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Guobo Peng1,2†, Yizhou Zhan1†, Yanxuan Wu1,
Chengbing Zeng1, Siyan Wang1,3, Longjia Guo1, Weitong Liu1,2,
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Hospital), Meizhou Academy of Medical Sciences, Meizhou, China, 3Shantou University Medical
College, Shantou, China
Purpose: To investigate the value of radiomics models based on CT at different

phases (non-contrast-enhanced and contrast-enhanced images) in predicting

lymph node (LN) metastasis in esophageal squamous cell carcinoma (ESCC).

Methods and materials: Two hundred and seventy-four eligible patients with

ESCC were divided into a training set (n =193) and a validation set (n =81). The

least absolute shrinkage and selection operator algorithm (LASSO) was used to

select radiomics features. The predictive models were constructed with

radiomics features and clinical factors through multivariate logistic regression

analysis. The predictive performance and clinical application value of the

models were evaluated by area under receiver operating characteristic curve

(AUC) and decision curve analysis (DCA). The Delong Test was used to evaluate

the differences in AUC among models.

Results: Sixteen and eighteen features were respectively selected from non-

contrast-enhanced CT (NECT) and contrast-enhanced CT (CECT) images. The

model established using only clinical factors (Model 1) has an AUC value of

0.655 (95%CI 0.552-0.759) with a sensitivity of 0.585, a specificity of 0.725 and

an accuracy of 0.654. The models contained clinical factors with radiomics

features of NECT or/and CECT (Model 2,3,4) have significantly improved

prediction performance. The values of AUC of Model 2,3,4 were 0.766, 0.811

and 0.809, respectively. It also achieved a great AUC of 0.800 in themodel built

with only radiomics features derived from NECT and CECT (Model 5). DCA

suggested the potential clinical benefit of model prediction of LN metastasis of

ESCC. A comparison of the receiver operating characteristic (ROC) curves

using the Delong test indicated that Models 2, 3, 4, and 5 were superior to
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Model 1(P< 0.05), and no difference was found among Model 2, 3, 4 and Model

5(P > 0.05).

Conclusion: Radiomics models based on CT at different phases could

accurately predict the lymph node metastasis in patients with ESCC, and

their predictive efficiency was better than the clinical model based on tumor

size criteria. NECT–based radiomics model could be a reasonable option for

ESCC patients due to its lower price and availability for renal failure or allergic

patients.
KEYWORDS

esophageal squamous cell carcinomas, esophageal cancer, lymph node metastasis,
radiomics, computed tomography, prediction model
Introduction

Esophageal cancer is one of the most common malignancies

affecting people’s health, which ranked seventh in morbidity

(604,000 new cases) and sixth in overall mortality (544,000

deaths) worldwide in 2020 (1). The 5-year survival rate is only

20% to 30% (2). The subtypes of esophageal cancer are mainly

composed of esophageal squamous cell carcinoma (ESCC) and

adenocarcinoma. In China, esophageal squamous cell carcinoma

accounts for about 90% of esophageal cancers (2, 3).

Most patients with esophageal cancer require comprehensive

treatment, with surgery or endoscopic resection as the main

treatment in the early stage, and concurrent radiotherapy and

chemotherapy as the first choice for patients in the middle to

advanced stage (4). The status of lymph node metastasis not only

has an important influence on the choice of therapeutic regimen for

EC, but also is a superior prognostic indicator (5, 6). However, the

existing inspection instruments have their shortcomings in the

estimation of lymph node metastasis.

Endoscopic ultrasonography, as an invasive examination, has a

sensitivity of 80%, but it is highly dependent on the operator, and

about 30%of patients cannot complete this examination because of

esophageal stenosis (3, 7).Magnetic resonance imaging (MRI) has a

high contrast resolution in soft tissue imaging, but it is very time-

consuming and costly. PET/CT is a rapidly developed new imaging

equipment that organically combines positron emission

tomography with X-ray tomography. However, due to its high

price, low sensitivity, and high false positive rate, its application in

the diagnosis of lymph nodemetastasis is limited (7, 8). Computed

tomography (CT) is a common imaging technique for thediagnosis

of metastatic lymph nodes but it is mainly based onmorphological

criteria by measuring the maximum short diameter of the lymph

node, with an unsatisfactory accuracy and sensitivity of less than

60% (9). How can we use non-invasive diagnostic tools such as

medical imaging to further improve the accuracy of predicting
02
lymphnodemetastatic status of esophageal cancer? The solution to

this problem is of great clinical significance for the management of

esophageal cancer patients and precision medicine.

In recent years, the development of radiomics provides an

opportunity for noninvasive prediction of lymph node

metastatic status. The concept of radiomics was first proposed

by Lambin et al. in 2012. It is defined as the extraction and

analysis of a large number of advanced quantitative imaging

features from images with high throughput (10, 11).

Quantitatively analyzing these data can assist in clinical

diagnosis and the treatment of tumors.

At present, radiomics has achieved much remarkable

progress in the qualitative and prognostic prediction of

tumors, including lung cancer, breast cancer and colorectal

cancer (12–14). Previous studies have suggested that objective

and quantitative imaging features obtained from CT may be

used as predictive biomarkers. It has much less invasiveness

compared to biopsy or other similar procedures. To our

knowledge, most previous studies have just focused on images

of a single phase, such as contrast-enhanced period, which may

not maximize the potential value of different phases of CT image

(15, 16). In our study, for the first time, both NECT and CECT

were used for quantitative analysis to predict lymph node

metastasis of ESCC.
Methods and materials

Study population

This retrospective study of anonymous data involving

human participants was reviewed and approved by the Ethics

Committee of Cancer Hospital of Shantou University Medical

College (No.2021121). The written informed consent was not

required for this study. Two hundred and seventy-four
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consecutive patients with ESCC, who were divided into the

training group (n=193) and the validation group (n=81) in

Cancer Hospital of Shantou University Medical College from

October 2016 to September 2018 were enrolled in this study,

according to the following criteria:

Inclusion criteria: 1) patients who underwent radical

resection of esophageal carcinoma which were pathologically

confirmed to be ESCC afterwards; 2) patients with a complete

record of lymph node metastasis in the postoperative

pathological report; 3) patients who received NECT and CECT

scan within 1 week before surgery.

Exclusion criteria: 1) patients who received preoperative

neoadjuvant therapy, such as radiotherapy, chemotherapy,

immunotherapy and so on; 2) patients who lacked CT images

or had low-quality image that cannot be evaluated; Figure 1

shows the flowchart of case inclusion and exclusion.

Clinical data including demographic data (age, gender),

tumor location, CT image report, lymph node metastasis

status was collected from the hospital information system. In

addition, neutrophil lymphocytes ratio, platelet lymphocytes

ratio, hemoglobin and other values were collected before

treatment (17).

When CT images were analyzed, lymph nodemetastatic status

was considered positive as the maximum short diameter of the
Frontiers in Oncology 03
lymph node > 1cm or inhomogeneous enhancement of the lymph

node (CT-reported LN positive). The location of esophageal

tumors was determined according to the 8th edition of the

American Joint Committee on Cancer (AJCC) Cancer Staging

Manual. N0 was defined as negative lymph node metastasis and

N1-3 was defined as positive lymph node metastasis (18).
Image acquisition and normalization

Prior to treatment within a week, all patients underwent CT

scans from the neck to the upper abdomen in head first supine

position (CT scanner: 16-row Spiral CT of Bright Speed Series of

GE Medical Systems, USA). CT scanning parameters were

setting as follows: Tube voltage,120KpV; Rotation time, 0.75

seconds; Pitch, 1.375; Matrix, 512×512; Field of visual, 360

mm×360 mm. First, plain CT scan was performed to collect

NECT images. Then, 70-80ml of iodine contrast agent was

injected into cubital vein with the rate of 2.0ml/s, and CECT

images were collected 22-25 seconds later. After the completion

of scanning, the original data was transferred to GE workstation

for 3D reconstruction with the slice thickness as 5mm. Image

normalization for sharper differences between dark and bright

regions was implemented in Python.
FIGURE 1

Flowchart of the exclusion and inclusion processes. ESCC, esophageal squamous cell carcinoma; NECT, non-contrast-enhanced computed
tomography; CECT, contrast-enhanced computed tomography.
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Radiomics workflow

Tumor segmentation and feature extraction
NECT and CECT images (DICOM format) of all patients in

this cohort were imported into 3D-slicer (an open source

software: https://www.slicer.org/).

Lymph nodes larger than 1cm are commonly considered as

metastatic in clinical. However, some studies has showed that

lymph node size is not a reliable parameter for the evaluation of

lymph node metastasis (19, 20). In some previously published

literature, esophageal tumors were used to delineate regions of

interest (15, 16). Therefore, the esophageal tumor area was

defined as the region of interest (ROI) in this study. A

radiotherapist with more than 10 years of experience

performed manual segmentation to delineate the gross tumor

volume of ESCC layer by layer on CECT images on the axial

view, and avoided the interference of blood vessels, fat and bone

to obtain the ROI. Esophageal wall thickness greater than 5 mm

on the transverse axis of CT image is considered abnormal.

The ROI obtained from the CECT image was compared with

the tumor area delineated on the NECT image and adjusted

appropriately. And then another radiotherapist with 15 years of

experience randomly selected 30 of the CT images and

performed ROI segmentation again. Intraclass correlation

coefficient (ICC) was used to evaluate the inter-observer

reliability (21). ICC greater than 0.75 was considered to have

good repeatability or stability in radiomics.

The radiomics features of eachpatientwere extracted fromROI

using the pyradiomics v3.0 package in Python v3.7.6 software.

(https://pyradiomics.readthedocs.io/en/latest/index.html)

The extracted features are subdivided into eight categories:
Fron
I, First Order Statistics;

II, Shape-based Features (3D/2D);

III, Gray Level Cooccurrence Matrix (GLCM);
tiers in Oncology 04
IV, Gray Level Size Zone Matrix (GLSZM);

V, Gray Level Run Length Matrix (GLRLM);

VI, Neighboring Gray Tone Difference Matrix (NGTDM);

VII, Gray Level Dependence Matrix (GLDM);

VIII, High Older Features.
In addition, when extracting higher-order features, the

Sigma parameter was set to 0.5, 1.0, 1.5, 2.0, and five image

types were added derived from the original image features(LoG,

Wavelet, Square, SquareRoot, Logarithm).15 filters were applied

to the original image to obtain derivative image of each patient.

The extracted radiomics features will be used for subsequent

statistical analysis. The process of radiomics was shown in

Figure 2. The endpoint of this study was the pathological

diagnosis of lymph nodes. More information about the

radiomics features was applied in appendix.

Feature selection and model establishment
Feature selection included four steps. Firstly, ICC was used

to estimate the reproducibility of each radiomics feature. In our

study, CECT features with ICC less than 0.75 were excluded.

And the same features in NECT were excluded as well. Secondly,

in order to eliminate the impact of dimensional and value range

differences, Z-score was adopted to standardize the features with

good stability screened out by ICC. Thirdly, tests of normality

and homogeneity of variance were applied to the remaining

features. The independent sample T test was used for the features

that follow normal distribution and had homogeneous variance,

and the Mann-Whitney U test was used for the rest to further

eliminate the non-significant features (P > 0.05). Finally, to

minimize the overfitting in the study, the LASSO was performed

to eliminate reductant features on the training group (22). Ten-

folder cross validation was performed on the training dataset to

produce the predictive models. The features in those models

were preserved as optimal features of nonzero coefficients on
B C DA

FIGURE 2

The process of radiomics. (A) Acquisition of CT images. (B) Segmentation of ROI. (C) Extraction of ROI feature. (D) Statistical analysis.
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NECT and CECT images, respectively. The variance inflation

factor (VIF) was used to evaluate the collinearity of retained

features (23). VIF value greater than 10 is generally considered

that there is serious multicollinearity among variables.

Through the above screening steps, the most significant

features were used to establish the radiomics signatures of NECT

andCECT images.Univariate analysiswas used to compare clinical

factors which were listed in Figure 3 between pathologically

confirmed LN positive patients and LN negative patients.

Significant different factors were then analyzed by multivariate

analysis to determine clinical factors included in our models.

Combined with clinical factors and radiomics signatures,

five models were developed to predict lymph node metastatic

status as follows: Model 1 (only clinical factors), Model 2

(clinical factors & RadiomicsNECT), Model 3 (clinical factors &

RadiomicsCECT), Model 4 (clinical factors & RadiomicsNECT &

RadiomicsCECT), Model 5 (RadiomicsNECT & RadiomicsCECT).

The model output was defined as the systematic pathological

description of status of lymph nodes.
Frontiers in Oncology 05
The performances of the models were evaluated by area

under receiver operating characteristic curve (AUC), sensitivity,

specificity and accuracy. The calibration curve was used to

evaluate the consistency of the models’ prediction results with

actual LN metastasis of ESCC. DCA was used to evaluate the

models’ clinical application value. DeLong test was used to

compare the AUC between models (24).
Statistical analysis

All statistical analysiswas performed inR (version4.01; https://

www.r-project.org/). The “psych” packagewas used to calculate the

ICC. The “glmnet” package was used for LASSO analysis and

feature reduction. The “pROC” package was used to calculate the

AUC and draw the ROC curves. The glm () function in the “RMS”

package was used for logistics regression analysis to determine the

clinical risk factors related to lymph node metastasis of ESCC. The

“rmda” package was used to draw the clinical decision curves.
FIGURE 3

Univariate analyses in training and validation dataset. OR, Odds Ratio; 95%CI, 95% confidence interval.
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For the differences in clinical characteristics between the

training group and the validation group, independent sample T

test and Mann-Whitney U test were used for continuous

variables, and chi-square test was used for categorical variables

such as gender and tumor location. P value less than 0.05 on

both sides indicated a statistically significant difference.
Result

Patients’ characteristics

A total of 274 patients who met the criteria were randomly

assigned in a 7:3 ratio to the training group (n=193) and the test

group (n=81). A detailed comparison of the characteristics of the

training and test groups was shown in Table 1.

The pathologically positive lymph node metastasis rates of

the training group and the validation group were 51.3% and

51.62%, respectively. There were no statistically significant

differences in clinical and pathological features between the

two datasets, with P-values ranging from 0.099 to 1.000.
Frontiers in Oncology 06
In both univariate (Figure 3) and multivariate (Table 2)

analyses, CT image reported lymph node metastatic status (i.e.,

morphological criteria) was a clinical risk factor for pathologically

mediastinal lymph node metastasis of ESCC in both two datasets.
Feature selection

Before feature selection, we extracted 1502 radiomics

features from NECT and CECT images respectively, which

could be divided into 8 categories, including 18 histogram

features, 14 morphological features, 75 original texture features

and 1395 high-order features. Based on ICC > 0.75 standard,

1335 radiomics features were retained and 166 features were

discarded because of large interobserver differences. 119 features

from NECT images and 108 features from CECT images were

discarded through the independent sample t-test or Mann-

Whitney U test, respectively (P > 0.05). Finally, through

LASSO regression algorithm, 16 and 18 non-zero coefficient

features were selected from NECT images (Figure 4) and CECT

images (Figure 5) respectively.
TABLE 1 Baseline characteristics of 274 ESCC patients in the training and validation dataset.

Variable Training dataset (n=193) Validation dataset (n=81) p-value

Age (years) 0.880a

<=60 87 (45.08%) 35 (43.21%)

>60 106 (54.92%) 46 (56.79%)

Gender 0.783a

Female 43 (22.28%) 20 (24.69%)

Male 150 (77.72%) 61 (75.31%)

Tumor location 0.583a

Up 40 (20.73%) 17 (20.99%)

Medium 120 (62.18%) 46 (56.79%)

Low 33 (17.1%) 18 (22.22%)

CT-report LN status 0.999a

Negative 109 (56.48%) 46 (56.79%)

Positive 84 (43.52%) 35 (43.21%)

Pathological LN status 1.000a

Negative 94 (48.7%) 40 (49.38%)

Positive 99 (51.3%) 41 (50.62%)

NLR Median 2.35 2.29 0.252b

IQR 1.71 to 3.21 1.80 to 3.28

PLR Median 130.72 132.35 0.985b

IQR 93.12 to 174.17 106.26 to 176.09

LDH (U/L) Mean ± sd 161.62 ± 27.09 167.54 ± 26.88 0.099b

HGB (g/L) Mean ± sd 136.50 ± 15.09 136.46 ± 15.13 0.980b

ALB (g/L) Mean ± sd 42.75 ± 3.51 42.51 ± 3.23 0.580b
fronti
ESCC, esophageal squamous cell carcinoma; LN, lymph node; NLR, neutrophil lymphocytes ratio; PLR, platelet lymphocytes ratio; LDH, lactate dehydrogenase; HGB, hemoglobin; ALB,
albumin.
ap-value was calculated using chi-square test;
bp-value was calculated using independent sample T test or Mann-Whitney U test;
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TABLE 2 Multivariate analysis in training and validation dataset.

Variables Training dataset Validation dataset

Coef OR (95%CI) P Coef OR (95%CI) P

Intercept -1.156 0.315 0.001 -1.116 0.328 0.035

(0.150-0.624) (0.107-0.885)

Gender 0.753 2.123 0.485 0.785 2.193 0.161

(1.016-4.572) (0.746-6.884)

CT-report
LN status

1.459 4.303 <0.001 1.284 3.611 0.008

(2.338-8.116) (1.434-9.559)
Frontiers in Oncology
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Coef, Coefficient.
BA

FIGURE 4

Feature selection process by LASSO in NECT. (A) shows the shrinkage diagram of 1216 radiomics features’ coefficients from NECT. (B) shows the 10-
fold cross-validation curve, 16 optimal features were chosen based on the lambda.min criteria. LASSO, least absolute shrinkage and selection operator.
BA

FIGURE 5

Feature selection process by LASSO in CECT. (A) shows the shrinkage diagram of 1227 radiomics features’ coefficients from CECT. (B) shows the 10-
fold cross-validation curve, 18 optimal features were chosen based on the lambda.min criteria. LASSO, least absolute shrinkage and selection operator.
n.org
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The VIF of 16 predictors from NECT images ranged from

1.13 to 7.14, and the VIF of 18 predictors from CECT images

ranged from 1.15 to 6.89, indicating that there was no

collinearity among the features. Specific filtered features and

weight coefficients were applied in the supplementary material.

Based on the LASSO regression algorithm, the radiomics

signatures of NECT and CECT were established. The specific

formula was shown as follows:

Radiomicssignature

= Intercept +coef 1� feature 1 + coef 2� feature 2

+ coef 3� feature 3 + coef 4� feature 4 + coef 5

� feature 5 +…+coef n

� feature nðcoefrepresentsforcoefficient)
Model establishment and evaluation

Model 2 reached an AUC = 0.826 in the training dataset and

AUC = 0.766 in the validation dataset. Model 3-5 reached an

AUC > 0.8 in both training and validation dataset, which

indicate a considerable predictive value of LN metastasis. The

detailed predictive performances of the Model 1-5 were

presented in Table 3. The ROC curves of model 1-5 in

training and validation dataset were shown in Figure 6. The

calibration curves showed that Model 2,3 are in good agreement

with actual observations, both in the training and validation

dataset (Figure 7).

The decision curve analysis showed that in most cases,

compared with other therapeutic strategies (therapy for all

patients, all patients without therapy, treat according to size

criteria), Model 2-5 had higher net benefits than Model 1, within

a range of reasonable threshold probability (Figure 8).

As shown in Figure 6, the AUC of Model 2-4 with the

addition of radiomics features showed remarkable performance
Frontiers in Oncology 08
compared with Model 1. The result of Delong Test suggested

that there was a statistical difference in the comparison between

Model 1 and Model 2-5 (P<0.05). Among Model 2-5, Model 3

yielded the highest AUC of 0.846 in training dataset and 0.811 in

validation dataset, but there was no statistical difference among

Model 2-5. Details of the pairwise comparisons between the

models were shown in the Table 4.
Discussion

Lymph node metastasis status is considered to be an

important risk factor affecting the prognosis of patients, which

is related to the scope of lymph node dissection during the

operation, the need for neoadjuvant chemoradiotherapy, and the

scope of radiotherapy for patients who are not suitable for

surgery, or who cannot tolerate chemotherapy (5, 25, 26). The

status of lymph node also has an important influence on the

choice of therapeutic regimen for EC because whether

neoadjuvant chemoradiotherapy or chemotherapy is needed

before surgery mainly depends on the lymph node status.

Since neoadjuvant chemoradiotherapy targets micro-

metastases (including lymph node metastases), patients with

lymph node metastases are likely to benefit from this therapy.

For patients who refuse or cannot tolerate surgery, the status of

lymph nodes cannot be diagnosed from postoperative biopsy.

Definitive chemoradiotherapy is a common therapeutic regimen

and the status of lymph nodes is also important for this kind of

patients. Therefore, the preoperative prediction of lymph node

status is necessary and important. However, there is currently no

convenient or accurate tool for predicting lymph node

metastasis status before treatment.

At present, CT is the conventional tool for clinical diagnosis

of ESCC, but its prediction of lymph node metastasis status is

based on morphological criteria, which may be biased due to

inter-observer and intra-observer variability and affect the

accuracy of diagnosis and staging. There were no unified
TABLE 3 ROC curves of the training dataset and the validation dataset.

model group AUC (95%CI) sensitivity specificity accuracy

Model 1 Training 0.675 (0.610-0.741) 0.606 0.745 0.674

Validation 0.655 (0.552-0.759) 0.585 0.725 0.654

Model 2 Training 0.826 (0.769-0.884) 0.789 0.734 0.762

Validation 0.766 (0.661-0.871) 0.609 0.850 0.728

Model 3 Training 0.846 (0.793-0.899) 0.859 0.681 0.772

Validation 0.811 (0.711-0.911) 0.683 0.900 0.790

Model 4 Training 0.845 (0.792-0.898) 0.818 0.713 0.767

Validation 0.809 (0.709-0.908) 0.829 0.750 0.790

Model 5 Training 0.828 (0.771-0.884) 0.869 0.649 0.762

Validation 0.800 (0.699-0.901) 0.756 0.850 0.802
fron
ROC, receiver operator characteristic; AUC, area under the curve.
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BA

FIGURE 6

ROC curves of model 1-5 intraining (A) and validation (B) dataset. ROC, receiver operator characteristic; AUC, area under the curve.
B

C D

A

FIGURE 7

Calibration curves of model 2, 3 in training and validation dataset, respectively. (A) Calibration curves of model 2 in training dataset; (B) Calibration
curves of model 2 in validation dataset; (C) Calibration curves of model 3 in training dataset; (D) Calibration curves of model 3 in validation dataset.
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criteria for CT diagnosis of lymph node metastasis nowadays.

Lymph nodes smaller than 1 cm in short-axis diameter and have

a smooth well-defined border, uniform homogeneous

attenuation, and a central fatty hilum in CT are usually

considered normal. Hong SJ etc. expounded that detection of

lymph nodes metastatic state at CT imaging primarily depends

on size criteria. Intrathoracic and abdominal lymph nodes larger

than 1 cm in short-axis diameter and supraclavicular lymph

nodes larger than 5 mm in short-axis diameter are considered to

be metastatic lymph nodes. However, for normal-sized lymph

nodes that contain microscopic metastatic foci, it is difficult to

differentiate from non-metastatic lymph nodes at CT image,

which can lead to understaging. On the contrary, benign,

enlarged, inflammatory lymph nodes at CT imaging may lead

to overstaging. In addition, metastatic lymph nodes close to

esophageal cancer may not be detected because they are difficult

to separate from the primary tumor. The number of lymph node

metastases cannot be accurately measured if there are

conglomerated lymph nodes which makes the N category

difficult to be determined (27). Previous studies (7, 9) have
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shown that morphological criteria (mostly based on lymph node

size) cannot effectively discriminate the lymph node metastatic

status of ESCC, with a sensitivity less than 60%. In our study, the

AUC of the model built by morphological criteria was 0.675 and

0.655 in training and validation dataset, respectively, which was

basically consistent with the literature reports (15, 16).Previous

studies have strongly demonstrated the feasibility of radiomics in

bladder, colorectal, and breast cancer (12–14, 28). Studies had

demonstrated that models integrating with radiomics features

outperformed size criteria in discriminating lymph node

metastasis in ESCC. Shen et al., Tan et al., developed a

radiomics nomogram based on pre-treatment CECT images

for the prediction of lymph node metastasis status in ESCC,

and the AUCs of the training cohort were 0.806 and 0.758,

respectively, and 0.771 and 0.773, respectively, in the validation

cohort (15, 16). In a study of 411 CECT images from two

medical centers, Wu et al. showed that adding computer vision

and deep learning features on the basis of handcraft feature

signatures could improve the model’s prediction value of lymph

node metastasis in patients with ESCC (29). The above studies
TABLE 4 Comparison among ROC curves of model 1-5 in training and validation dataset by Delong Test.

Models Training dataset Validation dataset

Model 1 vs Model 2 P<0.001 P=0.025

Model 2 vs Model 3 P=0.239 P=0.108

Model 2 vs Model 4 P=0.200 P=0.082

Model 2 vs Model 5 P=0.954 P=0.192

Model 3 vs Model 4 P=0.709 P=0.661

Model 3 vs Model 5 P=0.175 P=0.573

Model 4 vs Model 5 P=0.180 P=0.614
ROC, receiver operator characteristic.
BA

FIGURE 8

Decision curve analysis of model 1-5 in training and validation dataset. (A) Decision curve analysis of model 1-5 in training dataset; (B) Decision
curve analysis of model 1-5 in validation dataset; The y-axis represents the net benefit. The x-axis represents the threshold probability. Model 2-
5 had higher net benefits than Model 1, within a range of reasonable threshold probability.
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had focused on CT images of a single phase, which may not be

able to find the best model from a series of CT images.

In this study, we extracted the quantitative image features of

tumor from both NECT and CECT images. Sixteen and eighteen

optimal radiomics features were selected from NECT and CECT

images, respectively. The high-order texture features, including

busyness and entropy were derived from NGTDM and GLRLM.

Our study showed that higher value of entropy and busyness

might all be associated with poorer overall survival. Entropy is a

feature parameter to measure the randomness of image gray

distribution, which represents the complexity of image texture.

The more complex the image texture, the higher the entropy

value (30). Busyness is used to describe the visual properties of a

texture, based on the grayscale difference between a pixel and its

neighbors. Studies have shown that high entropy is associated

with the malignancy of lung cancer, liver cirrhosis and adnexal

tumors (31–34). Fujimoto et al. reported that combined

assessment of mean ADC and entropy ADC in patients with

chronic hepatitis C more accurately predicted pathological liver

fibrosis stage and inflammatory activity grade than assessment of

mean ADC alone, helping to find early fibrosis or inflammatory

activity. To more intuitively relate multiple features to the

pathophysiological basis of tumors, we constructed multi-

feature signatures that provide novel oncology biomarkers for

obtaining phenotypic information, potentially helping clinicians

develop management strategies.

A total of five logistic regression models were established:

Model 1 (only clinical factors), Model 2 (clinical factors &

RadiomicsNECT), Model 3 (clinical factors & RadiomicsCECT),

Model 4 (clinical factors & RadiomicsNECT & RadiomicsCECT),

Model 5 (RadiomicsNECT & RadiomicsCECT). The results show

that models comprised of radiomics features had better

performance than physicians in determining lymph node

metastasis status based on CT morphology, and there was

statistical difference between Model 1 and Model 2-5 calculated

by Delong test (all P< 0.05). For example, between Model 1 and

Model 2, we found significant improvements in the net

reclassification index (NRI) of the model after adding the

radiomics signature of NECT on the basis of clinical factors

(NRI, 17.11% in training dataset, and 14.94%, in the validation

dataset, respectively). Although the AUC of Model 2 in both the

training dataset and the validation dataset (0.826 and 0.766,

respectively) seemed lower than the others among models 2-5,

the difference among them was not statistically significant (all P

value > 0.05), which meant that they had the same predictive

performance. It also supported the conclusion that the model

combining clinical factors and radiomicsCECT could be an effective

tool for predicting lymph node metastasis of ESCC before

treatment, which was consistent with previous findings (15, 16).

Previous study has showed that compare to enhanced CT,

the texture parameters extracted from plain CT images have

more parameters with statistically significant difference (35).
Frontiers in Oncology 11
However, their study did not use Delong test to compare the

models.In our study, we found that there was no statistical

difference between the combined models of NECT and CECT

after calculation using Delong test. Our study highly suggested

that the NECT images also contained abundant tumor biological

information. Compared to models comprised of radiomicsCECT,

the model combining clinical factors and radiomicsNECT had the

same predictive power, which was good news for patients who

do not have access to enhanced CT scans for renal failure,

allergies to contrast agents, or financial difficulties and so on.

Yang et al. constructed CT radiomics model to evaluate the

ability of distinguishing pulmonary granulomatous nodule (GN)

from solid lung adenocarcinoma (SADC), and found that plain

radiomics (PR) combined with clinical risk factors (PRC)

performed better than the other combinations (35). Similarly,

Sui et al. extracted radiomics features based on NECT and CECT

images, respectively, and confirmed that the radiomics features

of plain CT were superior to enhanced CT in predicting the risk

of anterior mediastinal lesions (36). By investigating the effect of

contrast enhancement, reconstructed layer thickness, and

convolution on the discriminative performance of radiomics

features of isolated pulmonary nodules, He et al. found that CT

based on non-contrast, thin layer, and standard convolution

kernels provided more information about the tumor (37). These

findings above suggested that the radiomics characteristics of

NECT images can detect and describe the biological

heterogeneity within the tumor, and the performance of the

established model was even better than other phase like CECT

images. One underlying reason is that the radiomics information

obtained from the non-contrast CT images is not confused by

the intravenous contrast material. We believe that with the rapid

development of artificial intelligence in the field of medical

images, the huge potential value of NECT will be maximized

and applied in clinical practice, committing to the realization of

personalized and precise treatment of tumors.

With the improvement of image acquisition equipment and

imaging quality, the data information generated by images is

becoming more and more abundant. However, visual

interpretation has obvious limitations and high learning costs

as we said before. PET/CT can provide both anatomic and

metabolic information, and its advantage in judging distant

metastasis of ESCC has been recognized, but its value in

assessing lymph node metastasis is still limited with a low

sensitivity of 0.64. It is difficult to detect lymph node micro-

metastasis and distinguish lymph node metastasis from lymph

node reactive hyperplasia or granulomatous inflammation (8).

In this study, the AUC of Model 5, which was built by

radiomicsNECT and radiomicsCECT features reached 0.828 and

0.800 in the training and validation dataset, respectively, which

means that radiomics was expected to get rid of the bias caused

by subjective consciousness between observers and the

limitations of traditional diagnostic modes in predicting lymph
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node metastasis. It reduced learning costs and would be a good

assistant to clinical doctors.

There were some limitations in our study. First, this is a

retrospective, single-center cohort study, and the reproducibility

and generalizability of our results need to be further verified.

Previous studies showed that image reconstruction algorithm,

preprocessing method, transmission protocol, inter-observer

variable and feature extraction algorithm can affect the stability and

repeatability of radiomics features (37, 38) How to solve the

repeatability problem is the key to future research. Second, we did

not incorporate other machine learning methods such as deep

learning into our current research, which has been popular in

recent years. Third, the region of interest we analyzed was mainly

the primary tumor, and information about the area outside the tumor

was not obtained, which may also contain some important

information. Further studies arewarranted to address these questions.
Conclusion

The model comprised of CT-based radiomics features could

accurately predict the lymph node metastasis of esophageal

squamous cell carcinoma, and its predictive efficiency was better

than the clinical model based on size criteria. Non-contrast-

enhanced CT images may contain rich information about tumor

heterogeneity, and it could be a reasonable choice for predicting

lymph node metastasis of esophageal squamous cell carcinoma.
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