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ABSTRACT: Hepatocellular lipid accumulation characterizes
nonalcoholic fatty liver disease (NAFLD). However, the types of
lipids associated with disease progression are debated, as is the
impact of their localization. Traditional lipidomics analysis using
liver homogenates or plasma dilutes and averages lipid
concentrations, and does not provide spatial information about
lipid distribution. We aimed to characterize the distribution of
specific lipid species related to NAFLD severity by performing
label-free molecular analysis by mass spectrometry imaging (MSI).
Fresh frozen liver biopsies from obese subjects undergoing
bariatric surgery (n = 23) with various degrees of NAFLD were
cryosectioned and analyzed by matrix-assisted laser desorption/
ionization (MALDI)-MSI. Molecular identification was verified by
tandem MS. Tissue sections were histopathologically stained,
annotated according to the Kleiner classification, and coregistered with the MSI data set. Lipid pathway analysis was performed
and linked to local proteome networks. Spatially resolved lipid profiles showed pronounced differences between nonsteatotic and
steatotic tissues. Lipid identification and network analyses revealed phosphatidylinositols and arachidonic acid metabolism in
nonsteatotic regions, whereas low−density lipoprotein (LDL) and very low−density lipoprotein (VLDL) metabolism was
associated with steatotic tissue. Supervised and unsupervised discriminant analysis using lipid based classifiers outperformed
simulated analysis of liver tissue homogenates in predicting steatosis severity. We conclude that lipid composition of steatotic and
nonsteatotic tissue is highly distinct, implying that spatial context is important for understanding the mechanisms of lipid
accumulation in NAFLD. MSI combined with principal component−linear discriminant analysis linking lipid and protein
pathways represents a novel tool enabling detailed, comprehensive studies of the heterogeneity of NAFLD.

Nonalcoholic fatty liver disease (NAFLD), characterized by
hepatocellular lipid accumulation, refers to liver damage

ranging from simple steatosis through steatohepatitis to
cirrhosis.1,2 Recent data indicate that NAFLD is the most
common form of chronic liver disease, and the second leading
cause of liver transplantation.3 The prevalence of NAFLD is
estimated to be ∼30% in healthy versus ∼80% in obese
individuals among the general Western population.1 Comor-
bidities are frequently observed in patients with NAFLD,4

which may exacerbate steatosis or vice versa. Hepatic steatosis
is a known risk factor for postoperative complications after
major hepatic surgery;5−7 however, the relevant amount and
type of fat necessary to cause injury are debated.6,8−10 Despite
its high prevalence, the pathogenesis of NAFLD remains
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unclear, making patient stratification and diagnosis difficult.
Currently, liver biopsy, followed by histopathological examina-
tion, is the gold standard for the diagnosis of NAFLD and
assessment of steatosis severity. Severity is determined by the
Kleiner scoring system, which address 14 histological features.11

Confounding factors, such as sampling bias, factitious staining
artifacts, liver tissue heterogeneity, and the variable manifes-
tation of hepatic steatosis,12 result in subjective interpreta-
tions.13 Heterogeneity is the most complex factor to consider in
that normal liver consists of zonations with multiple cell types.
Inflammation and steatosis add additional complexity to liver
structure and organization, which contributes to NASH/
NAFLD progression. Histologically these livers samples appear
similar, which renders diagnostics difficult. Altogether,
improved diagnostic methods for NAFLD are urgently required
to benefit treatment decisions and ultimately patient outcomes.
Currently, hepatic lipid metabolism is primarily studied using

liver homogenates or serum/plasma. However, homogenization
of tissue results in dilution and averaging of molecules, and
plasma lipids do not exclusively reflect liver lipids. Nonetheless,
these methods have been widely applied to assess the potential
role of triacylglycerides (TAGs),1,14−18 phosphatidylcholines
(PCs),19−22 phosphatidylethanolamines (PEs),19,21−24 phos-
phatidylglycerols (PGs),23 as well as free fatty acids
(FFAs)17,22,24 in the development of NAFLD. Whereas the
presence of these lipids and their association with NAFLD has
been reported and debated, the spatial distribution of lipids in
liver tissue in the context of NAFLD has been described in just
a few recent studies.20,25,26 Wattacheril et al. and Hall et al.
performed predominantly positive ion mode mass spectrometry
imaging (MSI) of hepatic lipids and showed distinct
distribution patterns of PC lipids. Furthermore, Hall et al.
hypothesized a mechanism for disrupted lipid metabolism in
steatosis. Whereas their analyses are primarily based on a small
fraction of lipid species detectable in positive ion mode MSI, it
is known that many lipid classes exhibit preferential ionization
in a negative polarity. For example, phosphatidylinositols (PIs),
phosphatidylserines (PSs), PEs, PGs, and FFAs are ionized
more efficiently in negative ion mode.27,28 In view of this, we
performed negative ion mode MSI of lipid species in human
liver biopsies. The aim of this study was to identify lipids and
their distribution profiles within and between tissue samples,
and to integrate our findings with publicly available molecular
databases to pinpoint potential biological processes directing
regional lipid accumulation in NAFLD. Furthermore, mathe-
matical tissue classifiers based on spatial vs simulated
homogenate data sets were constructed and compared. Our
data demonstrate the potential of MSI for more detailed
NAFLD diagnosis, based on precise molecular histological
classification.

■ METHODS
Materials. A list with information on additional materials,

consumables, and instrumentation is provided in Supporting
Information.
Samples. Between 2006 and 2009, liver wedge biopsies

were obtained from severely obese individuals with a body mass
index (BMI) from 36 to 74 kg m−2 undergoing bariatric surgery
at the Maastricht University Medical Centre (MUMC+).
Patients with acute or chronic inflammatory diseases,
degenerative diseases, reported alcohol consumption (>10 g/
day), or with prescribed anti-inflammatory drugs were
excluded. This study was approved by the Medical Ethics

Board of MUMC+, in line with the ethical guidelines of the
1975 Declaration of Helsinki. Informed consent was obtained
in writing from each individual. Patient characteristics are
shown in Supporting Table 1. Human liver biopsies were
categorized for severity of steatosis by a pathologist into 4
groups using the scoring system of Kleiner et al.11

Sample Preparation and MSI Data Acquisition. Fresh
frozen tissue was cryosectioned at 10 μm thickness, at −18 °C
on a Cryostat HM525 (Microm, Walldorf, Germany) and thaw
mounted to Indium tin oxide (ITO)-coated glass slides (Delta
Technologies, Loveland, CO, USA).29 The 23 liver biopsies, 1
cryosection per biopsy, were distributed onto three ITO slides
in a randomized manner to minimize batch effects. MSI
experiments were performed on two technical replicates.
A protocol for sample preparation that targets lipids was

employed. Briefly, norharmane matrix (Merck KGaA, Darm-
stadt, Germany) was sublimed onto the vacuum-dried tissue
with a custom-built sublimation device (IDEE, Maastricht
University, The Netherlands) to enable the analysis of lipid
species by MALDI-MSI. Data acquisition was performed with
the Bruker RapifleX MALDI Tissuetyper system operating in
reflectron mode (Bruker Daltonik GmbH, Bremen, Germany).
Data were acquired in negative ion mode at the mass range
300−2000 Da with the raster pixel size of 50 μm. On average,
3400 spatially resolved spectra were recorded per tissue section
with typical mass accuracy ∼50 ppm. The speed of acquisition
was roughly 25 pixels/s, which resulted in an analysis time of
approximately 2 min per biopsy.
High mass resolution imaging was performed on a

representative tissue section using an Orbitrap Elite mass
spectrometer (Thermo Fisher Scientific, Bremen, Germany)
coupled to a reduced-pressure MALDI source30 to identify
characteristic lipids that were deemed distinctive by MALDI-
Time of Flight (TOF) mass spectrometer. Data was acquired
with a pixel size of 40 μm and a mass resolution of 240 000 at
mass-to-charge ratio (m/z) 400. Mass accuracy was typically 2
ppm or better. To further identify lipids, high-mass-resolution
(240 000 at m/z 400), tandem mass spectrometry (MS/MS)
was performed using higher energy collisional dissociation
(HCD) with a normalized collision energy of 50 and an
isolation width of 0.7 Da on dedicated samples. A 5-s injection
time was used while the sample continuously moved to
accumulate sufficient precursor ions and increase the fragment
ion signal for low intensity lipids during tandem MS. This
methodology allowed for confident lipid ID assignment,
however, the total analysis time per tissue was several hours.
This targeted identification approach complements the high
throughput MSI of the complete cohort. The data were
analyzed using Xcalibur software v.2.3.26 (Thermo Fisher
Scientific, Bremen, Germany). When multiple isobaric ions
were observed, manual comparison of Orbitrap ion distribution
image and the MALDI-TOF data set was performed for correct
correlation, and the most abundant ion was chosen for
identification.

Histological Staining. The MALDI-MS images were
overlaid with microscopic images of the same tissue section
to facilitate alignment of the molecular distribution with the
morphology of liver tissue. The MALDI matrix was removed
post-MSI analysis by slide submersion in 100% ethanol to
enable overlay of different imaging modalities from the same
tissue. Subsequently, standard hematoxylin and eosin (H&E)
staining was applied according to the supplier’s instructions
(Merck KGaA, Darmstadt, Germany). Subsequently, the slides
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were imaged with a Microscope using the bright-field Leica
DM6000B (Buffalo Grove, IL, USA) light microscope and
MIRAX scanner (Zeiss, Breda, The Netherlands).
Tissue Annotation. The histologically stained tissues were

blindly evaluated by an experienced liver pathologist (J.V.),
including morphological tissue annotation of steatotic regions,
inflammation areas, and portal sclerosis.
MSI Data Analysis. Several data analysis strategies were

applied, as schematically represented in Figure 1.

MSI Data Processing. The raw MALDI-TOF data was
loaded into Fleximaging software v.4.1 (Bruker Daltonik
GmbH, Bremen, Germany), where the MSI image was
semiautomatically overlaid (using fiducial markers) with a
histological optical image of the same tissue section. This
overlay was necessary to define the tissue vs background
boundaries. All individually aligned samples were then
imported to SCiLS software v.2016a (SCiLS, Bremen,
Germany) where they were together normalized by total ion
count. The overall mean spectrum from all 23 samples was
extracted and exported to mMass v.5.531 where it was subjected
to autoscaling, baseline subtraction, and smoothing (Gaussian
algorithm with window size of 0.1 m/z and 2 cycles). Peak
picking was performed on the spectrum with the peak intensity
threshold relative to base peak set to 1%. Finally, the resulting
peak list was imported back to SCiLS with the window size per
peak adjusted to 0.13 Da yielding the optimal area under the
curve (AUC) for integration.
Identification of Molecular Signature Per Region of

Interest. The ion’s distribution and colocalization with an
annotated tissue region were assessed by Pearson’s correlation
coefficient computed using SCiLS software. In order to verify
and quantify the importance and the discriminatory power of a
particular m/z ion, receiver operating characteristic (ROC)32

analysis was performed.
Integration of Lipid MSI Data into Pathway Analysis.

After the extraction of m/z values of interest based on their
spatial distribution, MADLI-Orbitrap identification of the
molecules was performed first at the sum-composition level

as [M − H]− ions utilizing accurate mass measurements and
further by MS/MS to identify fatty acyl compositions. The lipid
nomenclature is explained in the Supporting Information.
To explore known and predicted interactions and to build a

lipid−protein interaction network from our MSI data, each
identified molecule was represented by a unique PubChem
compound ID. Subsequently, using these identified molecules,
GeneGo’s MetaCore software (Thomson Reuters, NY, USA)33

(v.6.32 build 69020) constructed the lipid−protein interaction
network based on known and predicted interactions in curated
human databases. Dijkstra’s34 shortest-path algorithm with the
maximum number of steps in the path set to 10 was used to
ensure a fully connected network per region. Briefly, this
algorithm builds a network with the smallest possible number
of directed one-step interactions between pairs of initial objects.
Finally, the identified connections were further investigated to
highlight the biomolecular mechanisms and extrapolate their
biological relevance.

Multivariate Data Analysis. Principal component analysis
(PCA), a linear unsupervised statistical method describing the
largest variances within the data set, was performed using the
ChemomeTricks toolbox for Matlab (v.R2015, The Math-
Works, Natick, MA).35 PCA was first applied to discard
nontissue−specific signal, second to reduce the dimensionality
of the data. We assumed that the molecular differences between
the steatosis groups were the main sources of variance and
could thus be captured by PCA. PCA was applied pixel-by-pixel
to samples individually as well as to all 23 samples at once. We
performed PCA coupled to linear discriminant analysis (LDA)
to capture the molecular signature of steatosis. Contrary to
PCA, LDA is a supervised statistical method used to define
classes within predefined groups, for example, steatosis grade 0
versus steatosis grade 1. The input variables for LDA were
principle components (PCs) from prior PCA. The crucial step
in PCA-LDA is the estimation of the required input variables,
addressed as previously described by Mascini et al.36 Here, the
number of PCs that explained 80% of the variance was the
optimum. Linear combinations of the PCs that maximized the
Fisher’s criterion, that is, the ratio of the between-class variance
and the within-class variance, were calculated. A sample was
categorized to class A if the mean discriminant score of the
sample spectra was closest to the score of class A.
To address overfitting common to analyzing multidimen-

sional data sets, we cross-validated the PCA-LDA results using
the leave-one-out methodology, which is widely accepted for
small sample sizes (n < 30).35,36 Additional validation of the
PCA-LDA classifier was based on its classification accuracy
performance test using the replicate of all 23 samples as the test
set. Accuracy is expressed as percentage of correctly classified
samples during the leave-one-out cross-validation.

Simulation of Tissue Homogenization Effect. Tissue
homogenization effects were simulated by averaging of all pixels
(spectra) per biopsy from MALDI-TOF-MSI to one
representative spectrum. The 23 average spectra were subjected
to the same PCA-LDA analysis, where 80% of variance-
containing PCs were used to build the 4-class LDA.

Gene Expression. We extracted gene expression data37

from 35 patient samples, of which 15 were taken from the same
patients analyzed by MSI. Samples were categorized into
steatosis groups using the Kleiner11 scoring system: grade 0, n =
7; grade 1, n = 9; grade 2, n = 16; grade 3, n = 3. Gene
expression was analyzed in the ‘R’ statistical computing
environment (version 3.3.0, https://www.R-project.org/).

Figure 1. Schematic overview of the parallel data analyses performed.
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Gene expression levels with identical gene symbols were
averaged. Box plots were created for the genes identified by the
lipid−protein interaction analysis, in which the samples with
corresponding MSI data are shown as markers.

■ RESULTS

MSI of Tissue Samples. MSI has proven to be an
exceptional tool for rapid detection, localization, and
identification of thousands of molecules simultaneously and
directly from complex sample surfaces.29,38,39 MSI retains
sensitive spatial molecular information, typically with spatial
resolution of 20−50 μm. We collected 112 539 spectra for 23
obese patients categorized into 4 groups, ranging from no
steatosis (grade 0) to severe steatosis (grade 3) (Supporting
Table 1). These spectra were analyzed as shown in Figure 1.
Images of H&E stained tissue were coregistered with the MSI
images to visualize individual molecular species in relation to
tissue morphology.
Pixel-Wise PCA Analysis Robustly Identified Steatotic

Tissue Regions. After initial preprocessing of the raw
MALDI-TOF data, pixel-wise PCA was performed. Co-
registration of PC score plots to histology images exposed
particular PCA patterns corresponding to the pathological
annotations. PC1 and PC2 mainly contained foreground versus
background signal. PC3 delineated steatotic (positive loading,
PC+3) versus nonsteatotic (negative loading, PC−3) regions
(Figure 2). The corresponding loading spectrum exhibits
different molecular signatures matching morphologically
distinct tissue regions which indicate a heterogeneous and
region-specific lipid distribution within the tissue. Next, we
tested the robustness of PC3 identified as the steatotic
signature from this one sample by projecting it onto the
remaining 22 samples. The pixel-wise pattern resulting from the

projection coarsely matches the annotated H&E staining in
each of the 22 tissues (Supporting Figure 1). This suggests that
the steatosis-specific signature is robust across different patients
with histomorphological significant steatosis (>5%). The top 10
PCA identified ions for steatotic and nonsteatotic tissue
(Supporting Table 2; full ion list in Supporting Tables 3 and
4) revealed a unique lipid composition for nonsteatotic and
steatotic tissues.

Distinct Lipid Species Distributions in Steatotic and
Nonsteatotic Regions. Independent supervised data analysis
was employed on the same MALDI-TOF data set to further
investigate the lipid species profiles in steatosis. The steatotic
and nonsteatotic tissue regions were manually annotated. We
aimed to identify individual ions discriminating the two tissue
types. Several ions showed high correlation coefficients with
tissue type as well as high ROC values (Supporting Table 5)
which indicates that their distribution was associated with
steatosis. Identification and structural assignments of the
discriminatory ions were performed. Combining the MALDI-
Orbitrap high mass resolution data and MS/MS searches
allowed for identification of over 80 lipid species (Supporting
Tables 3 and 4). Among the most discriminatory ions,
PG(18:1_20:4) (m/z 795.4) exhibited distinct localization in
steatotic areas (Figure 3A), abundance in each pixel, and a high
ROC value (AUC 0.838) (Figure 3B), demonstrating it may be
a steatosis-specific lipid. Another lipid species, PG(18:2_22:6)
(m/z 817,4), also exhibited a distinct distribution pattern in
steatosis. In addition, its distribution was visualized in all 23
biopsies. On a pixel level, clear regional intensity of
PG(18:2_22:6) was observed with localized differences in
abundance (Figure 4A) corresponding to histological steatotic
regions (Supporting Figure 4). However, when the overall ion
intensity of PG(18:2_22:6) across the cohort was displayed

Figure 2.Molecular classification of liver tissue by PCA of the MALDI-TOF-MSI data in negative-ion mode. Projection of PCA loading (PC3) from
a representative tissue section delineates nonsteatotic (top, PC−3) and steatotic (bottom, PC+3) regions. Ion images are scaled to relative intensity.
These regions correspond well to histological annotations (middle). Molecular intensity-scaled loading spectra of the PC function show unique
molecular mass profiles for each tissue region. Note that PC−3 is shown with absolute values for easier interpretation.
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(Figure 4B), the differences in ion abundance were not
profound, which may be explained by the lack of localized
annotation. Among the top 10 PCA discriminatory ions, PIs
were identified six times in nonsteatotic tissues but not
identified at all in steatotic tissues (Supporting Table 2).

Indeed, correlation and ROC analysis showed a lower
abundance of PI lipid species in steatotic tissue compared to
nonsteatotic tissue. These observations suggest a disruption in
cellular signaling and trafficking via the phosphatidylinositol
cascade in steatosis.40,41 Conversely, PEs were identified as 5 of
the top 10 discriminatory ions in steatotic tissues but not
identified in nonsteatotic tissues (Supporting Table 2).

Network Enrichment Analyses Identify Lipid−Protein
Interaction Networks Related to Inflammation Pro-
cesses. Next, we performed a network analysis to determine
whether the specific lipid species identified in our data set could
be involved in specific metabolic pathways. The MALDI-MSI
PCA identified 39 lipids enriched in nonsteatotic regions and
47 lipids in steatotic regions. Since many isobaric species may
be present, multiple PubChem IDs were allowed per lipid peak
(Supporting Tables 3 and 4), yielding 68 lipid IDs enriched in
nonsteatotic and 95 lipid IDs enriched in steatotic regions.
Despite the high number of PubChem IDs available for the
analysis, only 4 (PE(16:0/20:4), PE(16:0/18:2), PS(16:0/
18:1), PE(16:0/18:1)) and 3 (PG(16:0/18:0), PS(20:3/20:4),
PA(18:0/20:4)) were recognized in the database for steatotic
and nonsteatotic lipids, respectively. The network analysis
resulted in almost independent networks for each tissue type,
pointing out that the metabolic processes in these tissue types
are divergent. The interaction networks consisted of 3 highly
interconnected nodes (hubs): arachidonic acid (AA) and the
diacylglycerol kinase (DGK) reaction (Icosa-5,8,11,14-tetrae-
noic acid [1-(hydroxymethyl)-2-octadecanoyloxy-ethyl] ester +
ATP = 1-Stearoyl-2-arachidonoylphosphatidic acid + ADP),
and phosphatidylethanolamine (PE). The network (52 nodes
and 57 interactions, Supporting Table 6) revealed AA
metabolism in nonsteatotic tissue, whereas low−density
lipoprotein (LDL) metabolism including small, very small
and large LDL were identified in steatotic regions (Figure 5).
Gene expression confirmed the expression of enzymes with
important functions within the inflammation pathways
(Supporting Figure 5). In particular, several genes of the
phospholipase group of enzymes (PLA2) and diacylglycerol
kinase (DGK) family were expressed in patients with more
severe steatosis.

Data-Driven PCA-LDA Classifier Discriminates 4
Steatosis Groups with Tissue-Specific Lipid Profiles.
Next, we performed PCA-LDA to evaluate whether the lipid-
specific signature for steatosis identified by MALDI-MSI could
predict steatosis development and progression. We stratified
the samples into 4 groups per steatosis grade as determined by
the pathologist (Supporting Table 1), and PCA-LDA was built
using 200 PCs (80% variance) from all ∼100 000 pixels/
spectra. The resulting discriminant function showed the
separation of the 4 steatosis grades (Figure 6), with a direct
hit (4 groups) leave-one-out cross-validation accuracy of 48%.
When a shift of neighboring groups was allowed (that is grade 0
↔ 1 or 2 ↔ 3), predictive accuracy improved to 96%.
Additional validation was performed using a technical replicate
of all 23 biopsies as test set and confirmed the accuracy of the
results. Classification performance together with confusion
matrix is shown in Supporting Table 7.
Since the spatial information was retained, the discriminant

function (its score) could be projected onto each pixel and
color-coded blue to red. In this way, we visualized pixel by pixel
the heterogeneous lipid composition of steatotic and non-
steatotic tissue regions for the whole data set. Figure 6 shows
that tissues with steatosis grade 0 or 1 were mostly color-coded

Figure 3. Preferential tissue distribution and high predictive value of
phosphatidylglycerol (18:1_20:4) to steatotic regions. (A) MS ion
image (top) of PG(18:1_20:4) (m/z 795.4) alongside the annotated
histological image (bottom) of the same tissue section reveals
preferential localization to steatotic areas. Color scale is in relative
intensity. (B) Receiver operating characteristic (ROC) analysis of
PG(18:1_20:4) shows high discriminatory power with AUC of 0.838.
Inset, the relative ion intensity of PG(18:1_20:4) shows higher
abundance in steatotic compared to nonsteatotic tissue regions
(pixels). The horizontal line denotes the average value, the box
indicates the 95% confidence interval, and the bars signify the standard
deviation.

Figure 4. Increased PG(18:2_22:6) (m/z 817.5) abundance in regions
with steatosis. (A) Relative intensity of PG(18:2_22:6) (m/z 817.5) in
MS ion images shows increase in steatotic regions. (B) Box plots
showing the intensity of this lipid in complete tissue regions grouped
according to steatosis content: group 1 (<5% steatosis, green); group 2
(5−33% steatosis, blue); group 3 (>33−66% steatosis, black); and
group 4 (>66% steatosis, red).

Analytical Chemistry Article

DOI: 10.1021/acs.analchem.7b05215
Anal. Chem. 2018, 90, 5130−5138

5134

http://pubs.acs.org/doi/suppl/10.1021/acs.analchem.7b05215/suppl_file/ac7b05215_si_001.xlsx
http://pubs.acs.org/doi/suppl/10.1021/acs.analchem.7b05215/suppl_file/ac7b05215_si_001.xlsx
http://pubs.acs.org/doi/suppl/10.1021/acs.analchem.7b05215/suppl_file/ac7b05215_si_001.xlsx
http://pubs.acs.org/doi/suppl/10.1021/acs.analchem.7b05215/suppl_file/ac7b05215_si_001.xlsx
http://pubs.acs.org/doi/suppl/10.1021/acs.analchem.7b05215/suppl_file/ac7b05215_si_002.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.analchem.7b05215/suppl_file/ac7b05215_si_001.xlsx
http://pubs.acs.org/doi/suppl/10.1021/acs.analchem.7b05215/suppl_file/ac7b05215_si_001.xlsx
http://dx.doi.org/10.1021/acs.analchem.7b05215


blue, whereas tissues with grade 2−3 were mostly orange.
Within a tissue, MSI-based PCA-LDA patterns matched the
histological annotation of nonsteatotic versus steatotic regions.
Interestingly, the regions denoted by histology as nonsteatotic
in biopsies with grade 2 or 3 were color coded based on the MS
profiles as yellow or green. This indicates an already altered
metabolic profile in these regions compared with the
nonsteatotic tissue region in biopsies with grade 0 or 1 which
were colored blue based on their MS profile.
The effect of homogenization was simulated by averaging the

spectra over all pixels within a liver biopsy and then building a
PCA-LDA using the resulting 23 spectra. A histogram
displaying the first discriminant function for the averaged 23
spectra PCA-LDA classifier (Supporting Figure 6) clearly
showed the failure of the homogenate simulation data to
discriminate the 4 steatosis groups. Results did not improve
when more PCs were considered. The loss of spatial
information, reflected in a reduced number of PCs, is
detrimental to the performance of the classifier.

■ DISCUSSION

We applied an innovative methodology to retain spatial
information and evaluate local lipid profile changes in
progressive stages of steatosis in NAFLD. Whereas previous
studies focused predominantly on TAGs and PCs,17,20,25 we
identified other lipid species and their local distribution,
including specific PI, PE, PG, and PA species in steatosis.
Moreover, our data are from clinically relevant human biopsies.
By presenting a unique combination of high-quality structural
lipid identification and evaluation of its interrelationship by
systematic network analysis, we demonstrate how systematic

lipid identification delineates the metabolic changes during
NAFLD progression at the cellular/tissue level.
First, using pixel-wise analysis of MALDI-MSI data, we

distinguished steatotic from nonsteatotic tissue. To demon-
strate the strength of this approach, we performed simulated
homogenate values, by averaging the spectra over all pixels
within a liver biopsy, and showed that the resulting PCA-LDA
classifier failed to discriminate the steatosis groups. The
inability to detect subtle changes in the simulated homogenized
data may be attributed to the dilution effect upon
homogenization. In contrast, these subtle changes are retained
when imaging data is analyzed. Localized MSI measurements
are therefore likely to contribute to our understanding of the
pathophysiology of lipid accumulation in NAFLD and its
consequences.
Next, we showed that the steatotic lipid fingerprint identified

by MALDI-MSI had high predictive accuracy, demonstrating
potential use for clinical applications. Whereas the direct hit
classification performed with 48% accuracy, allowing one group
shift improved the accuracy to 96%. This doubling in accuracy
can be explained in two ways. First, the pathological scoring
system underlying the classification delineates four discrete
groups, whereas steatosis severity in reality is continuous. There
is poor conformity and agreement among expert pathologists
concerning the assessment of steatosis severity. A recent
study12 used intra class correlation coefficients (ICC) to
evaluate intra- and interobserver performances and found ICC
of 0.57 regarding the assessment of total steatosis (ICC of 0.7
indicates acceptable agreement). The significant jump in
accuracy when we allowed a one-group shift at the extreme
groups is likely to partially result from misclassification of
borderline cases by the pathologist. Second, the small sample

Figure 5. Lipid−protein interaction network determined from lipids prevalent in nonsteatotic (blue) and steatotic (green) regions.
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size and overfitting of the classifier could be responsible. The
inherent nature of LDA causes the removal of interpatient
variance within one group when building the classifier. This is
further compounded when the test sample is scored, yielding
misclassification because the small sample size is unable to
compensate for heterogeneity within one group of patients.
Our data set uncovers potential underlying lipid metabolism

and homeostasis changes in the liver that may contribute to
steatosis progression. The top 10 discriminatory peaks that
were identified by PCA analysis belonged to PI, PG and PS
classes in nonsteatotic regions and PE, PG, and PA classes in
steatotic regions. The loss of PI and increased prevalence of PE
species in steatosis may suggest how lipid metabolism is
dysregulated in NAFLD. Additionally, network analysis
revealed diacylglycerol kinase (DGK) as a core reaction in
nonsteatotic tissue (Figure 5). Interestingly, DGK is down-
stream of the phosphoinositide pathway, indicating its
importance in nonsteatotic metabolic processes. The phos-
phoinositide pathway also plays a key role in liver insulin signal
transduction, linking this back to the insulin resistance
comorbidity of NAFLD.42 Additionally, AA-containing lipid
species were enriched in nonsteatotic tissue. Both AA (as
precursor for eicosanoids17,24,43) and the PI cascade are linked
to inflammation, and network analysis also revealed AA

metabolism to be involved. Gene expression data indicated an
increase of phospholipases (PLA1a and PLA2) in patients with
more severe steatosis. These enzymes have important functions
within the inflammation pathways, recognizing and hydrolyzing
the sn-2 acyl bond of AA-containing phospholipids thereby
releasing AA and lysolipids. Therefore, this observation
suggests that local elevation of AA concentrations in steatotic
regions may directly contribute to the initiation of inflamma-
tory responses at these sites. AA is also associated with insulin
resistance,44 which further underscores the potential impact of
AA on the development of NAFLD. Because of the tight
regulation of AA levels in healthy tissues, we hypothesize that
AA dysregulation in steatosis is due to aberrant hydrolysis of
intracellular pools of AA-containing phospholipids by phos-
pholipases, increasing cytoplasmic AA concentrations and
stimulating the eicosanoid inflammation cascade.45 Our
findings are in line with those from Hall et al., who indicated
that AA could be linked to local inflammation using data
obtained from mouse models of NAFLD and a validation
cohort of patients with NAFLD with unknown etiology.
Furthermore, our lipid analysis supports the hypothesis of
Chiappini et al.22, indicating decrease of lipid synthesis such as
the eicosanoid precursors leading to global reduction of
phospholipids in NAFLD. Despite the reduction of AA-

Figure 6. PCA-LDA data-driven classifier. Histogram (middle right) showing the distribution of the 4 classes along the discriminant function 1
(DF1, middle left). Intensity-scaled loading spectra (top and bottom) displaying the mass channels associated with the discriminatory power of DF1
for nonsteatotic (top) and steatotic grades (bottom). Projection of the DF score onto the training set of MS images, where each pixel is given a color
based on its DF1 score. The color code indicates the 4 classes used in the PCA-LDA classifier, which corresponds to steatosis stages 0 to 4, blue to
orange, respectively.
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containing lipids and increased PLA2 gene expression in
steatosis, we did not observe increases in the corresponding
hydrolysis products (free AA and lysolipids) in steatotic
regions. A plausible explanation for lysolipids could be
increased lipid remodeling, i.e., the rapid addition of another
fatty acyl to the lysolipid yielding another intact lipid moiety.
With respect to AA, our network analysis also revealed low−
density lipoprotein metabolism to be associated with steatosis,
where the LDL receptor pathway was previously found to
deliver AA for eicosanoid formation.43 Thus, the absence of free
AA may be due to its immediate processing within these
inflammatory pathways. Another reason for not observing the
lysolipids as well as free fatty acids could be their very reactive
nature and cytotoxicity. These molecules are thus cleared and
processed by the cell machinery immediately upon release.
Finally, detection of these low molecular mass ions is
complicated by inference of matrix ions and lower sensitivity
of MALDI-TOF MSI in this mass range.

■ CONCLUSION

We conclude that regions associated with a steatotic phenotype
exhibit a distinct lipid composition compared to nonsteatotic
tissue. In particular, steatotic regions showed a loss of AA-
containing intracellular phospholipids: PI and PE species
predominantly. These findings are consistent with an important
role for the eicosanoid cascade in driving inflammatory
responses in NAFLD, and may directly link lipid metabolism
changes to inflammation-mediated clinical comorbidities. The
combination of MSI and bioinformatic analyses in a systems
biology approach provided molecule-based histological classi-
fications of liver tissue. This integration strategy represents a
new way to study localized lipid distribution and will contribute
to our understanding of how altered lipid metabolism,
homeostasis, and distributions contribute to steatosis pro-
gression in NAFLD.
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