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OBJECTIVE

In people with type 2 diabetes, sodium–glucose cotransporter 2 inhibitors (SGLT2i)
reduce cardiovascular risk and progression of diabetic kidney disease. Our aimwas
to determinewhether sotagliflozin (SOTA), a dual SGLT1i and SGLT2i, had favorable
effects on clinical biomarkers suggestive of kidney protection in adults with type 1
diabetes.

RESEARCH DESIGN AND METHODS

In this 52-week pooled analysis, 1,575 adults enrolled in the inTandem1 and
inTandem2 trials were randomized to SOTA 200mg, 400mg, or placebo in addition
to optimized insulin therapy. Changes in cardiorenal biomarkers were assessed.

RESULTS

At 52 weeks, in response to SOTA 200 and 400 mg, the placebo-corrected least
squares mean change from baseline in estimated glomerular filtration rate
was 22.0 mL/min/1.73 m2 (P = 0.010) and 20.5 mL/min/1.73 m2 (P = 0.52),
respectively. Systolic blood pressure difference was 22.9 and 23.6 mmHg (P <

0.0001 for both); diastolic blood pressure changed by 21.4 (P = 0.0033) and 21.6
mmHg (P = 0.0008). In participants with baseline urinary albumin-to-creatinine ratio
(UACR) ‡30 mg/g, UACR decreased by 23.7% (P = 0.054) and 18.3% (P = 0.18) for
SOTA 200 and SOTA 400 mg, respectively, versus placebo. Increases in serum
albumin and hematocrit and reductions in uric acid were observed throughout
52 weeks with both SOTA doses.

CONCLUSIONS

SOTA was associated with short- and long-term renal hemodynamic changes, which
were similar to those seen with SGLT2i in type 2 diabetes. Further investigation
around cardiorenal effects of SOTA in people with type 1 diabetes is justified.

Diabetic kidney disease occurs in ;20–40% of people with type 1 diabetes despite
management of traditional renal risk factors (1). Sodium–glucose cotransporter
2 inhibitors (SGLT2i) act by blocking tubular glucose reuptake, leading to glucosuria
and thereby lowering HbA1c and body weight. In addition to glucosuric effects, SGLT2i
are natriuretic, leading to contraction of plasma volume, systolic blood pressure (SBP)
lowering, and increases in hematocrit and serum albumin (2,3). Natriuresis also
attenuates glomerular hyperfiltration by lowering intraglomerular pressure via
activation of tubuloglomerular feedback, an effect that has been shown in mechanistic
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studies in young adults with type 1 di-
abetes (4,5). In the setting of type 2
diabetes, SGLT2i induce a drop in esti-
mated glomerular filtration rate (eGFR)
that stabilizes over time and also de-
crease albuminuria (6) and tubular injury
(7,8). In addition, in cardiovascular (CV)
safety trials in people with type 2 di-
abetes, SGLT2i improve albuminuria pro-
gressionandhard renaloutcomes (9–11),
independent of glucose lowering (10,12).
Sodium–glucose cotransporter (SGLT)2
inhibition–related natriuresis has also
been linkedwith improved CV outcomes,
as reflected by the association between
increased hematocritdas a marker of
hemoconcentrationdin the BI 10773
(Empagliflozin) Cardiovascular Outcome
Event Trial in Type 2 Diabetes Mellitus
Patients (EMPA-REG OUTCOME) and the
reduction in CV death (13). From a
metabolic perspective, consistent with
type 2 diabetes data, SGLT2i reduce
HbA1c and body weight, generally with-
out increasing the risk of significant
hypoglycemia, in people with type 1
diabetes (14–19).
Sotagliflozin (SOTA) is a dual inhibitor

of SGLT1 and SGLT2. In addition to renal
SGLT2 inhibition and its effect on urinary
glucose excretion (UGE), SOTA reduces
postprandial hyperglycemia by blunting
glucose absorption via local SGLT1 in-
hibition in the gut (20). The efficacy and
safety of SOTA in adults with type 1
diabetes have been studied in three
phase 3 clinical studies: inTandem1, in-
Tandem2, and inTandem3 (clinical trial
reg. nos. NCT02384941, NCT02421510,
NCT02531035, ClinicalTrials.gov) (21–23).
In these trials, placebo-corrected HbA1c
change from baseline ranged from
20.35% to 20.46% (P , 0.001) at
week 24, with 22.0 to 23.5 kg (P ,
0.001) reduction in body weight and no
increased risk of hypoglycemia (21–23).
These effects were maintained at week
52 in the inTandem1 and inTandem2
trials.
Despite what is known about glycemia-

related parameters, the effects of
dual SGLT1 and SGLT2 inhibition with
SOTA on renal function, albuminuria,
blood pressure, and hematocrit (as a
marker for plasma volume) in people
with type 1 diabetes have not yet
been examined. An in-depth understand-
ing of how SOTA impacts clinical pa-
rameters associated with CV and renal
protection in people with type 1 diabetes is

crucial to determine the rationale for
long-term clinical outcome trials in this
population. Accordingly, in the current
analysis, our aim was to determine
whether dual SGLT1 and SGLT2 inhibition
with SOTA over a 52-week treatment
period led to changes in eGFR, albumin-
uria, and blood pressure suggestive of
renal protection in people with type 1
diabetes.

RESEARCH DESIGN AND METHODS

Study Design and Population
The inTandem1 and inTandem2 trials
are two multicenter, randomized, double-
blind, placebo-controlled, parallel-group
52-week phase 3 studies of adults
age 18 years and older with type 1 di-
abetes (21,22). The inTandem1studywas
conducted between March 2015 and
February 2017 at 75 study sites in the
U.S.andCanada,whereas the inTandem2
study was conducted between May
2015 and June 2017 at 96 study sites in
European countries and Israel. In brief,
eligible participants (n = 1,575) with
HbA1c at screening of 7.0–11.0% (53–
97 mmol/mol) and eGFR .45 mL/min/
1.73 m2 went through a 6-week insulin
optimization period before randomiza-
tion to SOTA (200 mg or 400 mg) or
placebo. Following randomization, par-
ticipants entered a 24-week, double-
blind core treatment period, a 28-week
double-blind long-term extension pe-
riod, a 1-week laboratory follow-up pe-
riod, and a final 30-day follow-up period.
Theprimaryoutcomeof both studieswas
change in HbA1c from baseline to week
24. The studies were conducted in ac-
cordance with international standards
of good clinical practice and with ap-
proval by local institutional review
boards (21,22).

End Points
In this pooled analysis, measures of
kidney function included changes in
eGFR and urine albumin-to-creatinine
ratio (UACR) from baseline up to week
52. We also analyzed cardiorenal risk
factors including body weight, SBP,
and diastolic blood pressure (DBP),
as well as other biochemical markers,
such as hematocrit, serum albumin,
and uric acid. The effect of SOTA
was assessed in the overall population
and subpopulation with follow-up
records.

Urinary albumin and creatinine were
obtained at baseline; at weeks 12, 24, and
52; and during the follow-up period from
spot urine sample and were used to
derive albumin-to-creatinine ratio. Serum
creatinine was obtained from clinical
chemistry samples and used to calculate
eGFR using the MDRD study equation
as per the study protocol. In a sensitivity
analysis, eGFR according to the Chronic
Kidney Disease Epidemiology Collabora-
tion (CKD-EPI) formula was calculated at
baseline and over time. Vital signs, phys-
ical examination, and serum chemistry
including uric acid and albumin were
measured at each study time point (at
screening, baseline, and weeks 4, 8, 12,
16, 20, 24, 32, 40, and 52 and during the
follow-up period); hematocrit was mea-
sured at screening, baseline, and weeks 12,
24, 52 and during the follow-up period.

Statistical Analyses
Our analyses comprised the pooled pop-
ulation of inTandem1 and inTandem2
with all randomized participants who
had taken at least one dose of study
drug (modified intent-to-treat popula-
tion). Data from the inTandem3 study
were not included in this analysis due to
differences in the trial design (24 weeks
and no insulin optimization) and because
inTandem3 did not include the SOTA
200 mg dose.

All analyses, except UACR and DBP
subgroups, were prespecified. Prespeci-
fied analyses were also conducted with
a subset of participants who had an “off
drug” laboratory record during the lab-
oratory follow-up period. “Off drug” is
defined as 7 days after the last dose,
with a window of 5–28 days. Post hoc
analyses were conducted for change in
UACR with baseline albumin status and
change in DBP based on subgroups of
DBP at baseline.

Analysis of the continuous efficacy
end points postbaseline used a mixed-
effect model repeat measure (MMRM)
under the missing-at-random frame-
work based on the restricted maximum
likelihoodmethod for estimation. All post-
baseline observations collected during
the treatment period were used in the
MMRM analysis. The analysis model in-
cluded fixed categorical effects of treat-
ment, randomization strata of insulin
delivery method (multiple daily injec-
tion, continuous subcutaneous insulin
infusion), randomization strata of week
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22 HbA1c (#8.5% and .8.5% [#69
mmol/mol and .69 mmol/mol]), study,
time (study week), a treatment-by-time
interaction, and baseline value (of the
corresponding analysis variable)-by-time
interaction as a covariate. Continuous
end points assessed at off drug (a sin-
gle postbaseline time point) were ana-
lyzed using ANCOVA models and used
the observed-case data set. For UACR,
geometric mean was used instead of
arithmetic mean to control for the right-
skewed data distribution. UACR was log10
transformed and was back transformed
to obtain the geometric means. All sta-
tistical tests comparing treatment effects
were two sided with a 5% significance level.

Data Availability
Qualified researchers may request access
to patient-level data and related study
documents including the clinical study
report, study protocol with any amend-
ments, blank case report form, statistical
analysis plan, and data set specifications.
Patient-level data will be anonymized
and study documents will be redacted
to protect the privacy of our trial par-
ticipants. Further details on Sanofi’s data
sharing criteria, eligible studies, and pro-
cess for requesting access can be found at
https://www.clinicalstudydatarequest
.com/.

RESULTS

Baseline Characteristics
The baseline characteristics of the study
population are shown in Table 1. In brief,
participantsweremostly of non-Hispanic
white ethnicity and ;50 years old with
average diabetes duration of 20 years
and normal renal function.

Effect of SOTA on eGFR
From a baseline eGFR of 89.3 mL/min/
1.73 m2, the least squares (LS) mean
changes were 22.5 and 22.8 mL/min/
1.73m2 (SE 0.6, P, 0.0001) in the 200mg
and 400 mg dose groups, respectively,
versus placebo at week 4. From week 4
to 52, although lower than placebo, eGFR
tended to return toward baseline. At
52 weeks, eGFR change from baseline
was 22.0 mL/min/1.73 m2 (SE 0.8, P =
0.010) and 20.5 mL/min/1.73 m2 (SE 0.8,
P = 0.52) for SOTA 200 mg and 400 mg,
respectively, versus placebo (Fig. 1). Sim-
ilar results were obtainedwhen eGFRwas
calculated by CKD-EPI (Supplementary
Fig. 1).

In the subset of participants (n = 370)
with off drug follow-up laboratory re-
cords, defined as 7 days after last dose,
eGFR had returned to baseline compared
with placebo: LS mean change from
baseline to off drug records was 3.0
mL/min/1.73 m2 (SE 1.4, P = 0.031)
for SOTA 200 mg and 2.7 mL/min/
1.73 m2 (SE 1.3, P = 0.045) for SOTA
400 mg (Supplementary Fig. 2A). Placebo-
corrected LS mean change from last
on-treatment to off drug records also
rose significantly with both SOTA
200 mg and 400 mg (Supplementary
Fig. 3A).

Effect of SOTA on Albuminuria
The majority of participants (87.2%) were
normoalbuminuric at baseline (UACR
,30 mg/g). In the post hoc analysis
of a subgroup of participants (n = 196)
with increased albuminuria (UACR$30
mg/g), LS mean UACR decreased by
16.4% (SE 12.0, P = 0.16) with the 200
mg dose and by 31.4% in the 400 mg dose
group (SE 11.3, P = 0.0032) from baseline

to week 24. At 52 weeks, UACR decreased
by 23.7% (SE 12.9, P = 0.054) and 18.3% (SE
13.8, P = 0.18) for SOTA 200 mg and SOTA
400mgversusplacebo, respectively (Fig. 2).

Effects of SOTA on Blood Pressure and
Body Weight
In the overall cohort, the placebo-corrected
SBP LS mean change from baseline was
22.0 mmHg (SE 0.6, P = 0.0017) and
22.9mmHg (SE0.7,P,0.0001) atweek
12 and week 52, respectively, with
SOTA 200 mg, and 23.5 mmHg (SE 0.6,
P , 0.0001) and 23.6 mmHg (SE 0.7,
P, 0.0001) with SOTA 400mg (Fig. 3A).

In the subgroup of participants who
had SBP measurements after the wash-
out period, mean SBP values for SOTA
200 mg and 400 mg arms tended to stay
below mean values in the placebo group.
Placebo-corrected LS mean changes from
baseline or last on-treatment measure-
ment to off drug measurement were
not significant in either the 200 mg or
400 mg dose group (Supplementary Figs.
2B and 3B).

Table1—Baselinecharacteristics (after insulin therapyoptimization)ofparticipants
randomized in the pooled analysis group

Pooled analysis group (inTandem1 and inTandem2)

Placebo SOTA 200 mg SOTA 400 mg

Randomized, n 526 524 525

Age, years, mean (SD) 42.5 (13.3) 44.4 (13.7) 44.0 (13.4)

Female, % 48.5 49.4 51.8

White race, % 93.9 94.1 94.5

Diabetes duration, years, mean (SD) 21.2 (12.0) 21.6 (12.5) 21.5 (12.3)

CSII, %/MDI, % 43.0/57.0 42.7/57.3 42.7/57.3

BMI, kg/m2, mean (SD) 28.5 (5.3) 28.9 (5.6) 28.7 (5.2)

Weight, kg, mean (SD) 84.3 (17.6) 84.5 (18.1) 84.2 (18.1)

HbA1c, %, mean (SD) 7.7 (0.8) 7.7 (0.8) 7.6 (0.8)

HbA1c, mmol/mol, mean (SD) 60.3 (8.8) 60.4 (8.4) 60.0 (8.5)

Total daily insulin, IU/kg, mean (SD) 0.75 (0.3) 0.73 (0.3) 0.73 (0.30)

SBP, mmHg, mean (SD) 122.0 (14.6) 121.5 (15.0) 121.3 (14.3)

eGFR (MDRD), mL/min/1.73 m2

Mean (SD) 90.2 (18.5) 89.3 (19.6) 89.1 (18.3)
,60, n (%) 24 (4.6) 22 (4.2) 25 (4.8)
$60, n (%) 502 (95.4) 502 (95.8) 500 (95.2)

eGFR (CKD-EPI), mL/min/1.73 m2

Mean (SD) 98.2 (18.1) 96.5 (18.3) 97.0 (17.7)
,60, n (%) 17 (3.2) 16 (3.1) 12 (2.3)
$60, n (%) 509 (96.8) 508 (96.9) 513 (97.7)

UACR, mg/g
Geometric mean (CI) 8.9 (8.0, 9.8) 9.6 (8.7, 10.7) 8.7 (7.9, 9.7)
Median (Q1:Q3) 6.6 (4.3:13.0) 7.0 (4.4:14.1) 6.3 (4.2:12.3)

,30, n (%) 451 (87.7) 439 (85.6) 450 (88.4)
Median (Q1:Q3) 5.7 (4.1:9.2) 6.1 (4.2:9.2) 5.6 (4.0:9.4)

$30, n (%) 63 (12.3) 74 (14.4) 59 (11.6)
Median (Q1:Q3) 56.2 (35.7:197.2) 61.3 (39.9:155.1) 83.3 (48.0:305.0)

CSII, continuous subcutaneous insulin infusion; MDI, multiple daily injections of insulin; Q, quartile.
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In a prespecified subgroup analysis,
participants with SBP ,130 mmHg at
baseline, the mean placebo-corrected
SBP change was 21.4 mmHg (SE 0.7,
P = 0.047) with SOTA 200 mg and 22.8
mmHg (SE 0.7, P , 0.0001) with SOTA
400mg at 12 weeks. At 52 weeks, placebo-
corrected changes were 22.7 mmHg (SE
0.8, P = 0.0005) and 23.7 mmHg (SE
0.8, P, 0.0001) with SOTA 200 mg and
400 mg, respectively.
In participants with SBP $130 mmHg

at baseline, the mean placebo-corrected

SBP change was23.6 mmHg (SE 1.4, P =
0.010) with SOTA 200 mg and25.4 mmHg
(SE 1.4, P = 0.0002) with SOTA 400 mg
at 12 weeks. At 52 weeks, placebo-
corrected changes were 23.4 mmHg
(SE 1.4, P = 0.016) and23.2 mmHg (SE
1.4, P = 0.024) with SOTA 200 mg and
400 mg, respectively (Fig. 3B).

At 12 weeks, compared with placebo,
the mean DBP change was 21.2 mmHg
(SE 0.4, P = 0.0031) and21.3 mmHg (SE
0.4, P = 0.0011) with SOTA 200 mg and
SOTA 400 mg, respectively. At 52 weeks,

placebo-corrected DBP changes were
21.4 mmHg (SE 0.5, P = 0.0033) and
21.6 mmHg (SE 0.5, P = 0.0008) with
SOTA 200 mg and 400 mg, respectively
(Fig. 3C).

In the subgroup of participants with
availableDBPmeasurements after awash-
out period, mean DBP values tended to
increase back to values at baseline
(Supplementary Fig. 2C). Placebo-corrected
LS mean changes from baseline or last
on-treatment measurement to off drug
measurementwere not significant in either
the 200 mg or 400 mg dose groups
(Supplementary Figs. 2C and 3C).

In the post hoc analysis with the sub-
group of participants with baseline DBP
$80mmHg,mean placebo-corrected DBP
at 52 weeks was22.3 mmHg (SE 0.8, P =
0.0064) for SOTA 200mg and22.1mmHg
(SE 0.9, P = 0.016) for SOTA 400 mg
(Fig. 3D).

Over 52 weeks, body weight was sig-
nificantly decreased from baseline for
both SOTA groups compared with pla-
cebo (P , 0.001). At week 24, the
placebo-corrected LS mean differences
from baseline were 22.2 kg for SOTA
200 mg and 23.0 kg for SOTA 400 mg (SE
0.2, P, 0.001, for both). This treatment
difference persisted at week 52, with
22.7 kg and23.6 kg (SE 0.2, P, 0.001,
for both) for SOTA 200 mg and 400 mg
versus placebo, respectively.

Effects of SOTA on Markers of
Hemoconcentration and Plasma Uric
Acid
The mean hematocrit values were gen-
erally within normal ranges. A small
increase of ;4% relative to baseline
hematocrit was observed by week 12
in the SOTA groups compared with
the placebo group and appeared to be
stable throughout the study. Mean se-
rum hematocrit increased from 41.9% at
baseline to 43.8% at week 12 for SOTA
200 mg and 42.0–44.0% for SOTA 400 mg.
Relative to placebo, the LS mean differ-
ence was 1.8% and 1.9% for SOTA 200 mg
and 400 mg, respectively (SE 0.2, P ,
0.0001, for both). These changes per-
sisted throughout the 52-week trial
at both SOTA doses (P, 0.0001) (Fig. 4A
and Supplementary Table 1). For partic-
ipants with off drug hematocrit values,
the LS mean change after washout versus
placebo was significant in both the
200 mg and 400 mg dose groups
(Supplementary Figs. 2D and 3D).

Figure 1—eGFR change over time in overall population. LS mean (LSM) change from baseline (BL)
vs. placebo atweek 52 for SOTA200mg,21.96mL/min/1.73m2 (95%CI23.45,20.47),P = 0.010,
and SOTA 400 mg, 20.49 mL/min/1.73 m2 (21.99, 1.00), P = 0.52.

Figure 2—UACR change over time in subgroup of participants with baseline (BL) albuminuria
(UACR $30 mg/g). Percentage change from baseline vs. placebo based on geometric mean
estimated fromMMRMmodel. At week 52, SOTA 200mg,223.7% (95% CI248.9, 1.5), P = 0.054,
and SOTA 400 mg, 218.3% (245.3, 8.7), P = 0.18.
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Mean baseline serum albumin concen-
trationswere similar, at;4.3 g/dL, for all
groups. In response to SOTA, LS mean
serum albumin increased 0.06 g/dL and
0.07 g/dL with SOTA 200mg and 400mg,
respectively, at week 4 (SE 0.01, P ,
0.0001, for both). At week 52, placebo-
corrected LS mean change was 0.03 g/dL
(SE 0.02, P = 0.036) for SOTA 200 mg and
0.03 g/dL (SE 0.02, P = 0.053) for SOTA
400 mg (Fig. 4B). For participants with off
drug serum albumin values, the placebo-
corrected LS mean serum albumin
changes after washout were significant
in both dose groups (Supplementary
Figs. 2E and 3E).

SOTA also significantly reduced uric
acid throughout 52 weeks (all P, 0.001).
The placebo-corrected LS mean change
in serum uric acid was20.29 mg/dL and
20.42 mg/dL (SE 0.04, P , 0.0001, for
both) at 4 weeks and 20.17 mg/dL (SE
0.05, P = 0.0003) and 20.28 mg/dL (SE
0.05, P , 0.0001) at 52 weeks for SOTA
200 mg and 400 mg, respectively (Fig. 4C
and Supplementary Table 2). For partic-
ipants with off drug serum uric acid
values, the placebo-corrected LS mean
uric acid changes after washout were not
significant in both dose groups (Supple-
mentary Figs. 2F and 3F).

CONCLUSIONS

In this pooled analysis of the inTandem1
and inTandem2 trials, the dual SGLT1i
and SGLT2i SOTA showed beneficial ef-
fects on clinical parameters of cardiore-
nal health in adults with type 1 diabetes.
The observed changes in factors that can
be assessed in clinical practicedeGFR,
UACR, blood pressure, hematocrit, se-
rum albumin, and uric aciddmirror for
the most part the effects observed in
response to SGLT2i in trials with partic-
ipants with type 2 diabetes. These find-
ings are clinically important, as SGLT2i
have been shown to reduce the risk of
diabetic kidney disease progression, in-
cluding hard renal end points, in various
populations (9–11,24). It should be noted
that despite these salutary effects on
clinical outcomes, the mechanisms re-
sponsible for these benefits remain largely
unknown. Yet, available analyses from
published CV outcome trials strongly im-
plicate glucose-independent mechanisms
in cardiorenal benefits with SGLT2i (13).

In contrast with what is known in
type 2 diabetes, in people with type 1

Figure 3—Blood pressure change over time. A: Changes in SBP in overall population. LSmean (LSM)
change from baseline (BL) vs. placebo at week 52 for SOTA 200mg,22.9mmHg (95% CI24.3,21.6),
P , 0.0001, and SOTA 400 mg, 23.6 mmHg (25.0 to 22.3), P , 0.0001. B: Changes in SBP in
subgroup of patients with baseline SBP $130 mmHg. LS mean change from baseline vs. placebo at
week 52 for SOTA 200 mg, 23.4 mmHg (26.2, 20.7), P = 0.016, and SOTA 400 mg, 23.2 mmHg
(26.0,20.4), P = 0.024. C: Changes in DBP in overall population. LS mean change from baseline vs.
placebo at week 52 for SOTA 200 mg, 21.4 mmHg (22.3, 20.5), P = 0.0033, and SOTA 400 mg,
21.6 mmHg (22.5, 20.7), P = 0.0008. D: Changes in DBP in subgroup of patients with base-
line DBP $80 mmHg. LS mean change from baseline vs. placebo at week 52 for SOTA 200 mg,
22.3 mmHg (23.9, 20.6), P = 0.0064, and SOTA 400 mg, 22.1 mmHg (23.8, 20.4), P = 0.016.
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diabetes, existing clinical trial data
(16,21–23,25,26) have reported improve-
ments in glycemic control and body
weight reduction. Because it is likely
that there is substantial overlap between

type 1 and type 2 diabetes in terms of
factors leading to end-organdamage, it is
crucial to understand whether inhibition
of SGLTs has similar cardiorenal effects in
people with type 1 diabetes in order to

assess the potential for primary and
secondary end-organ protection with
these therapies.

As opposed to the more widely studied
SGLT2i, SOTA is a dual SGLT1i and SGLT2i.
Although SOTA concentrations are too
low to inhibit SGLT1 in the kidney, it
partially inhibits intestinal SGLT1, leading
to blunted and delayed gastrointesti-
nal glucose uptake, resulting in reduced
postprandial glucose excursions. Other
clinically important gut-based actions
of SOTA include sustained increments
in secretion of intestinal hormones
(27–29), which may improve insulin sen-
sitivity and mitochondrial bioenergetics
(30,31), leading to additional nephropro-
tection (32–37). Reducing glucose con-
centrations by blunted glucose uptake
or improved insulin sensitivity also low-
ers the tubular glucose load and conse-
quently UGE, which may explain the
difference in UGE with SOTA versus
selective SGLT2i. While the clinical im-
portance of different UGE rates, and,
consequently, different levels of natri-
uresis with various SGLT inhibitors is not
yet known, it is important to note that
changes in renal function, BP, and
markers of blood volume (hematocrit
and albumin, discussed below), due to
SGLT inhibition–related natriuresis, were
observed with SOTA.

In several studies in peoplewith type 2
diabetes, SGLT2 inhibition is associated
with an initial “dip” in eGFR that stabilizes
over time and is reversible after cessation
of therapy. The most likely mechanism
responsible for this initial change in eGFR
is a hemodynamically mediated afferent
vasoconstriction through tubuloglomer-
ular feedback. It should be noted that the
observed eGFR decrease in this cohort is
smaller than in young adults with type
1 diabetes and hyperfiltration (5). This
anticipated eGFR dip also occurred
with SOTA early in the course of treat-
ment and persisted at 52 weeks in the
200 mg dose SOTA group. Consistent
with observations from studies involving
patients with type 2 diabetes, after a
washout period, eGFR increased signif-
icantly compared with the last value on
treatment in the subgroup with values at
both time points. In terms of preserva-
tion of kidney function, after cessation of
therapy, eGFR was significantly higher
in SOTA versus placebo-treated patients,
suggesting that even after a very short
duration of therapy, SOTA may prevent

Figure 4—A: Changes in hematocrit in overall population. B: Changes in serum albumin in overall
population. C: Changes in uric acid in overall population. BL, baseline; LSM, LS mean.
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kidney function lossdwhich is an intrigu-
ing possibility in the post–Evaluation of
the Effects of Canagliflozin on Renal and
Cardiovascular Outcomes in Participants
With Diabetic Nephropathy (CREDENCE)
era that merits further study.
In people with type 2 diabetes, SGLT2

inhibition lowers UACR in the microal-
buminuric range by 25–40% and by
30–50% in the setting of baseline
macroalbuminuria, independent of
treatment-induced changes in classical
renal risk factors. Until now, little was
known about the impact of dual SGLT1i
and SGLT2i or selective SGLT2i on UACR
in people with type 1 diabetes. In the
current analysis, in addition to the eGFR
dip, SOTA 400 mg was associated with a
significant reduction in UACR early in the
course of treatment at 24 weeks, which
tended to persist over timedalthough
changes at 52 weeks were no longer
statistically significant. While the mag-
nitude of the effect at 24 weeks with
SOTA 400 mg was similar to that ex-
pected inpeoplewith type2diabetesand
microalbuminuria, dedicated trials are
required to fully understand the antial-
buminuric impact of dual SGLT1i and
SGLT2i in patients with type 1 diabetes.
SGLT2 inhibition induces modest but

consistent SBP- andDBP-lowering effects
in people with type 2 diabetes. In people
with type 1 diabetes, in bothmechanistic
studies and in large glycemic control
trials, effects of SGLT2i have generally
demonstrated similar SBP and DBP low-
ering (5). With this background, in the
current analysis with a dual SGLT1i and
SGLT2i, mean SBP and DBP values de-
clined acutely over 4 weeks. These
changes persisted over time, and neither
SBP nor DBP increased after the brief
washout period. Furthermore, in partic-
ipants above and below current blood
pressure targets 130/80 mmHg, the im-
pact of SOTA was comparable and
resulted in clinically relevant blood
pressure lowering.
In previous trials involving partici-

pants with type 2 diabetes, hematocrit
increased by 3–7% relative to baseline
values and remained elevated over
the course of long-term clinical trials
(38,39), likely due to hemoconcentration
(13) or, alternatively, secondary to in-
creased erythropoietin production (40).
The clinical relevance of changes in he-
matocrit was demonstrated in EMPA-REG
OUTCOME, in which the increase in

hematocrit wasmost strongly associated
with CV benefits in participants with
type 2 diabetes (13). Accordingly, in
the current analysis, the rise in hemat-
ocrit and serum albumin in people with
type 1 diabetes in response to SOTA, as
well as the rapid increase toward base-
line in these parameters after the 7-day
washout, may be clinically important,
since this may lead to clinical benefits
similar to those observed in SGLT2i trials
in people with type 2 diabetes.

Finally, SGLT2 inhibition is associated
with biochemical alterations linked with
cardiorenal protection, including reduc-
tions in plasma uric acid concentrations.
Serum uric acid is associated with kidney
disease progression and with increased
CV risk (39,41–43). SGLT2 inhibition low-
ers plasma uric acid by 10–15% in people
with type 2 diabetes but has been
scarcely investigated in people with
type 1 diabetes. Based on the current
analysis, dual SGLT1 and SGLT2 inhibition
reduces uric acid in type 1 diabetes to
an extent similar to that previously ob-
served in people with type 2 diabetes
in response to selective SGLT2i, and
these changes persisted after a brief
7-daywashout period, without a significant
rise during the period between last value
on therapy until the end of the washout.

There are several limitations worth
mentioning. The cohort of participants
included in this analysis was not enriched
for risk factors associated with kidney
disease such as albuminuria or impaired
kidney function. Accordingly, only a small
proportion of participants had micro- or
macroalbuminuria at baseline. Further-
more, in accordance with the original, the
primary study design focused on glyce-
mic control, and UACR measurements
were only taken on a single occasion
using spot collections at each time point.
Perhaps due to the limited number of
participants with albuminuria and the
single urine sample collected for each
time point, we observed a directional
decrease in UACR in the placebo group,
which may represent regression to
the mean. Despite these changes in
the placebo group, placebo-corrected
UACR declines were significant at
24 weeks in the SOTA 400 mg group,
highlighting the need for dedicated fu-
ture studies in people with type 1 di-
abetes and albuminuria at baseline to
elucidate the effect of SGLT inhibitors
on surrogate and hard renal outcomes.

As a caveat, however, the consequence
of having single UACR measures at each
time point would be a bias toward the
null. Therefore, the favorable effect of
SOTA on albuminuria in this relatively
small subset may reflect a lower range
estimate of the effectdfurther empha-
sizing the need for dedicated studies in
people with type 1 diabetes and albu-
minuria. We also recognize that some of
the analyses were post hoc and explor-
atory and should thereforebe considered
hypothesis generating. Finally, eGFR
was used to assess changes in kidney
function. Estimating equations are rec-
ognized to have limited precision and
accuracy in people with type 1 diabetes
with preserved kidney function, and fu-
ture studies should ideally use direct
measures of glomerular filtration rate.

In people with type 1 diabetes, SOTA
loweredbloodpressureand inducedmild
hemoconcentration, and it was associ-
ated with an acute change in eGFR and
a reduction in albuminuria. While it is
difficult to know whether these changes
are similar or attenuated versus patients
with type 2 diabetes in the absence of
head-to-head trials, our data suggest that
dual SGLT1 and SGLT2 inhibition has the
potential to confer cardiorenal protec-
tion in ways analogous to selective SGLT2
inhibition in people with type 1 and
type 2 diabetes. Dedicated trials explor-
ing renal and CV protective pathways are
warranted in peoplewith type 1 diabetes
with preexisting cardiac or renal disease.
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