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Abstract: Long-term future prediction of geographic areas with high rates of potentially preventable
hospitalisations (PPHs) among residents, or “hotspots”, is critical to ensure the effective location of
place-based health service interventions. This is because such interventions are typically expensive
and take time to develop, implement, and take effect, and hotspots often regress to the mean. Using
spatially aggregated, longitudinal administrative health data, we introduce a method to make such
predictions. The proposed method combines all subset model selection with a novel formulation of
repeated k-fold cross-validation in developing optimal models. We illustrate its application predicting
three-year future hotspots for four PPHs in an Australian context: type II diabetes mellitus, heart
failure, chronic obstructive pulmonary disease, and “high risk foot”. In these examples, optimal
models are selected through maximising positive predictive value while maintaining sensitivity above
a user-specified minimum threshold. We compare the model’s performance to that of two alternative
methods commonly used in practice, i.e., prediction of future hotspots based on either: (i) current
hotspots, or (ii) past persistent hotspots. In doing so, we demonstrate favourable performance
of our method, including with respect to its ability to flexibly optimise various different metrics.
Accordingly, we suggest that our method might effectively be used to assist health planners predict
excess future demand of health services and prioritise placement of interventions. Furthermore, it
could be used to predict future hotspots of non-health events, e.g., in criminology.

Keywords: all subset model selection; place-based health service interventions; potentially pre-
ventable hospitalisations; repeated k-fold cross-validation; future hotspot prediction

1. Introduction

In an environment with limited healthcare resources, it is essential to be able to accu-
rately identify populations with excess burden of disease, in order to avoid inequality and
effectively target interventions. Health service utilisation is often used as an indicator of
health inequality; in particular, potentially preventable hospitalisations (PPHs), or ambula-
tory care-sensitive conditions (ACSCs), are widely used as an indicator of patients’ access
to, and the provision and effectiveness of, primary care services [1–6]. Such hospitalisations
are characterised by being potentially avoidable, or preventable, through provision of non-
hospital or ambulatory health services; high rates of PPHs may indicate poor functioning
of the primary health care system or care inappropriately directed to hospitals [3,7,8].

Ideally, individuals who are most at risk should be targeted for intervention; accord-
ingly, a number of studies have focused on predicting, and examining the characteristics
of, PPHs amongst individuals [9–16]. However, in practice, information on the behaviour
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and risk factors of individuals is often limited or unavailable, making it difficult or even
impossible to develop appropriate individualised interventions [7,17]. Therefore, as an
alternative, geographic areas with higher-than-expected rates of PPHs among residents, or
“hotspots”, might be examined [17,18], and geographically targeted interventions subse-
quently developed.

Studies: examining geographic variation in PPHs; identifying individual- and area-
level factors associated with such variation, e.g., socioeconomics, unemployment rates, and
regionality; and classifying current hotspots of PPHs, are common (e.g., see [4,8,9,19–30]).
Furthermore, an implicit assumption underpinning such studies is that current PPH
hotspots will be predictive of future hotspots, and, thus, that they represent reasonable
priority areas for targeted interventions (e.g., see [31]). However, place-based health inter-
ventions are typically costly and take time to develop and implement, and over short time
periods current hotspots often regress to the mean [7]. Furthermore, at least for chronic
PPHs, the time delay between the onset of disease and the development of complications
leading to hospitalisation means that interventions aimed at reducing PPHs may take years
to have an effect [31–33]. Therefore, targeting such interventions to current hotspots may
be inappropriate or inefficient. Despite this, atlases of current variation in the utilisation of
healthcare, with or without the subsequent explicit classification of hotspots, are widely
used to guide clinical service planning and for research prioritisation. Examples include
the Australian Atlas of Healthcare Variation [34], the USA Dartmouth Atlas Project [35],
and the UK Atlas of Variation in Healthcare [36].

To address this deficiency, and in order to effectively guide health policy planners,
it is essential to be able to accurately predict PPH hotspots several years into the future.
However, while some longitudinal studies have been undertaken (e.g., see [4,37–40]), to the
best of our knowledge, only one previous study has explicitly predicted, and evaluated the
prediction of, future PPH hotspots: Duckett and Griffiths (2016) used past periods of persis-
tently high PPH rates to predict areas expected to exhibit correspondingly high rates in the
future [7]. Several subsequent studies have employed this approach in Australia [39,41].
However, as we will show, relying on past persistent “hotness” to predict future hotspots
results in inappropriate prioritization of positive predictive value (PPV) over other metrics
that are critical to performance and planning, e.g., sensitivity. Consequently, the utility
of the past persistent hotspots approach for guiding placement of long-term, place-based
health interventions aimed at reducing rates of PPHs, is limited.

In this paper, we introduce a novel method to predict PPH hotspots multiple years
into the future. We begin by describing the classification of geographic hotspots based on
directly age-sex standardised rates, before outlining the proposed method and illustrating
its application predicting three-year future PPH hotspots for four chronic conditions in
Western Australia (WA): chronic obstructive pulmonary disease (COPD), high-risk foot
(HRF), heart failure (HF), and type II diabetes mellitus (T2D). In doing so, we compare the
performance of our method to that of the current and past persistent hotspots prediction ap-
proaches described above. We end with a general discussion, including acknowledgement
of limitations and suggestions for future work.

2. Materials and Methods
2.1. Defining Hotspots Based on Age-Sex Standardized Rates

Our method will utilise data aggregated to the level of small geographic areas. Such
areas are typically administrative boundaries, which exist in many countries, e.g., census-
block groups (CBGs) in the US [42], middle layer super output areas (MSOAs) in the
UK [43], and Statistical Areas Level 2 (SA2s) in Australia. In WA there are 250 SA2s,
including 173 in metropolitan Perth; these have a mean population of approximately
10,000 residents [44]. Figure 1a,b show the distribution of SA2s across WA and metropolitan
Perth, respectively.
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Figure 1. 2016 Statistical Areas Level 2 (SA2) boundaries in (a) Western Australia and (b) metropoli-
tan Perth.

We define geographic hotspots of PPHs by calculating a directly age-sex standardised
rate (ASSR) for each area j, within each year l, as [45]:

ASSRjl =
1

∑i wi
∑

i

wiOijl

nijl
(1)

where Oijl and nijl are the PPH count and population size, respectively, in age-sex stratum i,
area j, and year l, and wi is the standard population for age-sex stratum i (typically
taken from a recent national census). Upper and lower confidence limits for ASSRjl are
calculated as:

ASSRjl, lower = ASSRjl +

√√√√Var
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)
Var(Ol)

(Ol, lower −Ol) (2)
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)
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where Ol is the PPH count across all areas in year l. Upper and lower confidence limits for
Ol are calculated using Byar’s approximation [45]:
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3
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where z is the normal quantile corresponding to the desired confidence level. The terms
Var

(
ASSRjl

)
and Var(Ol) in Equations (2) and (3) are calculated as:

Var
(

ASSRjl

)
=

1

(∑i wi)
2 ∑

i

wi
2Oijl

nijl
2 (6)

Var(Ol) = ∑
i

Oil (7)

Additionally, in each year l, the ASSR of PPHs calculated using data from all areas
(hereafter the “all-area” ASSR of PPHs) is calculated using Equation (1) as:

ASSRl =
1

∑i wi
∑

i

wiOil
nil

(8)

where Oil and nil are the all-area PPH count and population size, respectively, in age-sex
stratum i.

Thus, in each year l, PPH hotspots are defined to be those areas j for which
ASSRjl, lower > ASSRl, i.e., those areas with ASSRs of PPHs statistically significantly higher
than the all-area ASSR of PPHs, at the specified confidence level.

2.2. Future Prediction of Hotspots

Our method is concerned with predicting hotspots m years into the future, where m
is the estimated time required to develop and implement a proposed intervention (e.g.,
three years). To do this, we construct a dichotomous outcome variable that indicates, in
each year, whether each area is a hotspot in years l + 1, . . . , l + m. Corresponding area-level
covariates are defined in year l, though the values of these covariates may depend on data
from previous years. Due to the dichotomous nature of the outcome, logistic regression
models are fitted. We note that alternative models for dichotomous outcomes, such as
regression trees, may also be used; however, a comparison of such models is outside the
scope of this study.

To identify optimal prediction models, multiple candidate models, comprising com-
binations of the available covariates, are compared using an all-subsets model selection
approach [46]. In this process, a single optimal model is identified, which maximises a
chosen performance metric, or multiple metrics, of interest. To compare models, repeated
k-fold cross-validation (CV) [47–49] is undertaken.

Importantly, though the covariates are defined in a single year, as noted above, some
may contain information from previous years (e.g., the number of past consecutive years
classified as a hotspot). Therefore, to fully utilise the information contained in such
covariates, it is necessary to maximise the available data prior to year l. With this in mind,
in Section 2.3 we introduce an existing formulation of k-fold CV for longitudinal data,
namely the rolling forecast window approach [50,51], and show how using this approach in
our context results in the restriction of covariates utilising information from prior years. To
mitigate this restriction, in Section 2.4 we develop an alternative formulation of k-fold CV
for longitudinal data. Repeated k-fold CV is described in Section 2.5. Finally, in Section 2.6,
we describe a calibration-implementation approach allowing the identification of optimal
models based on multiple performance metrics of interest.

2.3. Cross-Validation for Longitudinal Data

The rolling forecast window approach is a commonly implemented CV method that
takes into account the dependence of longitudinal observations. In this method, a window
of width w time points (years, in the current discussion) is iteratively rolled forwards
through the complete time period of width T > w years. A training/test evaluation
is conducted in each iteration, resulting in a number of values, equal to the number of
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iterations conducted, being obtained for a performance metric of interest (e.g., sensitivity,
PPV, or accuracy). These are combined (usually by averaging) to calculate the CV statistic.

To implement the rolling forecast window approach in the current context, where a
logistic regression model is fitted to a dichotomous outcome defined over a future period
of width m years, we fit the model:

log
(

πa

1− πa

)
= β0 + β1xa1 + . . . + βpxap (9)

To the training sample in each iteration. Here, πa is the probability of a positive
outcome case for SA2 a, and β0, β1, . . . , βp are the estimated regression coefficients for
p area-level covariates. A classification threshold is selected by dichotomising the model-
predicted probabilities for the training dataset and optimising the metric of interest. Subse-
quently, the fitted model is applied to the test data, which is shifted forwards m years in
time compared to the training sample (so that the training and test outcome periods do not
overlap). This shift mimics the later use of observed data to predict in a future, unobserved
time period. The model-predicted probabilities for the test dataset are dichotomised using
the previously selected threshold; comparing these predictions to the observed values in
the test dataset produces a validation estimate for the chosen performance metric. Iterating
the entire process, by rolling the training and test datasets forward in time by one-year
increments, results in multiple values for the performance metric of interest; these are
combined to calculate the CV statistic.

For example, suppose T = 10; let m = 1; and suppose that C = 5 comparisons are
required to reliably estimate the CV statistic (as is assumed in five-fold CV). Thus, five
iterations of the rolling forecast window approach are needed. To obtain these, the first
training sample must comprise covariate data defined in year 4, with the outcome defined
in year 5; the corresponding values for the first test sample are years 5 and 6. The second
training sample comprises covariate data defined in year 5, with the outcome defined in
year 6; the corresponding test sample values are years 6 and 7, and so on. Thus, in order
to obtain the required five comparisons, the rolling window has a maximum width of
w = 4 years. To reiterate the point made previously, while the covariate data are defined in
a single year, for example in year 4 in the first iteration of the above example, the values of
some covariates may rely on data from previous years (e.g., years 1 to 3, in this case).

This example illustrates a trade-off that exists in implementing the rolling forecast
window approach within the proposed logistic framework: given T, the maximum value
of w is restricted by the values m and C, and vice versa. In general, a researcher is, thus,
faced with a difficult scenario, since: (a) predicting a number of years into the future (m) is
usually necessary/required; (b) a certain number of comparisons (C) are usually required
in order to reliably calculate a CV statistic; and (c) restricting the width of the forecast
window (w) results in substantial loss of information for predictors utilising past data.

2.4. A New Formulation of K-Fold Cross-Validation for Longitudinal Data

Therefore, to mitigate the truncation of predictors that utilise past data, we propose
an alternative method to the rolling forecast window approach. This approach is outlined
below in the context of the logistic framework introduced previously.

First, divide the available data into K folds, where the partition is based on groups of
areas, then iterate for k = 1, . . . , K:

1. Leaving out data from fold k, fit the model in Equation (9) to the training dataset
comprising K− 1 folds, and select a classification threshold;

2. Apply the fitted model and the selected threshold to the test dataset, which comprises
data from the kth fold, shifted forwards m years in time. Compare the predictions to
the observed values to obtain a value for the performance metric of interest.

The selection of a classification threshold in step i. above is based on optimisation of
the performance metric of interest. This is unchanged from Section 2.3. The layout of the
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training and test datasets is also unchanged, except that, rather than iteratively rolling the
training/test evaluations forwards in time, the observed data is divided only once into
K folds. Thus, by construction, C = K comparisons are obtained, and, unlike with the
rolling forecast window approach, the value of C is independent of the values of m and w.
Returning to the example in Section 2.3, where m = 1 and T = 10, we see that, using our
method, each of the training samples may comprise covariate data defined in year 8, with
the outcome defined in year 9; the corresponding values for each test sample are years 9
and 10. Thus, using our method, the width of the forecast window has a maximum value
of w = 8 years, a substantial improvement on the maximum value of w = 4 observed when
using the rolling forecast window approach.

2.5. Repeated K-Fold Cross-Validation

Particularly when applying k-fold CV to small datasets, variability may arise due to
the random partitioning of the available data into K folds. In the current context, where a
single optimal model structure is selected by implementing the proposed CV procedure for
each candidate model in an all-subset model selection design, this variability manifests in
the selection of different model structures as “optimal” for different partitionings. Thus,
we use repeated CV to stabilise the selection of a single optimal model structure. Repeated
CV is commonly implemented to reduce the variability associated with single-run k-fold
CV [48,49].

To illustrate, suppose that the performance metric of interest is accuracy. This is
calculated for each model d by first “pooling” the predicted counts (true positives (TPs),
false positives (FPs), false negatives (FNs), and true negatives (TNs)) for that model across
CV folds and, subsequently, across CV repeats, according to the formulae:

TPd = ∑
q

∑
k

TPdqk (10)

FPd = ∑
q

∑
k

FPdqk (11)

FNd = ∑
q

∑
k

FNdqk (12)

TNd = ∑
q

∑
k

TNdqk (13)

where TPdqk, FPdqk, FNdqk, and TNdqk are the predicted counts observed when evaluating
fitted model d on CV fold k, within CV repeat q. Additional discussion of the use of pooling
to combine predicted counts in k-fold CV is given in the general discussion. Accuracy is
then calculated as:

accuracyd =
TPd + TNd

TPd + FPd + TNd + FNd
(14)

2.6. Optimising Sensitivity and PPV in A Two-Step Calibration-Implementation Approach

Often, multiple performance metrics are of interest. For example, in the current
context of predicting future PPH hotspots, we argue that both sensitivity (the proportion
of outcome cases correctly predicted) and PPV (the proportion of correct predictions)
are important. In such cases, in implementing the proposed method, an optimal model
structure might be chosen which maximises one metric while maintaining the second
metric above a pre-specified minimum threshold. Here, we describe a two-step calibration-
implementation extension of the proposed method that achieves this. We present formulae
for the maximisation of PPV while maintaining sensitivity above a minimum threshold;
however, other combinations of metrics could also be examined using this approach.

First, in the calibration step, a small number of CV repeats are conducted over a grid
of sensitivity thresholds between 0 and 0.9. At each threshold t, sensitivity and PPV are
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calculated for candidate models by pooling the predicted counts for each model according
to the following formulae:

TPdt = ∑
q

∑
k

TPdqk (15)

FPdt = ∑
q

∑
k

FPdqk (16)

FNdt = ∑
q

∑
k

FNdqk (17)

TNdt = ∑
q

∑
k

TNdqk (18)

Here, TPdqk, FPdqk, FNdqk, and TNdqk are as defined in Equations (10)–(13), while
additionally being subject to t. The pooled sensitivity and PPV for model d, corresponding
to sensitivity threshold t, are then calculated as:

sensitivitydt =
TPdt

TPdt + FNdt
(19)

PPVdt =
TPdt

TPdt + FPdt
(20)

By observing the PPV obtainable across the sensitivity grid, an “appropriate” min-
imum sensitivity threshold, t∗, may be selected for the condition being examined. In
practice, the selection of t∗ might also be based on the requirements of a proposed in-
tervention (i.e., it may be pre-selected). For example, if there is no minimum sensitivity
required, then t∗ = 0 and an optimal model could be selected based on maximising PPV
only, without using the calibration-implementation approach.

Following the calibration step, in the implementation step, numerous CV repeats are
conducted at t∗ and an optimal model structure is selected. Preliminary work suggested
that a large number of CV repeats would be required to stabilise the model selection process,
compared to a relatively low number of repeats reported elsewhere [52,53]. Therefore,
results based on 250 CV repeats are presented in the application examples.

2.7. Real-World Applications: Data and Methods

Hospital admissions for COPD, HRF, HF, and T2D, occurring in the (Australian) finan-
cial years (July to June) between 2002–2003 and 2014–2015 inclusive, were extracted from
the Hospital Morbidity Data Collection, one of the extensive WA linked data collections [54].
Admissions were identified using diagnosis/procedure codes from the International Statis-
tical Classification of Diseases and Related Health Problems, Tenth Revision, Australian
Modification (ICD-10-AM) [55]. This modification is maintained to ensure that the ICD
classification is current and appropriate for Australian clinical practice. Admissions for
COPD, HF, and T2D were identified by the principal diagnosis codes J44, I50, and E11,
respectively; the latter excluding admissions with a principal diagnosis code of E11.39
(“type II diabetes mellitus with other specified ophthalmic complication”). Admissions for
HRF were identified based on codes enumerated in a 2014 Department of Health, Western
Australia report [56]; specifically, codes identifying admissions for “Non-Traumatic Minor
Amputation: Toe”; “Non-Traumatic Major Amputation: Above Knee”; “Non-Traumatic
Major Amputation: Below Knee”; “Osteomyelitis of the foot/ankle”; “Diabetic foot”; “Pe-
ripheral Vascular Disease”; “Cellulitis of the Lower Limb” and “Charcot’s Foot”. Principal
diagnosis codes identifying traumatic amputations were excluded.

The extracted admissions were aggregated by financial year and SA2 boundaries to form
state-wide and metropolitan datasets (comprising 250 SA2s across WA and 173 metropolitan
SA2s, respectively). This was done because substantial variation in health utilisation outcomes
is often observed between regional and metropolitan WA, but sparse data in regional areas
means that such areas frequently cannot be analysed alone. The admissions data were merged
with population data interpolated and extrapolated around census population data from 2001,
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2006, and 2011, obtained from the Australian Bureau of Statistics. Areas with a population size
less than 1000 in any financial year (these predominantly comprised airports, national parks,
and industrial areas) were excluded, leaving 149 metropolitan SA2s and 222 SA2s across WA.

For each condition examined, ASSRs of hospital admissions were calculated using
Equation (1) for combinations of SA2 and year, with the standard population taken to be
the Australia-wide population from the 2011 census. Then, hotspot SA2s were identified in
each year as those with ASSRs of PPHs statistically significantly higher than the all-area
ASSR (the latter calculated using Equation (8)). In strata with a small population size,
aggregation across age groups is often recommended in order to avoid instability that
may arise when calculating standardised rates; such aggregation has been recommended
for groups with population denominators less than 30 [57]. An alternative approach was
implemented here, where the observed admission counts and populations in age-sex
strata with population sizes less than 30, for particular combinations of area j and year l,
were substituted by the corresponding all-area admission counts and population sizes,
respectively (i.e., substituting Oijl and nijl by ∑j|i,l Oijl and ∑j|i,l nijl in Equations (1), (6)
and (7), for relevant age-sex strata i). In this way, the distribution of the population among
age-sex strata in specific SA2s is retained, and no loss of information occurs as would be
the case if aggregating across age groups in the ad hoc manner described above.

A binary outcome was constructed, where positive outcome cases were SA2s classified
as hotspots in each of three (i.e., m = 3) consecutive future years (i.e., between 2009–2010
and 2011–2012 in the training sample and between 2012–2013 and 2014–2015 in the test
sample). Next, area-level candidate predictors in the year in which predictors were defined
(l = 2008–2009 for the training samples and l = 2011–2012 for the test samples) were
selected based primarily on past research. These included:

• the percentage of individuals identifying as Aboriginal and/or Torres Strait Islander
(hereafter “Aboriginal”);

• the percentage of individuals aged 75 years or older (along with a quadratic term);
• the percentage of male individuals (centred around the mean within each finan-

cial year);
• rurality (metropolitan or regional);
• accessibility to emergency department (ED) and general practice (GP; in the US read

“family practice”); and
• four Socio-Economic Indices for Areas (SEIFAs): (i) the Index of Relative Socio-

Economic Disadvantage (IRSD), (ii) the Index of Relative Socio-Economic Advantage
and Disadvantage (IRSAD), (iii) the Index of Education and Occupation (IEO), and
(iv) the Index of Economic Resources (IER) [58].

A percentile rank was constructed for each SEIFA index. Accessibility to ED was calcu-
lated as the population-weighted distance to the nearest ED (in kilometres) using information
from the WA Emergency Department Data Collection [54]. Accessibility to GP was calculated
using 2015 information from the WA Primary Health Alliance as either: (i) the population-
weighted distance to the nearest GP clinic (in kilometres) or (ii) the GP accessibility index
obtained from a gravity-based accessibility model, adjusted for the distance to each GP clinic,
the population within each area, and the population competition between areas [59]. A
percentile rank was constructed for the latter. The number of past consecutive years classi-
fied as a hotspot was also included as a predictor, along with interaction terms with each
SEIFA percentile. Interactions between the weighted distance to nearest ED and each SEIFA
percentile were also considered. The distance variables and the percentage of Aboriginal
individuals were log-transformed to account for skewness, with an adjustment in the latter
case to account for the presence of zeros [60]. This adjustment facilitates the approximate
log-transformation of continuous predictors x, which have some zero values, according to the
formula:

f (x) =

{
x i f |x| ≤ c

sign(x)× c×
(

1 + log
[
|x|
c

])
i f |x| ≥ c

(21)
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where c is a scalar, which was set to 1.
For each condition, a group of candidate models was constructed using a modified

all-subset model selection approach; included models consisted of all permutations of
the candidate predictors except: permutations violating the marginality principle; those
containing multiple SEIFA indices; and those containing both measures of GP accessibility.
Since outcome cases were relatively uncommon for the four PPHs examined, models with
more than five predictors were excluded to avoid potential problems arising due to data
sparsity. This restriction was concordant with preliminary results showing no improvement
in PPV for larger models. Separate state-wide and metropolitan groups were assembled
comprising the remaining permutations; there were d = 1146 candidate models in the
state-wide group and d = 726 candidate models in the metropolitan group.

For each condition, the method described in Section 2.4 was implemented. Candidate
models were fitted using logistic regression with the Firth correction [61–63] to avoid
problems that may arise due to data separation. Using the calibration-implementation
procedure described in Section 2.6, five repeats of five-fold CV were conducted in the
calibration step, and a different sensitivity threshold was selected for each condition. It
is frequently recommended that between five and ten folds be used when implementing
k-fold CV, though this choice remains an open area of research [64]; we used five-fold
CV in order to balance the number of folds against (a) the number of areas in each fold,
and (b) the increased computational load resulting from the use of more folds (e.g., 10) in
combination with repeated k-fold CV and all subset model selection.

Subsequently, 250 CV repeats were conducted in the implementation step, and a single
optimal model was selected for each condition. In each case, the structure of this model was
then applied to the most recent data available (i.e., predictor information from 2011–2012,
with the outcome defined between 2012–2013 and 2014–2015), to predict future hotspot
SA2s up until 2018–2019.

3. Results
3.1. Results from Real-World Applications

In applying our method, outcome cases in the training samples (i.e., SA2s classified as
hot between 2009–2010 and 2011–2012) were uncommon for all PPHs examined, ranging
between 5 SA2s (2.3% of all SA2s; HF) and 16 SA2s (7.2%; COPD) in the state-wide training
samples and between 4 SA2s (2.7%; T2D) and 11 SA2s (7.4%; COPD) in the metropolitan
training samples (Table 1). In particular, the presence of just four outcome cases in the
metropolitan dataset for T2D meant that we had to use four-fold CV, instead of five-fold
CV, in analysing this dataset; this point is revisited in the Discussion.

Figure 2 shows the validation sensitivity and PPV of candidate state-wide HRF models
across the grid of sensitivity thresholds between 0 and 0.9 (Figure 2a–f). This figure was
constructed using data from the calibration step of the state-wide HRF model. At each
threshold, the optimal model is the one with maximum PPV that also has sensitivity greater
than the specified threshold. For thresholds 0 and 0.2, there are multiple optimal models, each
with PPV of 1, but at other thresholds a single optimal model is identifiable. Two phenomena
are illustrated that are characteristic of all PPHs examined: first, PPV of the optimal model was
lower at higher sensitivity thresholds, and second: clusters of models were observed. The latter
point is discussed in more detail later. The inverse relationship between PPV and sensitivity is
illustrated further in Figure 3, where PPV from the optimal models for HRF (Figure 3a), COPD
(Figure 3b), HF (Figure 3c), and T2D (Figure 3d), obtained using data from the calibration step
for each model, is plotted across the sensitivity grid. Data for the optimal state-wide models
are shown as solid lines with dashed lines indicating metropolitan data. Based on these data, a
minimum sensitivity threshold of 0.5 was selected for the state-wide and metropolitan models
for HRF, a threshold of 0.4 was selected for the corresponding COPD models, and a threshold
of 0.3 was selected for the corresponding models for HF and T2D. These values are shown
in Table 1.
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Table 1. Validation statistics for optimal state-wide and metropolitan models for high-risk foot (HRF), chronic obstructive
pulmonary disease (COPD), heart failure (HF), and type II diabetes (T2D), with 95% quantile intervals. The number (N) and
percentage (%) of outcome cases in each training sample; the sensitivity thresholds selected in the calibration step; and the
number and percentage of predicted areas are also shown.

PPH

Validation Statistics (95% Quantile Interval)

N (%) Events 1 Sensitivity
Threshold Sensitivity Specificity PPV NPV N (%)

Predicted 1

State-wide models

HRF 14 (6.3) 0.5 0.531
(0.421–0.632)

0.993
(0.980–1.000)

0.872
(0.717–1.000)

0.958
(0.948–0.966) 11 (5)

COPD 16 (7.2) 0.4 0.412
(0.286–0.524)

0.972
(0.955–0.985)

0.602
(0.468–0.750)

0.941
(0.929–0.951) 17 (7.7)

HF 5 (2.3) 0.3 0.347
(0.250–0.481)

0.990
(0.976–1.000)

0.66
(0.444–1.000)

0.964
(0.958–0.971) 9 (4.1)

T2D 12 (5.4) 0.3 0.302
(0.200–0.333)

0.998
(0.986–1.000)

0.913
(0.625–1.000)

0.952
(0.945–0.954) 5 (2.3)

Metropolitan models

HRF 10 (6.7) 0.5 0.529
(0.364–0.636)

0.987
(0.971–1.000)

0.766
(0.556–1.000)

0.963
(0.951–0.972) 7 (4.7)

COPD 11 (7.4) 0.4 0.449
(0.286–0.571)

0.953
(0.926–0.978)

0.499
(0.378–0.636)

0.943
(0.928–0.955) 8 (5.4)

HF 5 (3.4) 0.3 0.500
(0.500–0.500)

0.971
(0.952–0.986)

0.319
(0.222–0.500)

0.986
(0.986–0.986) 2 (1.3)

T2D 4 (2.7) 0.3 0.325
(0.125–0.375)

0.956
(0.943–0.972)

0.297
(0.143–0.375)

0.961
(0.951–0.965) 7 (4.7)

1 Percentages are calculated using a denominator of 222 state-wide and 149 metropolitan areas. PPH: potentially preventable hospitalisation;
PPV: positive predictive value; NPV: negative predictive value.
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grey lines. In each panel, black dots depict data for individual models.
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Figure 3. Validation positive predictive value (PPV) at various sensitivity thresholds for the optimal
state-wide (solid) and metropolitan (dashed) models for: (a) high risk foot (HRF), (b) chronic
obstructive pulmonary disease (COPD), (c) heart failure (HF), and (d) type II diabetes (T2D).

In the implementation step, single optimal model structures were generally identified
for each condition using a maximum of 50 CV repeats (though 250 CV repeats were
conducted in each case). Thus, in general, increasing the number of CV repeats stabilised
the selection of a single optimal model structure. However, in some cases, stabilisation did
not occur even after pooling predictions across 250 CV repeats. Two contrasting examples
of this phenomenon are presented in Figure 4, using data from the implementation step
for the metropolitan COPD and state-wide T2D models. Figure 4a,b show the sensitivity
and PPV for the “best” ten metropolitan COPD models, i.e., those which maintained the
required sensitivity level of 0.4 and had the highest PPV, plotted against the number of CV
repeats used (from 1 to 250). Corresponding data for the best ten state-wide models for
T2D are shown in Figure 4c,d. While sensitivity for each of the COPD models was well
above the minimum threshold of 0.4 (Figure 4a), some models had similar PPV (Figure 4b).
By contrast, while one T2D model consistently had greater PPV than its counterparts
(Figure 4d), its sensitivity fluctuated around the minimum threshold of 0.3 (Figure 4c).
Both scenarios resulted in non-stabilisation of the choice of optimal model as additional CV
repeats were conducted. Note that the latter phenomenon may not have arisen if only PPV
was considered, since one model clearly had higher PPV than the others. The potential
effects of selecting optimal models based on multiple performance metrics (as opposed to
a single metric) is explored further in the Discussion.
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Figure 4. Validation sensitivity and positive predictive value (PPV) for: (a,b) the ten best metropolitan
chronic obstructive pulmonary disease (COPD) models, and (c,d) the ten best state-wide models for
type II diabetes (T2D). Heavier lines indicate the optimal models. The minimum sensitivity threshold
is shown as a horizontal grey line in (a–c). CV: cross-validation.

As shown in Figure 2, clusters of models with similar PPV were sometimes observed
at particular points in the grid of sensitivity thresholds. Models in such clusters typically
comprised similar predictors: for example, Table 2 provides implementation-step sensitivity
and PPV data for the ten best state-wide HRF models, along with mean odds ratios
for the predictors in each of the ten models. The mean odds ratios were obtained by
averaging estimated odds ratios from fitted models across multiple CV folds and CV
repeats. The ten best state-wide models did not differ substantially: PPV ranged between
0.86 and 0.87 and some predictors appeared in several models. Positive associations
were observed for the number of consecutive past years being classified as a hotspot and
the percentage of Aboriginal individuals in an SA2, both of which appeared in all ten
models, while negative associations were observed for the percentage of male individuals
in an SA2, which appeared in nine of the ten models. Note that, while such observations
may aid construction of an initial set of candidate predictors, the models described here
were developed to maximise predictive performance rather than to examine association.
Therefore, the odds ratios are not of primary importance and should be interpreted with
caution [65,66].
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Table 2. Validation statistics for the ten best state-wide models for high-risk foot (HRF), with mean odds ratios for predictors
in these models.

Variable
Model

1 2 3 4 5 6 7 8 9 10

Number of past consecutive years classified as a hotspot 1.57 1.56 1.57 1.56 1.56 1.55 1.64 1.56 1.56 1.36

IER percentile 0.93

IEO percentile 0.99

Percentage of Aboriginal individuals 1 3.43 3.44 3.59 3.33 3.47 6.03 2.55 3.55 3.36 1.20

Percentage of male individuals 2 0.71 0.76 0.73 0.71 0.74 0.87 0.75 0.73 0.83

Percentage of individuals aged 75 or above 0.99 0.99

Weighted distance to nearest ED (km) 1 1.05 1.02 1.02 0.74 1.06

Weighted distance to nearest GP (km) 1 0.43

GP accessibility index percentile 1.00 1.00 1.00

Validation statistics

Sensitivity 0.531 0.504 0.530 0.528 0.520 0.504 0.527 0.517 0.526 0.516

PPV 0.872 0.870 0.869 0.868 0.867 0.865 0.864 0.862 0.861 0.859
1 Variable has been transformed. 2 Variable has been centred. IER: index of economic resources; IEO: index of education and occupation;
ED: emergency department; GP: general practice; PPV: positive predictive value.

Table 1 shows validation statistics for the optimal state-wide and metropolitan models
for each condition, along with the number of SA2s predicted by each model. Uncertainty
in each statistic is represented by the 2.5% and 97.5% quantiles from its distribution across
the 250 CV repeats. The optimal state-wide models generally had greater PPV (ranging
from 0.6; 95% confidence interval: 0.47–0.75 for COPD to 0.91; 0.63–1 for T2D) than the
metropolitan models (ranging from 0.3; 0.14–0.38 for T2D to 0.77; 0.56–1 for HRF). This
was possibly due to high variability between metropolitan and regional SA2s compared to
relatively low variability between metropolitan SA2s. PPV for the metropolitan models for
HRF (0.77; 0.56–1) and COPD (0.5; 0.38–0.64) exceeded that for HF (0.32; 0.22–0.5) and T2D
(0.23; 0.14–0.38), possibly due to relatively low outcome counts for the latter two models,
where a small number of false positives can heavily impact PPV [67].

Finally, Table 3 lists the predictors in the optimal models. Some predictors were
important for multiple conditions; the number of past consecutive years classified as
a hotspot was present in all state-wide models except for T2D and the percentage of
Aboriginal individuals in an SA2 was present in all state-wide models, as well as the
metropolitan models for HRF and T2D. Other predictors were less consistently present.
These data are presented because they are likely to be informative in guiding the selection
of a group of candidate predictors for certain conditions.

3.2. Comparison to Existing Methods

In this section, we compare the performance of our method to two approaches com-
monly used to predict future hotspots of PPHs, namely: (i) using current hotspots as a
prediction rule (hereafter the “current hotspots” approach), and (ii) using past persistent
hotspots as a prediction rule (hereafter the “past persistent hotspots” approach).

To give an example, Figure 5 shows the 22 hotspot SA2s for HRF in metropolitan
Perth in 2011–2012 (light grey shading), and the subset of seven of these that were clas-
sified as hotspots for six consecutive years up until 2011–2012 (inclusive). These are the
SA2s predicted to be future hotspots using the current and past persistent hotspots rules,
respectively. Note that, while ten consecutive years were proposed for the past persistent
hotspots rule by Duckett and Griffiths (2016), we used six years due to the relative scarcity
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of persistent hotspots for HF and T2D (this is possibly due to the relatively low number of
SA2s in WA and metropolitan Perth, compared to cities and states in eastern Australia).

Table 3. Presence of predictors in the optimal state-wide and metropolitan models for high-risk foot (HRF), chronic
obstructive pulmonary disease (COPD), heart failure (HF), and type II diabetes (T2D).

Variable

Model

State-Wide Metropolitan

HRF COPD HF T2D HRF COPD HF T2D

Number of consecutive past years classified as a hotspot
√ √ √ √ √

IRSAD percentile
√

IER percentile
√ √

IEO percentile
√

Percentage of Aboriginal individuals 1 √ √ √ √ √ √

Percentage of male individuals 2 √ √ √

Percentage of individuals aged 75 or above
√ √ √ √

Percentage of individuals aged 75 or above
(quadratic term)

√ √ √

Number of consecutive past years classified as a
hotspot: IER percentile 3

√

Weighted distance to nearest ED (km) 1 √ √ √

Weighted distance to nearest GP (km) 1 √ √

GP accessibility index percentile
√

1 Variable has been transformed. 2 Variable has been centred. 3 Interaction term. IRSAD: index of relative socioeconomic advantage and
disadvantage; IER: index of economic resources; IEO: index of education and occupation; ED: emergency department; GP: general practice.

Of the 22 current hotspots, only six remained hotspots in 2014–2015 (i.e., in three
years’ time). Thus, PPV for the current hotspots approach for HRF in metropolitan Perth
was approximately 27%. This data is shown in Table 4 along with corresponding values for
HRF, COPD, and HF. Corresponding estimates of sensitivity are also shown. Across the
four conditions, PPV of no more than 27% was observed (HRF), while sensitivity ranged
between 13% (T2D) and 55% (HRF). Corresponding data for the four conditions in all
of WA are also shown; here, the highest PPV observed was 41% (HRF) while sensitivity
ranged between 53% (T2D) and 68% (HRF).

Of the seven past persistent hotspots in 2011–2012 (Figure 5), four remained hotspots
in 2014–2015 (dark grey shading); giving PPV of 57%. This data is similarly shown in
Table 4 along with corresponding values for COPD, HF, and T2D, as well as corresponding
estimates of sensitivity. PPV of no more than 57% was observed (HRF), while sensitivity
ranged between 0% (HF and T2D) and 36% (HRF). Analogous data for the four conditions
in all of WA showed PPV as high as 80% (HRF), with sensitivity ranging between 8% (HF)
and 42% (HRF).

These results demonstrate that the current hotspots approach tends to give high
sensitivity but relatively low PPV. Thus, though future hotspots are frequently identified,
predictions based on this method are often incorrect. This reflects the fact that current
hotspots frequently regress to the mean in the long-term. In contrast, the past persistent
hotspots approach tends to give high PPV but relatively low sensitivity. Thus, while this
method frequently predicts some future hotspots correctly, it often fails to identify others.
Furthermore, in cases where there are no past persistent hotspots, this method cannot make
any predictions, resulting in undefined PPV and zero sensitivity. This phenomenon was
observed for the metropolitan HF dataset in the current examples.
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Table 4. Validation performance statistics for the “current hotspots” and “past persistent hotspots”
prediction rules.

Model PPH

Method

Current Hotspots Past Persistent Hotspots

Sensitivity PPV Sensitivity PPV

State-wide

HRF 0.684 0.406 0.421 0.8
COPD 0.667 0.333 0.143 0.6

HF 0.583 0.28 0.083 0.5
T2D 0.533 0.286 0.267 0.571

Metropolitan

HRF 0.545 0.273 0.364 0.571
COPD 0.429 0.24 0.071 0.333

HF 0.5 0.143 0 NA
T2D 0.125 0.063 0 0

PPH: potentially preventable hospitalisation; PPV: positive predictive value; HRF: high risk foot; COPD: chronic
obstructive pulmonary disease; HF: heart failure; T2D: type 2 diabetes; NA: not applicable.
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4. Discussion

In this paper, we have developed a novel statistical method to predict future geo-
graphic hotspots of PPHs. This method incorporates all-subset model selection and a
unique formulation of repeated k-fold CV for longitudinal data. Results from its applica-
tion examining PPHs for four chronic conditions in an Australian context have illustrated
its utility for accurately predicting future hotspots of PPHs and other health events, and its
flexibility in maintaining required minimum performance criteria associated with proposed
health interventions.

Although good predictive performance was generally observed across the conditions
examined, relatively low PPV was observed in some cases. This suggests that predicting
future persistent hotspots is inherently difficult for some conditions. However, regard-
less, we have shown that our method performs favourably compared to the two existing
methods that are commonly used in practice, i.e., the current and past persistent hotspots
approaches. Specifically, we have shown how current hotspots typically predict future
hotspots with low PPV and high sensitivity, while past persistent hotspots typically predict
future hotspots with low sensitivity and high PPV. Moreover, importantly, these charac-
teristics are fixed; users are unable to adjust them to suit alternative requirements (i.e.,
of interventions). By comparison, our method allows users to optimise sensitivity; PPV;
both sensitivity and PPV (as we have done); or any other metric(s) that might be of in-
terest. A broad range of results are, thus, obtainable using our method, including, but
not restricted to, similar values to those obtainable using the current and past persistent
hotspots approaches.

While hotspot prediction models are often evaluated using a single metric (e.g., dis-
crimination or calibration, see [68,69]), we have argued that both sensitivity and PPV are
important in the context of planning and evaluating public health interventions. Costly
interventions generally require high PPV, often to the detriment of sensitivity, while in-
expensive interventions may sacrifice PPV to improve sensitivity, particularly if the cost
of false positives is negligible. In general, a given optimisation rule should be tailored
to the characteristics of the condition being examined and the feasibility of a proposed
intervention. When examining multiple metrics, we recommend using the calibration-
implementation approach we have presented. In our application, where PPV is maximised
while maintaining sensitivity above a minimum level, the calibration step allows users to
first assess whether a desired level of PPV is attainable at a sensitivity appropriate to a
proposed intervention, before proceeding to the implementation step.

The choice of a minimum level of sensitivity is one of several inputs to our system that
can be manipulated by users to suit their needs. Other choices include: the length of the
outcome time period, which should correspond to the estimated time required to develop
and implement a planned intervention (we have used three years as an example); which
candidate predictors to consider; the maximum number of predictors to include in each
model; and which performance metrics to optimise (again, these should be chosen based
on a cost-benefit analysis of a proposed interventions). It is easy to envisage a computer
application that, in implementing our method, allows users to easily manipulate these
constraints to best suit their needs. The development of such an application represents an
important area for future work.

Alternative methods to pooling may be used to calculate a CV statistic in k-fold CV.
Usually, estimates are averaged across folds [49]. However, for datasets with a relatively
low number of outcome cases, this might result in undefined estimates in some folds [70].
For example, sensitivity is undefined in folds with zero outcome cases, while PPV is
undefined in folds with zero positive predictions. Such estimates may go undiscovered
when buried within results that are aggregated over many folds; consequently, many
researchers avoid drawing conclusions based on results that are derived using datasets
with rare outcomes. However, it is important to consider the performance of modelling
techniques such scenarios, particularly as they often occur in the medical domain [71].
In practice, undefined estimates are either accounted for by: (i) substituting zero, or (ii)
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exclusion. In small samples with rare outcomes, both of these approaches lead to biased
estimates; by contrast, bias is minimised for some metrics (including sensitivity and PPV)
when using pooling [71]. In our examples, pooling avoids the problem of undefined
sensitivity since there is at least one outcome case in all samples. Furthermore, cases of
undefined PPV are avoided by pooling across CV repeats.

We have examined population-based hotspots, as opposed to hotspots based on the
prevalence of disease (prevalence-based hotspots), in order to emphasise interventions
to reduce costs associated with hospitalisations. However, some studies have argued
that population-based hotspots are less informative than prevalence-based hotspots since
disease prevalence could vary between populations and between areas [72,73]. While
further comment on this discussion is outside of the scope of this paper, we note that our
method can be used to predict either type of hotspot, or both.

Applications of our method may be limited in some cases by time-dependent influ-
ences, e.g., changes in coding practices. For example, in our data, a change in coding
practices for T2D in July 2010 resulted in far fewer admissions being coded using ICD-
10-AM code “E11” following the change. The potential impact of such changes should
be considered when applying our method. A second limitation is that, in extreme cases,
there may be no persistent hotspots and, thus, no outcome cases. This was observed to
a minor degree in the metropolitan model for T2D, where only four outcome cases were
identified and, consequently, four-fold CV was used instead of five-fold CV. This limitation
could potentially be overcome through utilizing models that do not require preliminary
dichotomization of the outcome, e.g., those that directly model ASSRs of PPHs. However,
the phenomenon is also partly attributable to the arbitrary nature of the areal boundaries
used (SA2s); if a hotspot overlaps multiple SA2s, it may be diluted among them and,
thus, go undiscovered. The impact of the particular choice of boundaries on analyses of
areal data is described by the modifiable areal unit problem (MAUP) [74]. Future work
should generalise our method to address the MAUP; specifically, its “scale” and “zona-
tion” aspects, which describe, respectively, the dependence of a given analysis on the size
and configuration of the chosen set of spatial boundaries. A recently proposed method
that involves combining information across numerous zonations of fine-resolution data,
in order to classify “zonation-independent” hotspots, could potentially be used for this
purpose [75]. However, the choice of scale should also be carefully considered; this should
be related to the scale of a proposed intervention [75]. To facilitate these endeavours, and in
order that users have sufficient control over scale, as fine resolution data as possible should
be obtained in the first instance; where fine-resolution data exist, but are unavailable,
their custodians should be lobbied for access to those data based on a need to address the
MAUP. Finally, our method might be improved through consideration of different sets of
covariates, or utilization of dichotomous-outcome models other than logistic regression.
All of these extensions can easily be incorporated into the framework we have developed.

5. Conclusions

In summary, we have presented a novel method to predict future geographic hotspots
of PPHs. Characterised by its ability to maintain user-specified performance criteria
associated with planned, place-based health interventions, the method is differentiated
from existing methods to predict future PPH hotspots, namely current and past persistent
hotspots approaches. In examining several real-world examples, we have demonstrated
superior performance and flexibility of our method as compared to those alternatives.
Consequently, we suggest that our method might usefully be used to assist health policy
planners predict future demand and assess the potential benefits of geographically targeted
health interventions. Furthermore, it could be used to predict future geographic hotspots
of non-PPH health conditions and disease states, and of non-health-related events (e.g.,
in criminology). However, when using our method, policy makers and clinical planners
should optimise it according to the characteristics of the cohorts, conditions, and proposed
interventions under consideration.
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