues from metastatic sRCC patients found elevated 
levels of phosphorylated mTOR expression in sarcoma-
toid areas compared to areas with clear cell histology, 
suggesting that alterations in mTOR signaling might be 
involved in the process of sarcomatoid change (Pal et al., 
2015). This is significant because polycystin- 1 is involved 
in the regulation of the mTOR pathway, and its inactiva-
tion in ADPKD in both mouse models and human patient 
samples has been shown to result in pathological activa-
tion of the mTOR pathway in cyst linings. Inhibition of 
mTOR using rapamycin also abrogated cyst formation, 
further establishing the pathway as a key mechanism in 
ADPKD (Shillingford et al., 2006). In the case presented, 
we similarly observed the significant expression of genes 
involved in the mTOR pathway, suggesting that shared 
pro- oncogenic signals are present in ADPKD and sRCC. 
Nonetheless, as sRCC remains a rare complication of 
ADPKD, additional pro- tumorigenic processes, such as 
the mutations described earlier, must be acquired in order 
for sRCC to be formed.

To our best knowledge, there has been no reported 
molecular description of sRCC arising in the setting of 
ADPKD in the literature. With the caveat that this report 
involves only a single patient, we provided initial insights 
into the molecular pathobiology of ADPKD and sRCC. 
Further characterization of a link between the two entities 
might allow for a better understanding of the mechanisms 
underlying both disease processes, and eventually permit 
the development of more effective treatment options.
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