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Abstract

Severely damaged adult zebrafish extraocular muscles (EOMs) regenerate through dedif-

ferentiation of residual myocytes involving a muscle-to-mesenchyme transition. Members of

the Twist family of basic helix-loop-helix transcription factors (TFs) are key regulators of the

epithelial-mesenchymal transition (EMT) and are also involved in craniofacial development

in humans and animal models. During zebrafish embryogenesis, twist family members

(twist1a, twist1b, twist2, and twist3) function to regulate craniofacial skeletal development.

Because of their roles as master regulators of stem cell biology, we hypothesized that twist

TFs regulate adult EOM repair and regeneration. In this study, utilizing an adult zebrafish

EOM regeneration model, we demonstrate that inhibiting twist3 function using translation-

blocking morpholino oligonucleotides (MOs) impairs muscle regeneration by reducing myo-

cyte dedifferentiation and proliferation in the regenerating muscle. This supports our hypoth-

esis that twist TFs are involved in the early steps of dedifferentiation and highlights the

importance of twist3 during EOM regeneration.

Introduction

Skeletal muscle injuries and degenerative conditions are common, debilitating, and significant

causes of morbidity and mortality worldwide [1, 2]. Despite the pervasiveness of injury, mam-

malian muscle repair is limited by the extent of tissue damage and restricted by the amount of

resident stem cells (i.e. satellite cells) available for tissue replacement [3]. This differs from

non-mammalian vertebrates such as zebrafish which robustly regenerate both skeletal and car-

diac muscle as well as other tissues including retina, spinal cord, liver, and fin [4–8]. Such

extensive repair, or rather whole tissue regeneration, relies less on the activation of resident

stem cells and more on cell reprogramming and dedifferentiation [9, 10]. Understanding the

mechanisms underlying adult de novo muscle regeneration in model vertebrates thus repre-

sents a topic with widespread clinical therapeutic implications [2, 11]. Zebrafish is an
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outstanding model for studying tissue regeneration [12]. Our lab has developed a novel zebra-

fish-based system to study regeneration of extraocular muscles (EOMs)—a form of skeletal

muscle whose regeneration is driven by myocyte dedifferentiation with no significant contri-

bution from satellite cells [10].

The twist family of basic helix-loop-helix (bHLH) transcription factors (TFs) represent an

evolutionarily conserved family of proteins that regulate stem cells during both embryonic

development [13–15] and adult progenitor cell maintenance [16]. Twist orthologs are also

known regulators of muscle formation and regeneration in Drosophila [17, 18], muscle stem

cells during mouse development [19], and skeletal muscle repair in adult mice [20, 21]. Zebra-

fish have 4 twist homologs—twist1a, twist1b, twist2, and twist3—which are orthologs of mam-

malian twist1 and twist2 [22] and are necessary for proper craniofacial development [23]. The

prevailing belief that regeneration is a recapitulation of embryonic development led us to

hypothesize that twist TFs are involved in adult extraocular muscle (EOM) regeneration. We

therefore sought to identify which zebrafish twist homologs participate in the regeneration

process and at what timepoint.

Utilizing our established regeneration model, we report that twist3 is the sole twist TF

required for EOM regeneration in adult zebrafish. Knockdown of twist3 significantly impairs

muscle regeneration by decreasing myofiber dedifferentiation and cell proliferation post-

injury. These findings suggest that twist3 plays an early role during the myocyte dedifferentia-

tion process that precedes cell cycle re-entry. Additionally, knockdown of other zebrafish twist

homologs (i.e. twist1a, twist1b, and twist2) did not affect regeneration parameters, thereby

suggesting fundamental differences between embryonic development and adult muscle regen-

eration in zebrafish.

Methods

Zebrafish (danio rerio) rearing and surgeries

All animal work was performed in compliance with the ARVO Statement for the Use of Ani-

mals in Ophthalmic and Vision Research and approved by the University of Michigan Com-

mittee on the Use and Care of Animals, protocol 06034. Sexually mature adult (4–18 month-

old) zebrafish were spawned in our fish facility and raised per standard protocol [24] at 28 ˚C

with a 14-h light/10-h dark alternating cycle.

Adult zebrafish were anesthetized using 0.05% tricaine methanosulfate (Tricaine-S; West-

ern Chemical, Ferndale, WA) with 0.05% sodium bicarbonate buffer and about 50% of the lat-

eral rectus (LR) muscle was surgically excised, i.e. myectomy. The length of the regenerating

muscle was quantified by craniectomy as described previously [25]. Regeneration is repre-

sented as the relative size of the injured LR muscle normalized to the length of the uninjured

LR muscle (representing 100%). All experiments were performed using 5 fish per experimental

group and/or time point, unless stated otherwise in the text and/or figure legend.

Twist TFs customized antibody

Polyclonal rabbit antibodies to twist proteins (twist1a, twist1b, twist2, and twist3) were custom

produced by Hitag Biotechnology, Lda, Cantanhede Portugal. Briefly, codon optimized 6x-His

tagged proteins were expressed in bacteria, the protein was purified using multiple steps and

the His-tag removed with tobacco etch virus (TEV) protease. Rabbits were immunized with

the purified proteins and the resulting sera purified by Protein A affinity chromatography.

Twist 3 antibodies were further affinity purified using His-tagged zebrafish twist3 over-

expressed protein (expressed in HEK293 cells) and affinity purified using cobalt-IMAC chro-

matography. The purified tagged twist 3 protein was coupled to a MicroLink™ Protein
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Coupling Kit column (Pierce, Rockford, IL) and the antibodies purified according to the man-

ufacturer’s instructions. Antibodies were validated for Western blot specificity utilizing mam-

malian over-expression plasmids transiently transfected into HEK293 cells with Lipofectamine

2000 (Invitrogen, Carlsbad CA).

Protein extraction, immunoprecipitation, and Western blots

For embryo protein extraction, dechorionated and deyolked zebrafish embryos were pooled

and homogenized in RIPA lysis buffer (Cell Signaling Technology, Danvers, MA) in a ratio

of 100 μL RIPA/30 embryos. For adult LR muscle protein extraction, transgenic Tg(α-actin::

EGFP) fish were used to visualize the muscles. Muscle tissue were collected as previously

described [26]. Injured or uninjured LR were pooled in denaturing buffer (1% SDA, 5mM

EDTA, 10mM beta-mercaptoethanol, Protease inhibitors, 15 U/ml DNase1) in a ratio of 30

muscle/100 μL buffer and homogenized by passing lysis through a 27-gauge needle attached to

a 1 mL syringe. Heat samples to 95 ˚C for 5 min to denature and centrifuge to collect superna-

tant. Protein concentrations were determined by BCA assay (Thermo Scientific, 23227).

Same amount of protein (~100 uL) were diluted by non-denaturing buffer (20 mM Tris

HCl, 137 mM NaCl, 10% glyceral, 1% NP-40, 2mM EDTA) to make a total volume of 1mL

and proceed with the immunoprecipitation.

Protein samples were incubated with customized twist antibodies 1:100 at 4˚C with contin-

uous mixing overnight. The following day, 200 μL washed PureProteome™ Protein A Magnetic

Beads (Cat. No. LSKMAGA02, Lot 2674904A, Germany) were added per 1 mL of sample, and

this was allowed to incubate for 45–60 minutes at 4˚C with continuous mixing. The superna-

tant was removed, and the beads were washed 3x5min with 0.1% PBS-Tween20. After the last

wash, the buffer was removed, and Laemmli Sample buffer was added proportional to number

of muscles collected. This was boiled at 90˚C for 10 minutes before removing the solution for

use in Western blots.

Anti-Tubg1 (1:1000, Sigma, T5326), anti-beta actin (1:30,000, Santa Cruz, sc-47778 HRP),

anti-p-histone H3 (1:1000, Cell Signaling Technology, 9701), and customized twist TFs anti-

bodies were used to detect protein.

Drug treatments

SU5402 (Selleckchem, Houston, TX) was dissolved in DMSO as a 17 mM stock and added to

fish water at a final concentration of 17 μM as described [27], tanks were kept in the dark. Up

to 5 fish were treated in 250 mL of water, tanks were maintained at 28.5˚C, and drug solutions

were replaced every 24 h. Drug treatments were performed 24 h before surgery and no signifi-

cant mortality was noted.

Morpholino oligonucleotide injection and electroporation

Microinjection of morpholino oligonucleotides (MOs; Gene-Tools, LLC, Philomath, OR)—a

widely used technique to perform knockdown experiments in zebrafish [29–31]—was used.

To knockdown genes in adult EOMs, lissamine-tagged MOs were directly microinjected into

the right LR muscle of Tg(α-actin::EGFP) adult fish, followed by square-wave electroporation

(6 to 10 pulses at 48 V/cm, BTX ECM830 electroporator; Harvard Apparatus, Holliston, MA).

Microinjections were performed 4 h prior to LR injury, and MO uptake was confirmed via lis-

samine fluorescence prior to myectomy. No mortality was detected during the experimental

process. MO sequences are listed in Table 1; a standard control MO targeting a mutated splice

site of human β-globin mRNA was injected for each experiment as negative control.
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EdU incorporation assays

Cellular proliferation was assessed by intra-peritoneal (IP) injections of 5-ethynyl-2’-deoxyuri-

dine (EdU) and standard detection methods [10]. Fish were anesthetized and injected with

EdU (20 μL, 10 mM EdU in PBS) at 20 hpi or 44 hpi and sacrificed 4 h later (24 hpi or 48 hpi).

For each experiment, 3 fish per group were analyzed. The injured muscle of each fish was ana-

lyzed with both EdU-positive and total (DAPI-positive) nuclei counted from 3 nonconsecutive

sections per muscle. Representative sections had approximately 1800 total nuclei (range 812–

3016) per muscle. Cell proliferation is represented as the percentage of EdU-positive nuclei in

the injured muscle.

Specimen processing

Zebrafish heads were excised and decalcified using Magic-EDTA (10% EDTA, saturated

ammonium sulfate in PBS, Ph7.4) for 3 days. Decalcified tissues were fixed in 4% paraformal-

dehyde (PFA) overnight at 4˚C. Decalcified and fixed tissues were cryoprotecteded with 20%

sucrose in PBS, embedded in OCT (Fisher Scientific), frozen, and evaluated microscopically

using coronal frozen sections (12 μm) as described previously [10].

Statistics

Comparisons between 2 groups were analyzed by Student t-test (�p< 0.05; ��p< 0.01;
���p< 0.001). When more than 2 groups were compared, one-way analysis of variance

(ANOVA, P< 0.05) followed by Newman-Keuls multiple comparisons test (p< 0.05) was

performed. Thus, in the time course experiments, differences between fish groups for each

time point were analyzed by Student t-test and differences among time points for each fish

group were analyzed by ANOVA. All tests were performed using the statistical software Prism

6.03 (GraphPad, LaJolla, CA, USA).

Results

Inhibition of twist3 impairs adult zebrafish EOM regeneration

Twist TFs are expressed during zebrafish embryogenesis and regulate craniofacial skeletal

development [23, 28]. They are also known to be master regulators of stem cells [29, 30].

Given the need to generate dedifferentiated myoblasts in order to regenerate EOMs, we

hypothesized that knock-down of Twist TFs would impair EOM regeneration. Translation

blocking MOs significantly decreased protein levels of all Twist TF proteins in embryos

(twist1a/b and twist2) and adult EOM (twist3) (Fig 1H–1K). To test the effect of twist TF

knockdown on EOM regeneration, we performed MO injections and electroporation 4 hours

prior to myectomy of the right LR muscle. At 8 days post injury (dpi), control MO injected

muscles were fully regrown as expected (Fig 1A–1A") [10]. The twist1a, twist1b, and twist2

Table 1. Sequences for morpholino oligonucleotides.

Name Sequence

Standard control 5’-CCTCTTACCTCAGTTACAATTTATA-3’

Twist1a-MO 5’-GTGCATCGCCTCTTCCTCAAACATC-3’

Twist1b-MO 5’-CGGGCTCTTCGGGCATCTCGCTTAA-3’

Twist2-MO 5’-AATACGATCTCCACTTTTGGTTCCG-3’

Twist3-MO 5’-TCCACAAGTCTGTTCCTCTCGCATG-3’

https://doi.org/10.1371/journal.pone.0231963.t001
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MO injection groups also displayed full regeneration at 8 dpi (Fig 1B–1D"). In contrast, twist3

injected muscles at 8 dpi were significantly shorter than other groups (Fig 1E–1E" and 1F).

To determine if this effect was inhibition or just delay of regeneration, we observed the

twist3 MO injected group at 21 dpi, approximately three times longer than the typical regener-

ation time for zebrafish LR post myectomy [10]. At 21 dpi, the length of the regenerated mus-

cle in the twist3 knockdown group remained significantly shorter than the control group (Fig

1G), suggesting true inhibition of regeneration. Co-injection of twist1a/b, twist2, and twist3

MOs did not enhance this phenotype, suggesting that only twist3 is required for complete LR

regeneration.

Electroporation of EOMs alone does not stimulate proliferation

Electroporation of MOs to modify protein expression has been widely utilized in both in vitro
and in vivo studies in multiple tissues [31–35]. Skeletal muscle is a favored target tissue for this

technique and electroporation significantly improves the transgene efficiency [35]. However,

there remains concern about muscle damage and subsequent repair associated with electropo-

ration process [35, 36]. In order to exclude electroporation-induced damage and cellular

reprogramming as a confounding variable, we assessed levels of proliferation between either

Fig 1. Inhibition of Twist3, but not other Twist TFs, impairs muscle regeneration. To knock down Twist TFs, lissamine-tagged MOs (red) against twist

1a, 1b, 2, and 3 were microinjected into Tg(α-actin::EGFP) (green) fish muscles 4 h prior to myectomy. (A-E’’) MO injected fish were shown. (H-J)

Knockdown effect of twist 1a/b, and twist2 MO was validated in embryos by Western blot. (K) Knockdown effect of twist3 MO was validated in EOM by

Western blot. (F) The length of regenerating muscle was measured as described; values are averages ±SEM (one-way ANOVA, p<0.05 between group a and

b, control:n = 6, twist1a: n = 4, twist1b: n = 5, twist2: n = 6, twist3: n = 7). (G) Twist3 MO inhibits but does not delay EOM regeneration; mixture of all 4

Twist TFs MOs or single control and twist3 MO were microinjected into α-actin-EGFP fish muscles 4 h prior to myectomy. The length of regenerating

muscle was measured as described; values are averages ±SEM (one-way ANOVA, p<0.05 between group a and b, control: n = 8, twist1/2/3: n = 4, twist3:

n = 5). White arrows marked the growing end of the regenerating muscle. p, pituitary; e, eye; scale bar: 250μm.

https://doi.org/10.1371/journal.pone.0231963.g001
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electroporation or myectomy alone or in combination. We found that electroporation alone

did not significantly induce cell proliferation; only ~2.5% of total myocytes were proliferating

cells (EdU-positive vs DAPI-positive; Fig 2). In contrast, both cut muscle (i.e. injury only)

combined treatment muscle (i.e. cut and electroporated) showed 3 times greater induction of

cell proliferation compared to electroporation alone (~7.5%; Fig 2). We therefore concluded

that, although electroporation does cause muscle damage and induce cellular proliferation, its

extent is insignificant compared to our standard injury procedure (i.e. 50% myectomy of the

lateral rectus) and does not confound the results of this study.

Inhibition of twist3 reduces cell proliferation during muscle regeneration

Adult zebrafish EOM regeneration requires myocyte dedifferentiation, followed by a prolifer-

ative burst at 24–48 hpi [10]. After generating a sufficient number of myoblasts, cells then

migrate, re-differentiate into myocytes and fuse into myotubes [10]. Based on the observed

inhibition of regeneration in twist3 MO-injected fish, and the known roles of Twist TFs in

stem cell biology, we hypothesized that twist3 would be important in early dedifferentiation

steps leading to proliferation.

First, we determined the timing of twist3 gene expression level by Western blot and found a

1.5-fold induction of twist3 as early as 3 hpi (Fig 3I and 3J). Next, we utilized an EdU incorpo-

ration assay to test the number of proliferating myoblasts post-injury, since proliferation of

dedifferentiated myoblasts represents the final step of the reprogramming process [25, 37].

We found that the percentage of proliferating myoblasts (EdU-positive nuclei) in twist3 MO-

injected fish was significantly reduced at both 24 and 48 hpi compared to control MO-injected

fish (Fig 3B, 3D, 3F and 3H). In contrast, twist3 MO did not inhibit proliferation during

Fig 2. Electroporation does not cause significant damage of EOM. Boxplot of the percentage of proliferating nuclei (EdU)

out of all nuclei (DAPI), in three different treatment groups: cut only (blue), both cut and electroporation (yellow), and

electroporation only (red). The boxplot displays the minimum, 25th percentile, median, 75th percentile, and maximum for the

groups. p<0.001 between two statistic groups a and b by ANOVA.

https://doi.org/10.1371/journal.pone.0231963.g002
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embryonic development, since the phosphorylation of histone H3 (proliferation marker) was

increased instead of decreased by twist3 MO (S1 Fig), suggesting that the role of twist3 in

EOM myocyte dedifferentiation was not reflective of a general role in cell proliferation. The

induction of phosphorylation of histone H3 may due to the delay of development caused by

twsit3 MO injection (S2D”‘ Fig).

During regeneration of control MO-injected muscles, myofibers in the control group lost

Z-band architecture and became mesenchyme-like in appearance at 24 hpi (Fig 3A’ and 3A”).

It was difficult to distinguish individual myofibers and the morphology became increasingly

more mesenchymal at 48 hpi (Fig 3E’ and 3E”) [10]. In contrast, in twist3 MO-injected mus-

cles, myocytes maintained a differentiated myofiber morphology and Z-band architecture was

clearly shown at 24 hpi (Fig 3C’ and 3C”). Some myofiber structure remained and Z-band

could be seen in some myofibers at 48 hpi (Fig 3G’ and 3G”). Taken together, these data sug-

gest that twist3 plays a role in the control of early myocyte reprogramming and cell cycle reen-

try after injury.

Fig 3. Inhibition of Twist3 impairs myocyte reprogramming and proliferation. The role of Twist3 in myocyte reprogramming and proliferation at 24

and 48 hpi was assessed by injecting Tg(α-actin::EGFP) fish with twist3 MO. Morphology of myocytes was shown using DIC images (A, C, E, G),

highlighted in higher magnification (A’, C’, E’, G’) and illustrated in schematic diagram (A”, C”, E”, G”; solid line: outline of muscle; dash line” approximate

outline of muscle; dotted pattern” mesenchyme-like myocytes; long light blue line: myofiber; short vertical strips: Z-band architecture). (B, D, F, H)

Proliferating myoblasts were stained by EdU incorporation. EdU: magenta; DAPI: blue; Yellow arrows: positive Edu staining nuclei and corresponding

DAPI channel. (I, J) Western blot analysis for Twist3 protein expression during EOM regeneration; values were averages ±SEM (t-test, p<0.0001 between

control and 3hpi, n = 3). (K, L) Cell proliferation in injured muscle was significantly less in Twist3 MO injection group compared with control group at

both 24 and 48 hpi. (24 hpi, control: n = 8, twist3 MO: n = 7; 48 hpi, control: n = 6, twist3 MO: n = 5) Scale bar: 50 μm, ��p<0.01, ����p<0.0001.

https://doi.org/10.1371/journal.pone.0231963.g003
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Twist3 is involved in EOM regeneration via a shared pathway with Fgf

We next investigated the mechanism through which twist3 promotes EOM regeneration.

Twist is required for the proper function of the Fgf-signaling pathway [38]. Our previously

published study highlighted the important role of Fgf signaling in zebrafish EOM regeneration

[25]. Hence, we tested the hypothesis that twist3 promotes regeneration via Fgf signaling. In

order to test this hypothesis, we combined twist3 MO injection with pharmacological inhibi-

tion of Fgf using su5402, an Fgf-receptor inhibitor [25]. Both su5402 and twist3 MO injection

alone significantly decreased regenerated muscle length as expected (Fig 4D–4I). Combining

su5402 treatment and twist3 MO injection inhibited regeneration, but no additive/synergistic

effect was observed compared to MO injection or su5402 alone (Fig 4J–4M). Twist3 protein

Fig 4. Inhibition of Fgfr and twist3 do not have an additive effect on EOM regeneration. Myectomized Tg(α-actin::EGFP) fish were treated with su5402

(D-F), or injected with twist3 MO (G-I), or treated with su5402 and injected with twist3 MO (J-L) compared with DMSO treatment and control MO

injection (A-C). (M) All the experiment groups demonstrated significantly inhibited muscle regeneration, with no additive effect detected by combination

of two treatments at 8 dpi. (p, pituitary; e, eye; Scale bar: 250μm, p<0.05 between two statistic groups a and b by ANOVA, control MO/DMSO: n = 7,

control MO/su5402: n = 10, twist3 MO/DMSO: n = 8, twist3 MO/su5402: n = 11).

https://doi.org/10.1371/journal.pone.0231963.g004
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level was higher in the su5402 group compared with the control group at 3 hpi (Fig 4N), sug-

gesting a negative feedback loop existing between twist3 and Fgf pathways. That is, inhibition

of Fgf induced the expression of twist3. In addition, the induction of twist3 could not over-

come the effect of Fgf inhibition (Fig 4J–4L). Taken together, these data suggest that Fgf is an

upstream—but not direct—regulator of twist3, and that Fgf has other downstream targets

involved in muscle regeneration in addition of twist3 (Fig 5).

Discussion

Cellular reprogramming from a more- to less-differentiated state requires coordinated changes

in chromatin, gene expression and cellular architecture, driven by altered functionality of key

transcription factors [39, 40]. Because of their role as master regulators of stem cells and in

embryonic craniofacial development, we decided to use our unique zebrafish EOM regenera-

tion model to test whether twist TFs play a role in EOM myocyte dedifferentiation.

In adult zebrafish, EOM regeneration begins with myocyte reprogramming—an EMT pro-

cess—followed by cell cycle reentry, proliferation, and migration of the dedifferentiated myo-

blasts, and eventually re-differentiation into myocytes that fuse to form myofibers [10]. Our

long-term goal is to understand regulations of cell identity and fate, by understanding the

early steps of EOM myocytes reprogramming dedifferentiation.

Twist TFs belong to the basic helix-loop-helix (bHLH) family that is important for the regu-

lation of cell fate decision and differentiation [41] and EMTs [42]. Twist TFs are also consid-

ered master regulators of stem cells in that they are important to maintaining the stem cell

state [21, 29, 30]. In our regeneration model, twist TF knockdown impaired muscle regenera-

tion by inhibiting myocyte reprogramming, revealing an early role for Twist that is consistent

Fig 5. Twist3 role during EOM regeneration. Following myectomy injury, twist3 expression is elevated and promotes myocytes cell reprogramming and

dedifferentiation. The known role of Fgf combined with our results (Fig 4) suggest that twist3 shares a common pathway with Fgf.

https://doi.org/10.1371/journal.pone.0231963.g005

PLOS ONE Twist3 is required for extraocular muscle regeneration

PLOS ONE | https://doi.org/10.1371/journal.pone.0231963 April 22, 2020 9 / 15

https://doi.org/10.1371/journal.pone.0231963.g005
https://doi.org/10.1371/journal.pone.0231963


with the early induction of expression following injury and with Twist TF’s role in EMT. Inter-

estingly, this effect was specific to twist3 (homolog of mammalian twist2) and none of the

other paralogs, revealing evolutionary sub-functionalization in the context of adult tissue

regeneration.

It has been reported that Twist is involved in adult muscle regeneration in both Drosophila
and mice. In Drosophila, persistent twist expression is a marker of embryonic precursors for

adult muscle [43]. Twist is also required for adult Drosophila myogenesis [18]. In mouse skele-

tal muscle, twist expression is quickly elevated after injury [20]. In addition, murine Twist2 (an

orthologue of Zebrafish twist3)-dependent progenitor cells contribute to muscle regeneration

[21]. In adult zebrafish, twist1a and twist1b are involved in heart regeneration [44, 45]. Our

study represents the first investigation of twist within adult zebrafish skeletal muscle regenera-

tion, and our results suggest that promoting muscle regeneration may be an evolutionarily-

conserved function of twist TFs.

The role of twist1in zebrafish development has been extensively studied. As EMT transcrip-

tion factors, twist1 are involved in neural crest migration, which undergo an EMT to give rise

to many different derivatives [46]. Regulated by thyroid hormone [47], retinoic acid (RA)[48],

Wnt [49], Bmps and Id2a [28] signaling pathways, Twist 1a/b is required for proper develop-

ment of craniofacial cartilage and skeleton [50], with Runx2 a known downstream target [13,

14]. Twist1 is also involved in blood vessel sprouting in zebrafish embryos [51]. Like twist1,

twist2 is also involved in bone formation regulated by RA [48]. Despite their significant pep-

tide similarity, expression locations of four twist TFs differ significantly from each other, sug-

gesting a considerable divergence of regulatory controls [52, 53]. This is supported by our

findings that different twist TFs are involved in EOM regeneration and development. Twist3 is

involved in zebrafish EOM regeneration but not development. In embryos with twist3 knock-

down, EOM development appeared normal, although the muscle appeared longer and thinner,

possibly due to a severe bulging eye phenotype (S2D–S2D´´´ Fig). EOMs also developed nor-

mally after twist1a/b knock-down (S2B–S2B" Fig). In contrast, while muscle fibers could be

identified following twist2 knockdown (highlighted by actin-GFP), they failed to form a nor-

mal EOM pattern. It was difficult to differentiate the 6 pairs of EOMs based on insertion posi-

tion (S2C–S2C’ Fig) compared with control fish (S2A–S2A’ Fig). Instead of normal insertion

patterns, muscles seemed to “wrap around” the globe (S2C" Fig). In embryos, twist2 knock-

down impaired EOM formation as early as 48 hpf (S3B–S3B" Fig). This finding reveals a key

differences between zebrafish embryonic development and regeneration, suggesting that

regeneration is not a simple recapitulation of developmental programs but rather a distinct

program, albeit one that utilizes many of the same building blocks.

An important limitation of this study is the use of MOs to knockdown gene expression.

MOs have been used widely in a variety of experimental models, such as Xenopus, zebrafish

and other organisms [54]. However, in embryo research, their use has been largely supplanted

by CRISPR/Cas9 genetic engineering because of concerns about MO knockdown efficiency

and off-target effects [55]. It should be noted that the phenotypic differences between mutants

(CRISPR/Cas9) and morphants (MO knockdown) may due to the natural activation of genetic

compensation induced in mutants [56]. Nevertheless, for knocking down gene expression in

select adult tissue, direct electroporation of MOs has no proper experimental substitute, and

this technique has been used extensively in the adult zebrafish regeneration model [57, 58]. In

this study, we followed the guidelines for use of MOs in zebrafish [55], most importantly vali-

dating multiple MOs and assessing reduction in protein level using Twist antibodies (Fig 1).

Furthermore, since knockdown of different Twist family members resulted in specific pheno-

typic differences, our results are most consistent with a specific phenotypic effect rather than

off-target effects. Ultimately, there are no alternative techniques for knocking down gene
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expression of a specific gene in a specific extraocular muscle, and hence electroporation of

MOs represents the state of the art for these experiments.

Twist TFs are critically important to both embryonic development and cancer. The involve-

ment of Twist in cancer includes EMT during metastasis [42, 59–61], as well as maintenance

of cancer stem cells [42, 62–65]. In our study, injured EOMs in the twist3 knock-down group

do not de-differentiate properly, consistent with an early role for Twist in reprogramming and

EMT (i.e. muscle-to-mesenchymal transition). The similarities between cellular dedifferentia-

tion and cancer have been previously noted [66–69], and our data provide additional support-

ive evidence.

Supporting information

S1 Fig. Twist3 MO does not inhibit cell proliferation during embryo development. Western

blot of phospho-histone H3 shows twist3 MO injection induced p-histone H3 at 24 and 48

hpf.

(TIF)

S2 Fig. Twist2 regulates EOM development in zebrafish. Tg(α-actin::EGFP) embryos that

were injected with twist 1a/b, 2, or 3 MO at the one- to four-cell state demonstrated EOM for-

mation at 5 dpf from dorsal (B-D), lateral (B’-D’), Ventral (B’’-D’’), and phenotype (B´´´-D

´´´) compared with control embryos (A-A´´´). SO: Superior Oblique, SR: Superior Rectus, LR:

Lateral Rectus, IO: Inferior Oblique, IR: Inferior Rectus. Asterisk: undeveloped jaw muscle,

red arrow: incorrectly inserted EOM, scale bar: 100μm.

(TIF)

S3 Fig. Twist2 delays EOM development in zebrafish. Tg(α-actin::EGFP) embryos that were

injected with twist2 MO at the one- to four-cell state demonstrated EOM formation at 48 or

72 hpf from dorsal (B, D), lateral (B’-D’), and ventral (B’’-D’’) compared with control embryos

(A-A’’, C-C’’). SO: Superior Oblique, SR: Superior Rectus, LR: Lateral Rectus, IO: Inferior

Oblique, IR: Inferior Rectus. Red arrow: incorrectly inserted EOM, scale bar: 100μm.

(TIF)

S1 Raw images.

(PDF)
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