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a b s t r a c t

The COrona VIrus Disease 2019 (COVID-19) pandemic is an ongoing global pandemic that has claimed
millions of lives till date. Detecting COVID-19 and isolating affected patients at an early stage is crucial
to contain its rapid spread. Although accurate, the primary viral test ‘Reverse Transcription Polymerase
Chain Reaction’ (RT-PCR) for COVID-19 diagnosis has an elaborate test kit, and the turnaround time
is high. This has motivated the research community to develop CXR based automated COVID-19
diagnostic methodologies. However, COVID-19 being a novel disease, there is no annotated large-scale
CXR dataset for this particular disease. To address the issue of limited data, we propose to exploit
a large-scale CXR dataset collected in the pre-COVID era and train a deep neural network in a self-
supervised fashion to extract CXR specific features. Further, we compute attention maps between the
global and the local features of the backbone convolutional network while finetuning using a limited
COVID-19 CXR dataset. We empirically demonstrate the effectiveness of the proposed method. We
provide a thorough ablation study to understand the effect of each proposed component. Finally, we
provide visualizations highlighting the critical patches instrumental to the predictive decision made
by our model. These saliency maps are not only a stepping stone towards explainable AI but also aids
radiologists in localizing the infected area.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

The COrona VIrus Disease 2019 (COVID-19), epi-centered in
ubei Province of the People’s Republic of China, spread so
apidly across the globe that the World Health Organization
WHO) declared COVID-19 a Public Health Emergency of Inter-
ational Concern on 30 January 2020, and finally a pandemic on
1 March 2020 [1]. It has caused a massive threat to global health
ith 174,918,667 cases of confirmed coronavirus and 3,782,490

E-mail address: anz188380@iitd.ac.in.
ttps://doi.org/10.1016/j.asoc.2022.108867
568-4946/© 2022 Elsevier B.V. All rights reserved.
deaths as of 12 June 2021. Once infected with COVID-19, one may
experience fever, cough, and respiratory illness. Some may also
experience shortness of breath, muscle or body aches, headache,
loss of taste or smell, sore throat, and diarrhea [2,3]. The virus can
cause pneumonia or breathing problems in severe cases, leading
to multi-organ failure and death [4]. Due to the exponential
growth of COVID-19 patients, there is a shortage in supply of
diagnostic kits, a limited number of beds in the hospitals to care
for critical patients, a dearth of ventilators, scarcity in personal
protective equipment (PPE) for healthcare personnel. Despite var-
ious preventive measures (such as complete lockdown) adopted

by the government of different countries to contain the disease
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nd delay the spread, several developed countries have faced a
ritical care crisis, and the health system has come to the verge
f collapse. It is, therefore, of utmost importance to screen the
ositive COVID-19 patients accurately for efficient utilization of
imited resources. Reverse Transcription Polymerase Chain Reac-
ion (RT-PCR) [5,6] is the most preferred viral test for COVID-19
etection due to its high sensitivity and specificity. However, the
urn-around time of RT-PCR is high.

Consequently, chest radiography such as computerized to-
ography (CT) scan and X-ray imaging-based detection tech-
iques have emerged as an alternative modality for screening
OVID-19 patients. With these modalities, researchers have ob-
erved that COVID-19 patients’ lungs exhibit ground-glass opacity
nd/or mixed ground-glass opacity and mixed consolidation that
an separate COVID-19-positive cases from COVID-19-negative
ases [7,8]. In contrast to conventional diagnostic methods, X-ray
ffers several advantages as it is fast, can simultaneously analyze
umerous cases, inexpensive and widely available. It can be very
seful in hospitals with limited testing kits and resources.
Deep Machine Learning has revolutionized the field of health

are by accurately analyzing, identifying, and classifying patterns
n medical images [9]. Artificial neural networks are able to
iagnose a variety of illnesses with a high degree of accuracy.
he reason for such success is that deep learning techniques do
ot rely on manual handcrafted features but rather learn features
utomatically from data itself. This allows the algorithm to be
pplicable on a broader variety of use cases than traditional
achine learning methods and is also faster and more accu-

ate in many cases. Motivated by the remarkable performance
f CheXNet in Pneumonia detection from chest X-ray images,
rtificial intelligence (AI) researchers have put a lot of effort
nto designing machine learning (ML) algorithms for automated
etection of COVID-19 using chest X-rays. However, the biggest
hallenge lies in the fact that COVID-19 being a novel disease, a
imited number of sample images are available for training deep
eural networks. Motivated by this, in this work, we propose a
ovel framework that can be trained using limited labeled data
or COVID-19 detection using chest X-rays. In this work, our
ontributions are as follows.

1. We adopt a self-supervised training methodology to train a
CXR feature extractor (a convolutional backbone network)
on a large-scale chest X-ray dataset.

2. We design a local–global-attention-based classification net-
work consisting of the pre-trained feature extractor, an
attention block, and a classification head.

3. We empirically demonstrate the effectiveness of the pro-
posed framework in the low data regime through extensive
experimentation and ablation studies.

4. We present clinically interpretable saliency maps, which
are helpful for disease localization and patient triage.

he remainder of this paper is structured as follows: Section 2
rovides an overview of related work; Section 3 describes the
rocedural and methodological stages of the development of
his solution; Section 4 evaluates the proposed method and as-
esses the predictions; finally, Section 5 critically discusses the
dvantages and the limitations of the proposed framework.

. Related work

Several deep neural frameworks [10–15] have been proposed
n the past to identify different thoracic diseases such as Pneu-
onia using chest X-ray (CXR) images and surpassed average

adiologist performance. ChestX-ray8 [11] (later extended to con-
titute ChestX-ray14 dataset), and CheXpert [16] are two large-
cale datasets of chest X-rays (CXR) that facilitate the training of
2

deep neural networks (DNN) for automating the interpretation
of a wide variety of thoracic diseases. ChexNet [16] is a deep
neural network, built using DenseNet-121 [17], for Pneumonia
detection using chest X-ray images and it achieved excellent
results surpassing average radiologist performance. ChestNet [12]
is another deep neural network for thoracic diseases diagnosis
using chest radiography images. The authors in [14] propose
to learn channel-wise, element-wise, and scale-wise attention
(triple attention) simultaneously to classify 14 thoracic diseases
using chest radiography. Thorax-Net [15] is an attention reg-
ularized deep neural network for the classification of thoracic
diseases on chest radiography.

Motivated by this, the research community has examined the
possibility of COVID-19 prognosis using CXR.

2.1. Traditional machine learning for COVID-19 detection using CXR

The proposal in [18] leverages an enhanced cuckoo search
algorithm to determine the most significant CXR features and
train a k-nearest neighbor (KNN) classifier to distinguish between
COVID-19 positive and negative cases. In this work, features were
extracted from X-ray images using standard feature extraction
techniques such as Fractional Zernike Moments (FrZMs), Wavelet
Transform (WT), Gabor Wavelet Transform (GW), and Gray Level
Co-Occurrence Matrix (GLCM), followed by a fractional order
cuckoo search method where the levy flight distribution was
replaced with better suited heavy tailed distributions for selecting
the most relevant features. Following feature selection, a KNN
was used for classification. The work in [19] employs a new
set of descriptors, Fractional Multichannel Exponent Moments
(FrMEMs) to extract orthogonal moment features. Next, Manta
Ray Foraging Optimization (MRFO) using Differential evolution
(DE) is utilized to select the most relevant features. Finally, a k-
nearest neighbor (KNN) classifier is used for prediction. A novel
shape-dependent Fibonacci-p patterns-based feature descriptor
is proposed in [20] for CXR features extraction, which are clas-
sified using conventional ML algorithms such as support vector
machine (SVM), k-nearest neighbor (KNN), Random Forest, Ad-
aBoost, Gradient Tree Boosting, and Decision Trees. In [21], the
author uses Histogram of Oriented Gradients (HOG), Gray-Level
Co-Occurrence Matrix (GLCM), Scale-Invariant Feature Transform
(SIFT), and Local Binary Pattern (LBP) methods in the feature
extraction phase. Next, Principle Component Analysis (PCA) is
applied for feature selection. Finally, k-NN, SVM, Bag of Tree,
and Kernel Extreme Learning Machine (K-ELM) are used for final
classification.

2.2. Deep learning for COVID-19 detection using CXR

Many of the existing deep learning methods [22–29]
use the transfer learning approach by finetuning pre-trained
networks such as ResNet-18 [30] or ResNet-50 [30], DenseNet-
121 [17], InceptionV3 [31], Xception [32], etc., on COVID-
19 CXR datasets. COVID-SDNet [28] combines segmentation,
data-augmentation and data transformations together with a
ResNet-50 [30] for inference. The authors in [28] define a novel
three-stage segmentation-classification pipeline to solve a bi-
nary classification task between COVID-19 and non-COVID-19
CXR. First, the lung region is cropped from CXR using bounding
box segmentation. Next, a GAN based class-inherent transfor-
mation network is employed to generate two class inherent
transformations x+ and x− from each input image x. Finally, the
transformed images are used to solve a four-class classification
problem using CNN with a Resnet-50 [30] backbone and an aggre-
gation strategy is designed in order to obtain the final class. As the
number of classes increase, so will the number of generators to
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e trained in stage two, which makes scaling inefficient for multi-
lass classification. In [24] an ensemble of off the shelf pretrained
NNs – InceptionV3 [31], MobileNetV2 [33], ResNet101 [30],
ASNet [34] and Xception [32] – is first fine tuned on the chest
ray dataset. Their final layer representations are then stacked
nd then passed through a MLP for COVID-19 diagnosis. The
ception [32] backbone is used in CoroNet [22] for extracting
XR features which are classified using the MLP classification
ead. In [35] proposed DeepCoroNet where the CXR images are
re-processed using a sobel filter followed by marker-controlled
atershed segmentation and then a deep LSTM network is used

or classification. The work in [36] uses Google’s Big Trans-
er models with DenseNet, InceptionV3 and Inception-ResNetV4
odels for COVID-19 classification using chest X-rays. COVID-
et [37] proposes a custom architecture for CXR-based COVID-19
etection using a human–machine collaborative design strategy.
owever, limited COVID-19 samples restrict the generalizability
f such large-capacity models. To address this issue, MAG-SD [38]
mploys a multi-scale attention-guided deep network to augment
he data and formulates a new regularization term utilizing soft
istance between predictions, to regularize the classifier from
roducing contradicted output for one target. An attention-based
eacher–student framework is proposed in [39]. The teacher net-
ork extracts global features and focuses on the infected regions
o generate attention maps. An image fusion module transfers
he attention knowledge to the student network. CHP-Net [40]
nvolves a discrimination network for lung feature extraction
o discriminate COVID-19 cases and a localization network to
ocalize and assign the recognized X-ray images into the left lung,
ight lung or bipulmonary. In [41] a federated learning model
s developed while keeping in mind the privacy of the patients.
ndividual hospitals or care centers are considered as nodes which
ave their own datasets and share a common diagnosis model
rovided by a central server. The individual nodes update the
odel according to the dataset that they have and their updated
eights are averaged and the common server model is updated.

n [42] a multimodal system is developed based on data consist-
ng of breathing sounds and chest X-ray images. Sound data is
onverted to spectrograms and convolutional neural networks are
sed for analysis for both sound data and chest xray images. An
nceptionV3 network is used followed by an MLP for COVID-19 di-
gnosis. The authors in [43] propose a convolutional CapsNet for
OVID-19 detection from chest X-ray images in binary as well as
ulti-class classification settings. xViTCOS [44] propose a vision

ransformer based deep neural classifier for COVID-19 prognosis.

. Proposed method

Supervised learning usually demands a large amount of la-
eled data. However, collecting quality annotated data is ex-
ensive, especially for medical applications. Moreover, COVID-19
eing a novel disease, there is a scarcity of well-curated high vol-
me datasets. Therefore, we propose to utilize a self-supervised
raining methodology to address this issue of data scarcity. In
he first stage, we train a convolutional neural network on a
arge-scale CXR dataset, CheXpert [16] for extracting robust CXR
eatures with self-supervision. Next, we utilize limited COVID-19
XR images to train a classification network that uses the pre-
rained backbone to extract local and global features, computes
ttention maps, and predicts the class label.

.1. Self-supervised pretraining for representation learning

The fundamental concept behind self-supervised learning is to
esign some auxiliary pre-text tasks such that the model discov-

rs the underlying structure of the data while solving those tasks.

3

Several state-of-the-art self-supervised methods [45–48] rely on
contrastive strategy to induce similarity between positive pairs
(different augmented views of the same image) and dissimilarity
between negative pairs (augmented views from different images).
These methods, however, require either large batch size, memory
bank, or custom mining strategies while selecting negative pairs.
Bootstrap Your Own Latent (BYOL) [49] mitigates this issue asso-
ciated with negative pair selection. In this work, we propose to
use BYOL for representation learning.

As illustrated in Fig. 1, BYOL consists of two neural networks,
viz., online and target networks. These two networks interact
and learn together. The online network consists of three sub-
networks: an encoder (fθ ), a projector (gθ ), and a predictor (qθ ). θ
denotes the set of trainable parameters of the online network. To
break the symmetry between the online and target pipeline, the
target network is comprised of two sub-networks: an encoder (fξ )
and a projector (gξ ). The parameters, ξ of the target network are
slow moving average of the online network parameters, θ i.e.,

ξ = τξ + (1 − τ )θ , (1)

where τ ∈ [0, 1] denotes the target decay rate.
At the beginning of each training step, an original image, x is

drawn uniformly from the CheXpert [16] dataset. Next, two sets
of randomly chosen transformations, t1, t2 ∼ T are applied on the
original image, x to obtain two distinct augmented views, v1 =

1(x), v2 = t2(x) of the underlying true image. During training,
1 is fed into the online network, and v2 is fed into the target
etwork. The online network generates a representation, yθ =

θ (v1), a projection, zθ = gθ (yθ ), and a prediction, wθ = qθ (zθ ).
he target network produces a target representation, yξ = fξ (v2)
nd a target projection, zξ = gξ (yξ ). Since the target network
s derived from the online network, the online representations
hould be predictive of the target representations. Consequently,
YOL is trained to maximize the similarity between these two
epresentations. Mathematically, the online network is trained to
inimize the mean squared error between the normalized online
rediction, wθ and the normalized target projection, zξ :

θ =

 wθ

∥wθ∥2
−

zξzξ2


2

2

= 2 − 2 ·
⟨wθ , zξ ⟩

∥wθ∥2 ·
zξ2

.

(2)

To make the loss symmetric, next, v1 is passed through the target
network and v2 is passed through the online network and loss L̃θ

is computed according to Eq. (2). The total loss is now given as,

LBYOL
θ = Lθ + L̃θ . (3)

The sub-script, θ in LBYOL
θ implies that, only the online network is

updated to minimize LBYOL
θ , and the target network is updated as

the exponential moving average as indicated in Eq. (1).

3.2. Multi-scale spatial attention based classifier

In the second stage of our proposed method, we utilize the
pretrained backbone from the previous step and design a spatial
attention network based on the local and the global features.
Attention mechanism are widely adapted to enhance the per-
formance of deep neural networks on various downstream tasks
such as machine translation, text generation in natural language
processing and object classification, image captioning, inpainting,
etc., in computer vision. Attention in computer vision tasks can
broadly be categorized into spatial attention [50,51] that captures
the local context and channel attention [52] that captures the
global semantics. Several works [53,54] consider a combination
of both channel-wise and spatial attention.
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Fig. 1. Illustration of our proposed framework for COVID-19 detection using limited chest X-ray images.
Fig. 2. Illustration of the attention mechanism.
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In this work, we adopt the soft trainable visual attention
roposed in [55]. Fig. 2 presents an overview of the attention
echanism. We extract local and global features using pretrained

eature extractor backbone. ‘Local features’ refer to features ex-
racted by some convolutional layer of the backbone network that
ave a limited receptive field. In other words the receptive field
s a contiguous proper subset of the image (local). The contents of
he ‘local features’ can be more specific to a certain region on the
mage, while ‘global features’ use the entire image as their infor-
ation source. We insert three attention estimators after ‘layer2’,

layer3’, and ‘layer4’ (layer names as per PyTorch implementation)
o capture coarse-to-fine attention maps at multiple levels. The
ocal features extracted at these three layers together with the
lobal feature at the penultimate ‘avgpool’ layer produce three
ttended encodings, which are concatenated and fed into a final
lassification head.
 w

4

Let, Ls
= {ls1, l

s
2, . . . l

s
n} denote the set of feature vectors

extracted at a given convolutional layer s. Where lsi is the vector
of output activations at the spatial location i of n total spatial
locations in the layer. The global feature vector, g , has the entire
nput image as the receptive field. Let C be the compatibility
unction that computes a scalar compatibility score between two
ectors of equal dimension. Since the dimensionality of the local
eatures and the global features do not match, we first project the
ow-dimensional local features to the high-dimensional space of
. Next, the compatibility score function is employed to compute
he compatibility scores as follows:

s
i = ⟨u, lsi + g⟩ , (4)
here i ∈ {1, 2, . . . , n} and u is a learnable vector.
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Table 1
Summarized description of CXR dataset.
Split Normal non-COVID Pneumonia COVID-19 Total

Bacterial Viral

Train 1079 2030 1076 1726 5911
Validation 270 508 269 432 1479
Test 234 242 148 200 824

The compatibility scores are then normalized using the soft-
ax function to compute the attention maps.

s
i =

exp (csi )∑n
j=1 exp (csj )

. (5)

The attended representations are finally computed as follows:

g s
a =

n∑
i=1

asi · lsi . (6)

In this work, we concatenate the three representations ob-
tained from three intermediate layers into a single vector, ga =

g1
a, g2

a, g3
a] and feed to a linear classification head.

4. Experiments

In this section, we describe the dataset used in this work and
discuss the experimental results.

4.1. Dataset

While some of the works [56] evaluate their proposed algo-
rithm using private datasets, many other works [22,37,57] resort
to publicly available datasets. In this work, we combine data from
several publicly available repositories to create a custom dataset
with four classes: Normal, Bacterial Pneumonia, Viral Pneumo-
nia (non-COVID-19), COVID-19. As in [22], we collected Normal,
Bacterial Pneumonia, and non COVID-19 Viral Pneumonia chest
X-ray images from the Kaggle repository ‘Chest X-ray Images
(Pneumonia)’ [58], which is derived from [59]. Chest X-ray images
of COVID-19 patients were obtained from the Kaggle repository
‘COVIDx CXR-2’ [60], which is a combination of several publicly
available resources [61–66].

‘COVIDx CXR-2’ [60] specifies only train-test split of the data-
set. We hold out 20% training examples for automatic model
selection based on its performance over the validation set. The
validation set in the standard split of ‘Chest X-ray Images (Pneu-
monia)’ [58] dataset contains only 8 images per class. To avoid
a huge class imbalance in the validation set, we combine the
training and validation examples and split them into an 80:20
ratio. Table 1 tabulates a summarized description of split-wise
image distribution. Note that the test split in the standard data
division is left untouched to ensure there is no patient-wise
information leakage as multiple CXR images of a patient might
be present in the dataset.

4.2. Implementation details

4.2.1. Image preprocessing and augmentation
In our compiled dataset and the CheXpert [16] dataset, the

images are of variable sizes. To address this issue, we resize all
the images to a fixed size of 256 × 256.

For training BYOL, we randomly choose an image from the
CheXpert dataset, select a random patch and resize it to 224 ×

224. Next, the image is flipped randomly horizontally with 0.5
probability. Apart from these spatial/geometric transformations

of data, we apply appearance transformations on the image.

5

Specifically, we apply a random color distortion transformation
consisting of a random sequence of brightness, contrast, satura-
tion, and hue adjustments [67,68]. As noted in previous work [45],
stronger color jittering helps self-supervised algorithms learn bet-
ter representation. We utilize PyTorch’s standard implementation
(torchvision.transforms.ColorJitter) for performing color distor-
tion. Following [45], we set brightness, contrast and saturation
jitter factor uniformly from [0.2, 1.8]. The hue jitter factor is
chosen uniformly from [−0.2, 0.2]. Color distortion is applied
randomly 80% of the time. Finally, random Gaussian blur is ap-
plied to the patches, and the patches are normalized. We blur the
image with 0.5 probability using a Gaussian kernel. We randomly
sample σ ∈ [0.1, 2.0], and the kernel size is set to be 22.

In the second stage of training, we randomly choose an image
from the compiled CXR dataset, select a random patch and resize
it to 224 × 224 with a random horizontal flip. Finally, the patches
are normalized before feeding to the classifier.

We center crop the image to 224 × 224 and normalize it
before passing it to the classification network during inference.

4.2.2. Model architecture
We use ResNet-50 [30] pretrained on ImageNet [69] as the on-

line encoder, fθ and the target encoder, fξ . The projector networks,
gθ , gξ are multi-layer perceptrons with a hidden layer consisting
of 4096 neurons followed by batch normalization, ReLU acti-
vation, and an output layer of dimension 256. The predictor
network, qθ is architecturally the same as the projector.

In our second stage of training, we modify the encoder block
architecture to accommodate attention computation and initial-
ize it with the pretrained weights from self-supervised training.
We attach three attention estimators after ‘layer2’, ‘layer3’, and
‘layer4’ (layer names as per PyTorch implementation). The local
features extracted at these three layers have dimensions (512, 28,
28), (1024, 14, 14) and (2048, 7, 7) respectively using ‘channel
first’ representation. These three local features together with
the global feature at the ‘avgpool’ layer produce three attended
encodings. However, the global feature has a shape of (2048, 1),
which causes shape incompatibility. To alleviate this issue, we
use projector blocks consisting of 1 × 1 2-D convolution opera-
tions, which ensures that the channel dimension of local features
matches the channel dimension of the global feature. Next, at-
tention maps are computed using a linear combination of a local
feature and the global features, 1 × 1 2-D convolution operations
and softmax normalization. Finally, these attended embeddings
are concatenated and classified using a linear classifier.

4.2.3. Hyperparameters
For self-supervised training, we use a batch size of 256, Adam

optimizer with a learning rate of 3 × 10−4, and the model is
trained for 200 epochs.

To train the classifier, we use a batch size of 128, Adam
optimizer with an initial learning rate of 1 × 10−4 with a cosine
decay learning rate scheduler. Further, we use a global weight
decay parameter of 5 × 10−7.

4.2.4. Computation complexity
For the self-supervised training we use 2 NVIDIA V100 GPU

cards with 32 GB memory and 5120 CUDA cores in parallel. One
epoch approximately takes 1.5 h to complete execution. For the
finetuning stage, we use 1 NVIDIA V100 (32 GB 5120 CUDA cores)
GPU card and one epoch takes approximately 8 min to complete
execution.
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Table 2
Comparison of performance of the proposed method on chest X-ray dataset against state-of-the-art methods.
Method Class label Precision Recall F1-Score Specificity NPV Overall accuracy

(95% CI)

CoroNet
[22]

Normal 0.9106 0.9145 0.9126 0.9644 0.9660
0.8932 (0.8701,
0.9135)

Pneumonia Bacterial 0.8606 0.8926 0.8763 0.9399 0.9546
Pneumonia Viral 0.9220 0.8784 0.8997 0.9837 0.9736
COVID-19 0.8934 0.8800 0.8866 0.9663 0.9617

COVIDNet
[37]

Normal 0.9156 0.9274 0.9214 0.9661 0.9710
0.9078 (0.8859,
0.9266)

Pneumonia Bacterial 0.8840 0.9132 0.8984 0.9502 0.9634
Pneumonia Viral 0.9362 0.8919 0.9135 0.9867 0.9766
COVID-19 0.9082 0.8900 0.8990 0.9712 0.9650

Teacher
Student
Attention
[39]

Normal 0.9274 0.9134 0.9203 0.9712 0.9711
0.9138 (0.8926,
0.9321)

Pneumonia Bacterial 0.8889 0.9256 0.9069 0.9519 0.9685
Pneumonia Viral 0.9371 0.9054 0.9210 0.9867 0.9794
COVID-19 0.9128 0.8900 0.9013 0.9728 0.9650

MAG-SD
[38]

Normal 0.9399 0.9359 0.9379 0.9763 0.9746
0.9235 (0.9032,
0.9408)

Pneumonia Bacterial 0.9036 0.9298 0.9165 0.9588 0.9704
Pneumonia Viral 0.9375 0.9122 0.9247 0.9867 0.9809
COVID-19 0.9192 0.9100 0.9146 0.9744 0.9712

Proposed
Method

Normal 0.9867 0.9530 0.9696 0.9949 0.9816
0.9587 (0.9428,
0.9713)

Pneumonia Bacterial 0.9617 0.9339 0.9476 0.9845 0.9728
Pneumonia Viral 0.9216 0.9527 0.9369 0.9822 0.9896
COVID-19 0.9524 1.0000 0.9756 0.9840 1.0000
Fig. 3. Confusion Matrix: The horizontal axis and the vertical axis correspond to the ground truth labels and the predicted classes respectively.
.3. Quantitative results

To benchmark the proposed method against other state-of-
he-art methodologies, we compute and report class-wise Pre-
ision (Positive Prediction Value), Recall (Sensitivity), F1 score,
pecificity, Negative Prediction Value (NPV), and overall accuracy
long with 95% confidence interval. Table 2 presents our findings.
s can be seen from Table 2, the proposed method achieves the
est overall accuracy with best 95% confidence interval. Further
he proposed method achieves the best precision for COVID-19
ases meaning the proposed classifier rarely label a COVID-19
egative sample as a positive sample. Moreover, the proposed
ethod achieves the best recall score implying the classifier is
ble to find most of the positive samples belonging to the COVID-
9 class. The highest F1 score achieved by the proposed method
ndicates that the proposed method is the most balanced in terms
f both precision and recall as compared to the baseline methods.
imilarly, the proposed method achieves high specificity and NPV
ndicating that the false positive rate is low as well. Finally, from
ig. 3, it can be seen that the proposed method achieves best
lass-wise accuracy.

.4. Ablation studies

In this section, we examine the impact of different training
omponents proposed in this work. Specifically, we study the
ffect of pretraining on ImageNet [69], self-supervised pretraining

n CheXpert [16] and the attention map. Table 3 presents the
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findings. When a ResNet-50 architecture is trained on the COVID-
19 CXR dataset from scratch, its performance is the worst. Trans-
fer learning (ResNet-50 [30] pretrained using ImageNet [69])
improves the model’s classification performance. Attention mech-
anism provides a further boost in performance. Finally, self-
supervised pretraining using ChexPert [16] helps the model
extract useful CXR specific features and enhance the model’s
classification accuracy.

4.5. Qualitative results

Fig. 4 presents the attention map instrumental for the prog-
nosis made by the proposed method. We present three visu-
alizations one for each of bacterial pneumonia (Fig. 4(a)), viral
pneumonia (Fig. 4(b)) and COVID-19 (Fig. 4(c)).

5. Discussion and conclusion

This work introduces a method for automated COVID-19 prog-
nosis using a limited amount of labeled COVID-19 CXR data. We
have empirically demonstrated the effectiveness of the proposed
method over existing SOTA methods as measured using various
metrics such as precision, recall, F1 score, specificity, and NPV.
While the proposed methodology is highly performant, it is not
error-free as the CXR findings due to COVID-19 are not exclusive
and overlap with other thoracic infections [70]. Therefore, to im-
prove the efficiency of diagnosis and efficient resource utilization,

we suggest the proposed method to be used in conjunction with
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Table 3
Ablation studies to understand the impact of each training component.
Training components Class label Performance metrics

Pretrained on
ImageNet [69]

Self-supervised
learning on
CheXpert [16]

Attention Precision Recall F1 Specificity NPV Overall
accuracy

No No No

Normal 0.8628 0.8333 0.8478 0.9475 0.9348

0.8483Pneumonia Bacterial 0.8772 0.8264 0.8511 0.9519 0.9295
Pneumonia Viral 0.8217 0.8716 0.8459 0.9586 0.9715
COVID-19 0.8216 0.875 0.8474 0.9391 0.9591

Yes No No

Normal 0.8811 0.8547 0.8676 0.9542 0.943

0.8786Pneumonia Bacterial 0.897 0.8636 0.88 0.9588 0.9442
Pneumonia Viral 0.8571 0.8919 0.8742 0.9675 0.9761
COVID-19 0.8714 0.915 0.8927 0.9567 0.9723

Yes No Yes

Normal 0.8991 0.8761 0.8874 0.961 0.9513

0.8956Pneumonia Bacterial 0.9056 0.8719 0.8884 0.9622 0.9475
Pneumonia Viral 0.8671 0.9256 0.8954 0.9689 0.9835
COVID-19 0.9024 0.925 0.9136 0.9679 0.9758

No Yes No

Normal 0.908 0.9274 0.9175 0.9627 0.9709

0.915Pneumonia Bacterial 0.9177 0.9215 0.9196 0.9656 0.9673
Pneumonia Viral 0.9241 0.9054 0.9147 0.9837 0.9794
COVID-19 0.9137 0.9 0.9068 0.9728 0.9681

No Yes Yes

Normal 0.9163 0.9359 0.926 0.9661 0.9744

0.9345Pneumonia Bacterial 0.9574 0.9298 0.9434 0.9828 0.9711
Pneumonia Viral 0.9388 0.9324 0.9356 0.9867 0.9852
COVID-19 0.9261 0.94 0.9330 0.976 0.9807

Yes Yes No

Normal 0.9212 0.9487 0.9347 0.9678 0.9794

0.9454Pneumonia Bacterial 0.9664 0.9504 0.9583 0.9863 0.9795
Pneumonia Viral 0.9456 0.9392 0.9424 0.9882 0.9867
COVID-19 0.9495 0.9400 0.9447 0.9840 0.9808

Yes Yes Yes

Normal 0.9867 0.9530 0.9696 0.9949 0.9816

0.9587Pneumonia Bacterial 0.9617 0.9339 0.9476 0.9845 0.9728
Pneumonia Viral 0.9216 0.9527 0.9369 0.9822 0.9896
COVID-19 0.9524 1.0000 0.9756 0.9840 1.0000
Fig. 4. Visualization of different cases (Bacterial Pneumonia, Viral Pneumonia, and COVID-19) considered in this study and their associated critical factors in decision
making by our proposed method. In each subfigure, the left figure presents the input to the model and its ground truth label; the right figure presents the predicted
probabilities for each class and highlight the factors critical corresponding to the top predicted class. We have used jet colormap to colorize heatmap.
RT-PCR, and first-line treatment may be initiated based on CXR
findings while the RT-PCR test report is awaited.

Despite, the great success achieved by deep learning models
in different machine learning tasks, they are prone to various
biases such as selection bias (distribution of training examples
is not reflective of their real-world distribution), group attri-
bution bias (tendency to generalize what is true of individuals
to an entire group to which they belong) and so on. Therefor,
to deploy the proposed method clinically, it is imperative to
thoroughly evaluate the model through clinical trials to examine
its generalization capabilities and stability. Although, the method
proposed in this work is highly performant on multinational
dataset (since the datasets used in this study were compiled from
several repositories), to further improve the generalization ability
of the proposed method, the model needs to be trained on a large,
diverse, high-quality dataset.

To conclude, preventing the spread of COVID-19 requires early
diagnosis. While RT-PCR is highly accurate when the test is con-
ducted appropriately, its turn-around time is high. Therefore, our
7

proposed deep neural framework might be useful to initiate the
first line treatment. Further, the proposed method, when used in
conjunction with RT-PCR can be thought of as a complimentary
diagnosis or a second opinion to ensure efficient utilization of
limited resources. In our future work, we intend to extend this
work to automate the analysis of infection severity.
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